Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

More efficient phosphorus use can avoid cropland expansion

Abstract

Global projections indicate that approximately 500 Mha of new arable land will be required to meet crop demand by 2050. Applying a dynamic phosphorus (P) pool simulator under different socioeconomic scenarios, we find that cropland expansion can be avoided with less than 7% additional cumulative P fertilizer over 2006–2050 when comparing with cropland expansion scenarios, mostly targeted at nutrient-depleted soils of sub-Saharan Africa. Additional P fertilizer would replenish P withdrawn from crop production, thereby allowing higher productivity levels. We also show that further agronomic improvements such as those that allow for better (legacy) P use in soils could reduce both P outflows to freshwater and coastal ecosystems and the overall demand for P fertilizer.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Relative contribution of area and productivity to total crop production.
Fig. 2: Cropland area and fertilizer use under each SSP.
Fig. 3: Mineral P fertilizer use assuming no cropland expansion.
Fig. 4: Differences in cumulative (2006–2050) mineral P fertilizer use (TgP) between the three SSP2 scenarios.

Data availability

All data used to generate the figures in this paper and the Supplementary Information are available from https://doi.org/10.5281/zenodo.4920226.

Code availability

The code can be made available upon reasonable request.

References

  1. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Faostat Database Collections (FAO, accessed 3 February 2020); http://www.fao.org/faostat/en/

  3. Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).

  4. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    PubMed  Article  Google Scholar 

  5. IPCC: Summary for Policymakers. In IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) (in the press).

  6. Beusen, A. H. B. et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    ADS  CAS  Article  Google Scholar 

  7. Jenny, J.-P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Chang. Biol. 22, 1481–1489 (2016).

    ADS  PubMed  Article  Google Scholar 

  8. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  9. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Article  CAS  Google Scholar 

  10. van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  11. Lassaletta, L. et al. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    ADS  Article  Google Scholar 

  12. Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H. & Bouwman, A. F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Change 50, 149–163 (2018).

    Article  Google Scholar 

  13. Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  14. ten Berge, H. F. M. et al. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Glob. Food Sec. 23, 9–21 (2019).

    Article  Google Scholar 

  15. Hartmann, J. et al. Global chemical weathering and associated P-release – the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    ADS  CAS  Article  Google Scholar 

  16. Smaling, E. M. A., Stoorvogel, J. J. & Windmeijer, P. N. Calculating soil nutrient balances in Africa at different scales. Fert. Res. 35, 237–250 (1993).

    CAS  Article  Google Scholar 

  17. Ockenden, M. C. et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 8, 161 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Dijkstra, F. A. et al. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 196, 807–815 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  20. Alexandratos, N. & Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision ESA Working Paper No. 12-03 (Food and Agriculture Organization of the United Nations, 2012).

  21. Sanderman, J. S., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. World Fertilizer Trends and Outlook to 2020, Summary Report (FAO, 2017).

  23. Cordell, D. & White, S. Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Sec. 7, 337–350 (2015).

    Article  Google Scholar 

  24. Mineral Commodity Summaries 2020 (US Geological Survey, 2020); https://doi.org/10.3133/mcs2020

  25. Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).

    ADS  CAS  Article  Google Scholar 

  26. Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

  27. Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the twentieth century. Biogeosciences 14, 2055–2068 (2017).

    ADS  Article  CAS  Google Scholar 

  28. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Nutrient Balance (Indicator) (OECD, accessed 14 February 2020); https://doi.org/10.1787/82add6a9-en

  30. Le Noë, J. et al. The phosphorus legacy offers opportunities for agro ecological transition (France 1850–2075). Environ. Res. Lett. 15, 064022 (2020).

  31. Ausubel, J. H., Wernick, I. K. & Waggoner, P. E. Peak farmland and the prospect for land sparing. Popul. Dev. Rev. 38, 221–242 (2013).

    Article  Google Scholar 

  32. Doelman, J. C. et al. Exploring SSP land-use dynamics using the image model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).

    Article  Google Scholar 

  33. van Ittersum, M. K. et al. Can Sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Plassard, E. & Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol. 30, 1129–1139 (2010).

    CAS  PubMed  Article  Google Scholar 

  36. Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).

    PubMed  Article  Google Scholar 

  37. Wang, Q. & Li, Y. Phosphorus adsorption and desorption behavior on sediments of different origins. J. Soils Sediments 10, 1159–1173 (2010).

    CAS  Article  Google Scholar 

  38. Shilton, A. N., Powell, N. & Guieysse, B. Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr. Opin. Biotechnol. 23, 884–889 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).

    ADS  Article  Google Scholar 

  40. Egle, L., Rechberger, H., Krampe, J. & Zessner, M. Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 571, 522–542 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Article  Google Scholar 

  42. van Puijenbroek, P., Beusen, A. H. W. & Bouwman, A. Global nitrogen and phosphorus in urban waste water based on the shared socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).

    PubMed  Article  CAS  Google Scholar 

  43. Wilfert et al. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res. 144, 312–321 (2018).

    CAS  PubMed  Article  Google Scholar 

  44. Xiao et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  45. Campos et al. Nitrogen and phosphorus recovery from anaerobically pretreated agro-food wastes: a review. Front. Sustain. Food Syst. 2, 91 (2019).

    Article  Google Scholar 

  46. Tonini, D., Saveyn, H. G. M. & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. Sustain. 2, 1051–1061 (2019).

    Article  Google Scholar 

  47. Sharpley, A., Kleinman, P., Jarvie, H. & Flaten, D. Distant views and local realities: the limits of global assessments to restore the fragmented phosphorus cycle. Agric. Environ. Lett. 1, 160024 (2016).

    Article  Google Scholar 

  48. Zhang, C. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resour. Conserv. Recycl. 144, 65–73 (2019).

    Article  Google Scholar 

  49. Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).

    ADS  CAS  Google Scholar 

  50. Phelps, J. et al. Agricultural intensification escalates future conservation costs. Proc. Natl Acad. Sci. USA 110, 7601–7606 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Batjes, N. Global Distribution of Soil Phosphorus Retention Potential Report No. 2011/06 41 (ISRIC - Words Soil Information, 2011).

  53. Magnone, D. et al. Soil chemistry aspects of predicting future phosphorus requirements in Sub-Saharan Africa. J. Adv. Model. Earth Syst. 11, 327–337 (2019).

    ADS  Article  Google Scholar 

  54. Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).

    ADS  CAS  Article  Google Scholar 

  55. Soil Map of the World (FAO-UNESCO, 1974).

  56. Woltjer, G. B. & Kuiper, M. H. The Magnet Model: Module Description Report No. 14-057 (LEI Wageningen University and Research Centre, Wageningen, 2014).

  57. Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article  Google Scholar 

  58. Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article  Google Scholar 

  59. Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  60. Mogollón, J. M. et al. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 13, 044008 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. van Ittersum for stimulating discussions and constructive comments. J.M.M. received funding from the Dutch National Research Agenda, number NWA.1235.18.201. A.F.B. and A.H.W.B. received support from the PBL Netherlands Environmental Assessment Agency through in-kind contributions to The New Delta 2014 ALW project no. 869.15.015 and no. 869.15.014. L.L. is supported by a Spanish Ministry of Economy and Competitiveness (MINECO)-Spain and European Commission ERDF Ramón y Cajal grant (RYC-2016-20269) and Programa Propio from UPM, and also acknowledges MINECO (AgroSceNA-UP, PID2019-107972RB-I00).

Author information

Authors and Affiliations

Authors

Contributions

J.M.M., A.F.B. and L.L. designed the research. A.H.W.B. and J.M.M. performed calculations. A.F.B. and J.M.M. wrote the manuscript with contributions from L.L., H.J.M.v.G. and H.W.

Corresponding author

Correspondence to José M. Mogollón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Philip Haygarth, Christian Levers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Table 1 and Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mogollón, J.M., Bouwman, A.F., Beusen, A.H.W. et al. More efficient phosphorus use can avoid cropland expansion. Nat Food 2, 509–518 (2021). https://doi.org/10.1038/s43016-021-00303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00303-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing