Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantification of global and national nitrogen budgets for crop production


Input–output estimates of nitrogen on cropland are essential for improving nitrogen management and better understanding the global nitrogen cycle. Here, we compare 13 nitrogen budget datasets covering 115 countries and regions over 1961–2015. Although most datasets showed similar spatiotemporal patterns, some annual estimates varied widely among them, resulting in large ranges and uncertainty. In 2010, global medians (in TgN yr−1) and associated minimum–maximum ranges were 73 (64–84) for global harvested crop nitrogen; 161 (139–192) for total nitrogen inputs; 86 (68–97) for nitrogen surplus; and 46% (40–53%) for nitrogen use efficiency. Some of the most uncertain nitrogen budget terms by country showed ranges as large as their medians, revealing areas for improvement. A benchmark nitrogen budget dataset, derived from central tendencies of the original datasets, can be used in model comparisons and inform sustainable nitrogen management in food systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nitrogen budgets for crop production and resulting nitrogen species released to the environment.
Fig. 2: Global nitrogen budgets for crop production from various data sources.
Fig. 3: The estimates of nitrogen budget terms and land area by countries for 2000.
Fig. 4: Uncertainties in region-specific nitrogen budgets.
Fig. 5: Estimates of crop nitrogen content from different data sources.
Fig. 6: Examples of historical nitrogen records on a national scale.

Data availability

Most data presented in this study are contained within the Supplementary Information. The benchmark datasets are available in the Supplementary Data. Other raw data supporting the findings of this study are available through Dryad ( and from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used to perform analyses in this study is generated in MATLAB 2016b and is available upon request.


  1. Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Article  Google Scholar 

  2. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article  Google Scholar 

  3. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nitrogen Inputs to Agricultural Soils from Livestock Manure: New Statistics (FAO, 2018).

  5. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  ADS  CAS  Google Scholar 

  6. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sutton, M. A. et al. Our Nutrient World. The Challenge to Produce More Food & Energy with Less Pollution (Centre for Ecology & Hydrology, 2013).

  8. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130116 (2013).

    Article  CAS  Google Scholar 

  9. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. (2014).

  10. Morseletto, P. Confronting the nitrogen challenge: options for governance and target setting. Global Environ. Change 54, 40–49 (2019).

    Article  Google Scholar 

  11. Quemada, M. et al. Exploring nitrogen indicators of farm performance among farm types across several european case studies. Agric. Syst. 177, 102689 (2020).

    Article  Google Scholar 

  12. Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochem. Cycles (2020)

  13. Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D. & Sachs, J. D. National baselines for the sustainable development goals assessed in the SDG index and dashboards. Nat. Geosci. 10, 547–555 (2017).

    Article  ADS  CAS  Google Scholar 

  14. McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leach, A. M. et al. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61, 213–223 (2016).

    Article  Google Scholar 

  16. Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Chang Biol. 25, 640–659 (2019).

    Article  ADS  PubMed  Google Scholar 

  17. Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    Article  ADS  CAS  Google Scholar 

  18. van Grinsven, H. J. M. et al. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 9, 5143–5160 (2012).

    Article  ADS  CAS  Google Scholar 

  19. Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).

    Article  PubMed  Google Scholar 

  20. SDG Indicator 2.4.1: Proportion of Agricultural Area under Productive and Sustainable Agriculture. Methodological Note (FAO, 2018).

  21. Soil Nutrient Budget. Global, Regional and Country Trends, 1961–2018. FAOSTAT Analytical Brief Series No. 20 (FAO, 2014);

  22. Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118, 225–241 (2014).

    Article  Google Scholar 

  23. Tenorio, F. A. M. et al. Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US north central region. Field Crops Res. 240, 185–193 (2019).

    Article  Google Scholar 

  24. Smil, V. Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycles 13, 647–662 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Bodirsky, B. L. et al. N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).

    Article  ADS  CAS  Google Scholar 

  26. Xu, R. et al. Increased nitrogen enrichment and shifted patterns in the world’s grassland: 1860–2016. Earth Syst. Sci. Data 11, 175–187 (2019).

    Article  ADS  Google Scholar 

  27. Heffer, P., Gruère, A. & Roberts, T. Assessment of Fertilizer Use by Crop at the Global Level 2014–2014/15 (International Fertilizer Industry Association, 2017);

  28. Official Data Collection from Countries: Analysis and Dissemination (FAO, 2020);

  29. Fertilizer Use and Price Data Set (United States Department of Agriculture, 2013);

  30. Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Intergovernmental Panel on Climate Change, 2019).

  32. Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. & Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121–153 (2005).

    Article  Google Scholar 

  33. Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Weindl, I. et al. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Global Planet. Change 159, 1–10 (2017).

    Article  ADS  Google Scholar 

  35. MacLeod, M. J. et al. Invited review: a position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 12, 383–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    Article  CAS  Google Scholar 

  39. Anglade, J., Billen, G. & Garnier, J. Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in europe. Ecosphere 6, 37 (2015).

    Article  Google Scholar 

  40. Fixen, P. E., Williams, R. & Rund, Q. B. NuGIS: A Nutrient Use Geographic Information System for the US (International Plant Nutrition Institute, 2012).

  41. Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016).

    Article  ADS  Google Scholar 

  42. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem. Cycles (2006).

  44. Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).

    Article  ADS  Google Scholar 

  45. Nishina, K., Ito, A., Hanasaki, N. & Hayashi, S. Reconstruction of spatially detailed global map of NH4+ and NO3 application in synthetic nitrogen fertilizer. Earth Syst. Sci. Data (2017)

  46. Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Article  ADS  Google Scholar 

  47. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Peoples, M. et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48, 1–17 (2009).

    Article  CAS  Google Scholar 

  49. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles (2008)

  50. Zhang, B. et al. Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for earth system modeling. Earth Syst. Sci. Data 9, 667–678 (2017).

    Article  ADS  Google Scholar 

  51. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  ADS  Google Scholar 

  52. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article  ADS  Google Scholar 

  53. Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem. Cycles (2009)

  54. Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Global Biogeochem. Cycles 27, 558–566 (2013).

    Article  ADS  CAS  Google Scholar 

  55. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

    Article  ADS  CAS  Google Scholar 

  57. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  ADS  CAS  Google Scholar 

  58. Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  59. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Mueller, N. D. et al. A tradeoff frontier for global nitrogen use and cereal production. Environ. Res. Lett. 9, 054002 (2014).

    Article  ADS  CAS  Google Scholar 

  61. Agricultural Waste Management Field Handbook Report NR 210-VI, NEH-651 (US Department of Agriculture, 1999).

  62. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles (2008)

  63. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000-global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles (2010)

  64. Skalský, R. et al. Global Earth Observation – Benefit Assessment: Now, Next, and Emerging. GEO-BENE global database for bio-physical modeling v.1.0. (Concepts, methodologies and data) (International Institute for Applied Systems Analysis, 2008);

  65. Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. (2013)

  66. Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. You, L. & Wood, S. An entropy approach to spatial disaggregation of agricultural production. Agric. Syst. 90, 329–347 (2006).

    Article  Google Scholar 

  68. Boddey, R. M. et al. in Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems (eds Ladha, J. K. & Peoples, M. B.) 195–209 (Springer, 1995).

  69. Eyring, V. et al. Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsletter 40, 48–66 (2013).

    Google Scholar 

  70. Siebert, S., Portmann, F. T. & Döll, P. Global patterns of cropland use intensity. Remote Sens. (Basel) 2, 1625–1643 (2010).

    Article  ADS  Google Scholar 

  71. Animal Feed Resources Information System (Feedipedia, 2012–2017);

  72. IPNI Estimates of Nutrient Uptake and Removal (IPNI, 2014);

Download references


This work resulted in part from a workshop supported by NSF Research Coordination Network awards DEB-1049744/1547041 (awarded to E.D.). X.Z. is supported by the National Science Foundation (CNS-1739823, CBET-2047165, and CBET-2025826). K.N. is supported by a project, JPNP18016, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). FAOSTAT Statistics are collected from FAO member countries, analysed and disseminated with support from the FAO Regular Budget. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of the FAO. L.L. is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Commission ERDF Ramón y Cajal grant (RYC‐2016‐20269), Programa Propio from UPM, and acknowledges the Comunidad de Madrid (Spain) and structural funds 2014‐2020 (ERDF and ESF), project AGRISOST‐CM S2018/BAA‐4330 and Spanish MINECO AgroScena-UP (PID2019-107972RB-I00). We acknowledge the global Environment Facility and the UN Environment Programme for the ‘Towards INMS Project’ as a key space to improve understanding of the nitrogen cycle, building the bridge between science and policy.

Author information

Authors and Affiliations



X.Z., E.A.D. and L.L. designed the study. T.Z., X.Z. and M.D.L. carried out the analysis for data submitted by F.N.T, N.D.M., C.L., R.T.C., C.D.D., J.G., H.T., K.N., B.L.B., A.P., L.B., A.B., J.C., P.H. and D.L. X.Z., E.A.D. and L.L. wrote the paper with contributions from all authors. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Xin Zhang or Eric A. Davidson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Kentaro Hayashi, David Kanter and Wim de Vries for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–8.

Reporting Summary

Supplementary Data 1

A benchmark for nitrogen budget estimates based on the median value and the range of nitrogen budget estimates used in this study.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zou, T., Lassaletta, L. et al. Quantification of global and national nitrogen budgets for crop production. Nat Food 2, 529–540 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing