Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global option space for organic agriculture is delimited by nitrogen availability

Abstract

Organic agriculture is widely accepted as a strategy to reduce the environmental impacts of food production and help achieve global climate and biodiversity targets. However, studies concluding that organic farming could satisfy global food demand have overlooked the key role that nitrogen plays in sustaining crop yields. Using a spatially explicit biophysical optimization model that accounts for crop growth nitrogen requirements, we show that, in the absence of synthetic nitrogen fertilizers, the production gap between organic and conventional agriculture increases as organic agriculture expands globally (with organic producing 36% less food for human consumption than conventional in a fully organic world). Yet, by targeting both food supply (via a redesign of the livestock sector) and demand (by reducing average per capita caloric intake), public policies could support a transition towards organic agriculture in 40–60% of the global agricultural area even under current nitrogen limitations thus helping to achieve important environmental and health benefits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Organic-to-conventional cropland energy production gap or surplus.
Fig. 2: Nitrogen flows in the 100% conventional farming and REF 100% organic farming scenarios.
Fig. 3: The global food energy production–demand option space for various organic scenarios.
Fig. 4: Number of people fed globally under scenarios of 20% or 60% conversion of global cropland to organic farming.
Fig. 5: Cropland- and livestock-based energy production used as food and feed in scenarios with or without redesign of the livestock sector.
Fig. 6: Energy production from croplands, grassland and livestock in the 100% conventional and the REF 100% organic scenarios.

Data availability

Data and material requests should be addressed to corresponding author.

Code availability

The full model code and documentation are freely available via the following GitHub repository: http://github.com/Pie90/GOANIM_public/.

References

  1. 1.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).

    ADS  PubMed  Google Scholar 

  4. 4.

    Bergström, L. & Kirchmann, H. Are the claimed benefits of organic agriculture justified? Nat. Plants 2, 16099 (2016).

    PubMed  Google Scholar 

  5. 5.

    Connor, D. J. Organic agriculture and food security: a decade of unreason finally implodes. Field Crops Res. 225, 128–129 (2018).

    Google Scholar 

  6. 6.

    Connor, D. J. Organic agriculture cannot feed the world. Field Crops Res. 106, 187–190 (2008).

    Google Scholar 

  7. 7.

    Erb, K. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nowak, B., Nesme, T., David, C. & Pellerin, S. Disentangling the drivers of fertilising material inflows in organic farming. Nutr. Cycl. Agroecosyst. 96, 79–91 (2013).

    Google Scholar 

  9. 9.

    Oelofse, M., Jensen, L. S. & Magid, J. The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organ. Agric. 3, 41–55 (2013).

    Google Scholar 

  10. 10.

    Tayleur, C. & Phalan, B. Organic farming and deforestation. Nat. Plants 2, 16098 (2016).

    PubMed  Google Scholar 

  11. 11.

    Principles of Organic Agriculture (IFOAM, 2018); https://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture

  12. 12.

    European Commission Commission Regulation (EC) No 889/2008. Official Journal of the European Union L 250/1 (2008).

  13. 13.

    Yussefi-Menzler, M., Willer, H. & Sorensen, N. The World of Organic Agriculture. Statistics and Emerging Trends 2019 (Routledge, 2019); https://doi.org/10.4324/9781849775991

  14. 14.

    Barbieri, P., Pellerin, S. & Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 7, 13761 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McKenzie, F. C. & Williams, J. Sustainable food production: constraints, challenges and choices by 2050. Food Security https://doi.org/10.1007/s12571-015-0441-1 (2015).

  16. 16.

    Rigby, D. & Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68, 21–40 (2001).

    Google Scholar 

  17. 17.

    Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2, 378–385 (2019).

    Google Scholar 

  18. 18.

    Baudry, J. et al. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am. J. Clin. Nutr. 109, 1173–1188 (2019).

    PubMed  Google Scholar 

  19. 19.

    Chaudhary, A., Gustafson, D. & Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9, 848 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Smith, L. C. & Haddad, L. Reducing child undernutrition: past drivers and priorities for the post-MDG era. World Dev. 68, 180–204 (2015).

    Google Scholar 

  21. 21.

    Gibson, R. S. & Hotz, C. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 85, S159 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Mie, A. et al. Human health implications of organic food and organic agriculture: a comprehensive review. Environ. Health 16, 1–22 (2017).

    Google Scholar 

  23. 23.

    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS  Google Scholar 

  24. 24.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1707322114 (2017).

  25. 25.

    Soussana, J. F. & Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agr. Ecosyst. Environ. 190, 9–17 (2014).

    CAS  Google Scholar 

  26. 26.

    Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Persson, U. M., Johansson, D. J. A., Cederberg, C., Hedenus, F. & Bryngelsson, D. Climate metrics and the carbon footprint of livestock products: where’s the beef? Environ. Res. Lett. 10, 034005 (2015).

    ADS  Google Scholar 

  28. 28.

    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).

    Google Scholar 

  29. 29.

    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).

    Google Scholar 

  30. 30.

    Badgley, M. C. et al. Organic agriculture and the global food supply. Renew. Agr. Food Syst. 22, 86–108 (2007).

    Google Scholar 

  31. 31.

    Karlsson, J. O. & Röös, E. Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy 85, 63–72 (2019).

    Google Scholar 

  32. 32.

    Watson, C. A. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manage. 18, 264–273 (2002).

    Google Scholar 

  33. 33.

    Nowak, B., Nesme, T., David, C. & Pellerin, S. To what extent does organic farming rely on nutrient inflows from conventional farming? Environ. Res. Lett. 8, 044045 (2013).

    ADS  Google Scholar 

  34. 34.

    Feuerbacher, A., Luckmann, J., Boysen, O., Zikeli, S. & Grethe, H. Is Bhutan destined for 100% organic? Assessing the economy-wide effects of a large-scale conversion policy. PLoS ONE 13, e0199025 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1396 (2015).

  36. 36.

    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Google Scholar 

  37. 37.

    Hoornweg, D. & Bhada-Tata, P. What a Waste. A Global Review of Solid Waste Management (World Bank, 2012).

  38. 38.

    Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    PubMed  Google Scholar 

  39. 39.

    Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    ADS  CAS  PubMed  Google Scholar 

  41. 41.

    Bartelt, K. D. & Bland, W. L. Theoretical analysis of manure transport distance as a function of herd size and landscape fragmentation. J. Soil Water Conserv. 62, 345–352 (2007).

    Google Scholar 

  42. 42.

    De Klein, C. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 11 (IPCC, 2006).

  43. 43.

    Godard, C., Roger-Estrade, J., Jayet, P. A., Brisson, N. & Le Bas, C. Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agric. Syst. 97, 68–82 (2008).

    Google Scholar 

  44. 44.

    Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).

    Google Scholar 

  45. 45.

    Dong, H. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 10 (IPCC, 2006).

  46. 46.

    Hogh-Jensen, H., Loges, R., Jorgensen, F. V., Vinther, F. P. & Jensen, E. S. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric. Syst. 82, 181–194 (2004).

    Google Scholar 

  47. 47.

    Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    ADS  CAS  PubMed  Google Scholar 

  48. 48.

    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).

    ADS  Google Scholar 

  49. 49.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    ADS  Google Scholar 

  50. 50.

    Licker, R. et al. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).

    Google Scholar 

  51. 51.

    Srednicka-Tober, D. et al. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br. J. Nutr. 115, 994–1011 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    ADS  CAS  PubMed  Google Scholar 

  53. 53.

    Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles 23, 1–19 (2009).

    Google Scholar 

  54. 54.

    World Population Prospects 2015—Data Booklet (United Nations, 2015); https://doi.org/ST/ESA/SER.A/377

  55. 55.

    Ahmed, S. & Blumberg, J. Dietary guidelines for Americans, 2010. Nutr. Rev. https://doi.org/10.1016/S0300-7073(05)71075-6 (2009).

  56. 56.

    Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain 3, 200–208 (2020).

    Google Scholar 

  57. 57.

    Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Kvakic and B. Ringeval for their suggestions and help in the model construction. This work was funded by Bordeaux Sciences Agro (University of Bordeaux) and the INRA-CIRAD GloFoodS metaprogramme.

Author information

Affiliations

Authors

Contributions

P.B., S.P. and T.N. designed the study; P.B. collected the data, coded the model and performed the calculations; P.B., V.S., T.N., L.S. and N.R. were involved in the model set-up and improvement. All authors were involved in the interpretation of results and contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Pietro Barbieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Elizabeth Stockdale and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–5 and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbieri, P., Pellerin, S., Seufert, V. et al. Global option space for organic agriculture is delimited by nitrogen availability. Nat Food 2, 363–372 (2021). https://doi.org/10.1038/s43016-021-00276-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing