Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints


China purchases around 66% of the soy that is traded internationally. This strains the global food supply and contributes to greenhouse gas emissions. Here we show that optimizing the maize and soy production of China can improve its self-sufficiency and also alleviate adverse environmental effects. Using data from more than 1,800 counties in China, we estimate the area-weighted yield potential (Ypot) and yield gaps, setting the attainable yield (Yatt) as the yield achieved by the top 10% of producers per county. We also map out county-by-county acreage allocation and calculate the attainable production capacity according to a set of sustainability criteria. Under optimized conditions, China would be able to produce all the maize and 45% of the soy needed by 2035—while reducing nitrogen fertilizer use by 26%, reactive nitrogen loss by 28% and greenhouse gas emissions by 19%—with the same acreage as 2017, our reference year.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: County yield potential and yield gaps for maize and soy in China.
Fig. 2: Acreage reallocation in the optimized production scheme.
Fig. 3: Fertilizer input, reactive nitrogen losses, GHG emissions and cost–benefit analysis for projected maize and soy production in 2035 under conventional versus enhanced management scenarios.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data files. Source data are provided with this paper.

Code availability

The custom code generated for this study is available in the Supplementary Data file.


  1. 1.

    FAOSTAT: Statistics Division of the Food and Agriculture Organization of the United Nations (FAO, 2019);

  2. 2.

    Taherzadeh, O. & Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 223, 83–93 (2019).

    Article  Google Scholar 

  3. 3.

    Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA 115, 5415–5419 (2018).

    CAS  Article  ADS  Google Scholar 

  4. 4.

    Ying, H. et al. Safeguarding food supply and groundwater safety for maize production in China. Environ. Sci. Technol. 54, 9939–9948 (2020).

    CAS  Article  ADS  Google Scholar 

  5. 5.

    Hill, J. et al. Air-quality-related health damages of maize. Nat. Sustain. 2, 397–403 (2019).

    Article  Google Scholar 

  6. 6.

    Fuchs, R. et al. US–China trade war imperils Amazon rainforest. Nature 567, 451–454 (2019).

    CAS  Article  ADS  Google Scholar 

  7. 7.

    Rajao, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).

    CAS  Article  ADS  Google Scholar 

  8. 8.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  ADS  Google Scholar 

  9. 9.

    Bai, Z. H. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, 8534 (2018).

    Article  ADS  Google Scholar 

  10. 10.

    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  11. 11.

    National Bureau of Statistics of China. China Statistical Yearbook (in Chinese) (China Statistics Press, 2001, 2018).

  12. 12.

    Cui, Z. L., Vitousek, P. M., Zhang, F. S. & Chen, X. P. Strengthening agronomy research for food security and environmental quality. Environ. Sci. Technol. 50, 1639–1641 (2016).

    CAS  Article  ADS  Google Scholar 

  13. 13.

    Liu, W. F. et al. China’s food supply sources under trade conflict states and limited domestic land and water resources. Earths Future 8, e2020EF001482 (2020).

    ADS  Google Scholar 

  14. 14.

    Commodity Markets (World Bank, 2019).

  15. 15.

    Liu, B. H. et al. Estimating maize yield potential and yield gap with agro-climatic zones in China—distinguish irrigated and rainfed conditions. Agr. Forest Meteorol. 239, 108–117 (2017).

    Article  ADS  Google Scholar 

  16. 16.

    Chen, X. P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).

    CAS  Article  ADS  Google Scholar 

  17. 17.

    Chen, X. P. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    CAS  Article  ADS  Google Scholar 

  18. 18.

    Cui, Z. L. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    CAS  Article  ADS  Google Scholar 

  19. 19.

    Van Ittersum, M. K. et al. Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2013).

    Article  Google Scholar 

  20. 20.

    Global Yield Gap Data (Global Yield Gap Atlas, 2020).

  21. 21.

    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).

    Article  Google Scholar 

  22. 22.

    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).

    Article  Google Scholar 

  23. 23.

    Sentelhas, P. C. et al. The soybean yield gap in Brazil—magnitude, causes and possible solutions for sustainable production. J. Agr. Sci. 153, 1394–1411 (2015).

    Article  Google Scholar 

  24. 24.

    Drinkwater, L. E., Wagoner, P. & Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262–265 (1998).

    CAS  Article  ADS  Google Scholar 

  25. 25.

    Snapp, S. S. et al. Biodiversity can support a greener revolution in Africa. Proc. Natl Acad. Sci. USA 107, 20840–20845 (2010).

    CAS  Article  ADS  Google Scholar 

  26. 26.

    Price Bureau of the National Development and Reform Commission of China. China Agricultural Products Cost-Benefit Compilation of Information 2017 (in Chinese) (China Statistics Press, 2017).

  27. 27.

    Spielman, D. J., Byerlee, D., Alemu, D. & Kelemework, D. Policies to promote cereal intensification in Ethiopia: the search for appropriate public and private roles. Food Policy 35, 185–194 (2010).

    Article  Google Scholar 

  28. 28.

    Zhang, W. F. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    CAS  Article  ADS  Google Scholar 

  29. 29.

    Liu, J. G., Lundqvist, J., Weinberg, J. & Gustafsson, J. Food losses and waste in China and their implication for water and land. Environ. Sci. Technol. 47, 10137–10144 (2013).

    CAS  Article  ADS  Google Scholar 

  30. 30.

    Dou, Z. X., Toth, J. D. & Westendorf, M. L. Food waste for livestock feeding: feasibility, safety, and sustainability implications 2017. Glob. Food. Secur. 17, 154–161 (2018).

    Article  Google Scholar 

  31. 31.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  ADS  Google Scholar 

  32. 32.

    Yang, H. S. et al. Hybrid–Maize—a maize simulation model that combines two crop modeling approaches. Field Crops Res. 87, 131–154 (2004).

    Article  Google Scholar 

  33. 33.

    Yang, H. S., Dobermann, A., Cassman, K. G. & Walters, D. T. Features, applications, and limitations of the Hybrid–Maize simulation model. Agron. J. 98, 737–748 (2006).

    Article  Google Scholar 

  34. 34.

    Setiyono, T. D. et al. Simulation of soybean growth and yield in near optimal growth conditions. Field Crops Res. 119, 161–174 (2010).

    Article  Google Scholar 

  35. 35.

    Guo, J. M. et al. Designing corn management strategies for high yield and high nitrogen use efficiency. Agron. J. 108, 922–929 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Wu, J., Gao, X. J., Giorgi, F. & Chen, D. L. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset. Int. J. Climatol. 37, 788–800 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Yang, K. & He, J. China Meteorological Forcing Dataset (1979–2018) (National Tibetan Plateau Data Center, 2019);

  38. 38.

    Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2019).

    CAS  Article  ADS  Google Scholar 

  39. 39.

    Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).

    Article  Google Scholar 

  40. 40.

    Audsley, E. et al. Harmonisation of Environmental Life Cycle assessment for Agriculture: Final Report Concerted Action MR3-CT94-2028 (Silsoe Research Institute, 1997).

  41. 41.

    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biol. 25, 2077–2093 (2019).

    Article  ADS  Google Scholar 

  42. 42.

    Eggelston, S. et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, IPCC, 2006).

  43. 43.

    Lin, H. F. et al. Effect of irrigation method on farmers’ planting decision and the economy: a case in Zhangbei County, Hebei Province. Chin. J. Eco Agric. 27, 1293–1300 (2019).

    Google Scholar 

Download references


We acknowledge all those who provided local assistance or technical services involving the farmer survey. We also thank Z. Wu for editing the manuscript. This work was financially supported by the National Key Research and Development Program of China (2016YFD0200105), the Taishan Scholarship Project of Shandong Province (no. TS201712082) and the Science and Technology Plan Project of Qinghai Province (2019-NK-A11-02).

Author information




Z.C. designed the research and supervised the project. Z.L., M.C., H.Y. and F.Z. performed research. Z.L., Z.B., Y. Yin, M.C., J.B., Y.X., Q.Z., Y. Yang, H.Y. and M.D. collected and analysed the data. Z.C., Z.D., Z.L., W.D.B. and Y.G. wrote the paper.

Corresponding author

Correspondence to Zhenling Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Martin van Ittersum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–10, Tables 1–8 and references.

Reporting Summary

Supplementary Data

Supplementary data and code.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ying, H., Chen, M. et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat Food 2, 426–433 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing