Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics


Improving photosynthesis and light capture increases crop yield and paves a sustainable way to meet the growing global food demand. Here we introduce a spectral-shifting microphotonic thin film as a greenhouse envelope that can be scalably manufactured for augmented photosynthesis. By breaking the intrinsic propagation symmetry of light, the photonic microstructures can extract 89% of the internally generated light and deliver most of that in one direction towards photosynthetic organisms. The microphotonic film augments lettuce production by more than 20% in both indoor facilities with electric lighting and in a greenhouse with natural sunlight, offering the possibility of increasing crop production efficiency in controlled environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Increasing photosynthesis with a spectral-shifting and unidirectional light-extracting film.
Fig. 2: Productivity of indoor-grown lettuce plants.
Fig. 3: Photosynthetic CO2 assimilation of a whole lettuce plant in a closed chamber.
Fig. 4: Productivity of ‘Buttercrunch’ lettuce in a greenhouse with natural sunlight.

Data availability

All presented data are available upon reasonable request from the authors. Source data are provided with this paper.


  1. 1.

    Johnson, Z. & Barber, R. T. The low-light reduction in the quantum yield of photosynthesis: potential errors and bias when calculating the maximum quantum yield. Photosynth. Res. 75, 85–95 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    Ooms, M. D., Dinh, C. T., Sargent, E. H. & Sinton, D. Photon management for augmented photosynthesis. Nat. Commun. 7, 12699 (2016).

    CAS  Article  ADS  Google Scholar 

  3. 3.

    Zhang, M., Whitman, C. M. & Runkle, E. S. Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting. Sci. Hortic. 252, 274–282 (2019).

    Article  Google Scholar 

  4. 4.

    Pinho, P., Jokinen, K. & Halonen, L. Horticultural lighting—present and future challenges. Light. Res. Technol. 44, 427–437 (2012).

    Article  Google Scholar 

  5. 5.

    Stober, K., Lee, K., Yamada, M. & Pattison, M. Energy Savings Potential of SSL in Horticultural Applications (US Department of Energy, 2017);

  6. 6.

    McCree, K. J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9, 191–216 (1972).

    Article  Google Scholar 

  7. 7.

    Wondraczek, L. et al. Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 4, 2047 (2013).

    Article  ADS  Google Scholar 

  8. 8.

    Mohsenpour, S. F., Richards, B. & Willoughby, N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour. Technol. 125, 75–81 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Detweiler, A. M. et al. Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res. 9, 170–177 (2015).

    Article  Google Scholar 

  10. 10.

    El-Bashir, S., Al-Harbi, F., Elburaih, H., Al-Faifi, F. & Yahia, I. Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew. Energy 85, 928–938 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Loik, M. E. et al. Wavelength‐selective solar photovoltaic systems: powering greenhouses for plant growth at the food–energy–water nexus. Earths Future 5, 1044–1053 (2017).

    Article  ADS  Google Scholar 

  12. 12.

    Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  ADS  Google Scholar 

  13. 13.

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Article  ADS  Google Scholar 

  14. 14.

    Meinardi, F., Bruni, F. & Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2, 17072 (2017).

    CAS  Article  ADS  Google Scholar 

  15. 15.

    Zhmakin, A. I. Enhancement of light extraction from light emitting diodes. Phys. Rep. 498, 189–241 (2011).

    CAS  Article  ADS  Google Scholar 

  16. 16.

    Zhang, Q. et al. Light out‐coupling management in perovskite LEDs—what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Schnitzer, I., Yablonovitch, E., Caneau, C., Gmitter, T. & Scherer, A. 30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993).

    CAS  Article  ADS  Google Scholar 

  18. 18.

    Winston, R., Minano, J. C. & Benitez, P. G. Nonimaging Optics 1st edn (Academic Press, 2005).

  19. 19.

    Lee, S. J. Analysis of light-emitting diode by Monte-Carlo photo simulation. Appl. Opt. 40, 1427–1437 (2001).

    CAS  Article  ADS  Google Scholar 

  20. 20.

    Liu, Z., Wang, K., Luo, X. & Liu, S. Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Opt. Express 18, 9398–9412 (2010).

    CAS  Article  ADS  Google Scholar 

  21. 21.

    Corrado, C. et al. Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentratordesign. Sol. Energy Mater. Sol. Cells 111, 74–81 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, J., Lu, W., Tong, Y. & Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant. Sci. (2016).

  23. 23.

    Dougher, T. A. O. & Bugbee, B. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol. 73, 199–207 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Kim, H. H., Goins, G., Wheeler, R. & Sager, J. Green light supplementation for enhanced lettuce growth under red and blue light-emitting diodes. Hortscience 39, 1617–1622 (2004).

    Article  Google Scholar 

  25. 25.

    Park, Y. & Runkle, E. S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 136, 41–49 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Pennisi, G. et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 9, 14127 (2019).

    Article  ADS  Google Scholar 

  27. 27.

    Naznin, M. T., Lefsrud, M., Gravel, V. & Azad, M. O. K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 8, 93 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Griffini, G., Levi, M. & Turri, S. Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 118, 36–42 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Wang, T. et al. Luminescent solar concentrator employing rare earth complex with zero self-absorption loss. Sol. Energy 85, 2571–2579 (2011).

    CAS  Article  ADS  Google Scholar 

  31. 31.

    Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    CAS  Article  ADS  Google Scholar 

  32. 32.

    Haxo, F. T. Photosynthetic action spectra of marine algae. J. Gen. Physiol. 33, 389–422 (1950).

    CAS  Article  Google Scholar 

  33. 33.

    LaVigne, A. W. The Next Farm Bill: Technology & Innovation in Specialty Crops (American Seed Trade Association, 2017);

  34. 34.

    Meng, Q., Boldt, W. J. & Runkle, E. Blue radiation interacts with green radiation to influence growth and predominantly controls quality attributes of lettuce. J. Am. Soc. Hortic. Sci. 145, 75–87 (2020).

  35. 35.

    South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9077 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Kutzbach, L. et al. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeoscience 4, 1005–1025 (2007).

    CAS  Article  ADS  Google Scholar 

  37. 37.

    Jensen, L. S. et al. Soil surface CO2 flux as an index of soil respiration in situ: a comparison of two chamber methods. Soil Biol. Biochem. 28, 1297–1306 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    Cabrera, M. L., Kissel, D. E. & Vigil, M. F. Nitrogen mineralization from organic residues: research opportunities. J. Environ. Qual. 34, 75–79 (2005).

    CAS  Article  Google Scholar 

Download references


This work is supported by the Gordon and Betty Moore Foundation under grant number 6884 and the National Institute of Food and Agriculture under grant number 2017-07652. We thank M. Rhode and J. Uhrich for assisting with precision machining of the replica moulds; J. Chalmers, K. Yang, Y. Zhai and I. Berman for assisting with blade coating; and N. DuRussel for providing greenhouse technical assistance. We are grateful to J. Klausner, A. Benard and M. Adeney for fruitful discussions about greenhouse technologies and agricultural practices.

Author information




X.Y. and R.Y. conceived the idea. X.Y. and L.S. designed the experiments. L.S. and R.L. conducted the structure design and developed the simulation methods. L.S. fabricated the films and performed the characterizations with assistance from Y.X., D.R. and R.L. L.S. built the setup and performed indoor growth of lettuce with assistance from R.L., Y.G. and Y.X. L.S., E.J.S., Y.P. and R.L. performed the experiments in the research greenhouse. X.Y., L.S. and E.S.R. analysed the data. X.Y. and L.S. drafted the manuscript with input from all authors. X.Y. guided the research.

Corresponding author

Correspondence to Xiaobo Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Houcheng Liu, Francesco Orsini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Methods, Discussion and Tables 1–6.

Reporting Summary

Supplementary Video 1

Comparative growth video of ‘Buttercrunch’ lettuce

Supplementary Data 1

Growth Data Log-Greenhouse

Supplementary Data 2

Growth Data Log-Outdoor

Source data

Source Data Fig. 1

Source data of Fig. 1b,c,j,and k

Source Data Fig. 2

Source data of Fig. 2b-j

Source Data Fig. 3

Source data of Fig. 3

Source Data Fig. 4

Source data of Fig. 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Lou, R., Park, Y. et al. Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat Food 2, 434–441 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing