Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conservative to disruptive diets for optimizing nutrition, environmental impacts and cost in French adults from the NutriNet-Santé cohort


Improving the sustainability of diets requires the identification of diets that meet the nutritional requirements of populations, promote health, are within planetary boundaries, are affordable and are acceptable. Here we explore the extent to which dimensions of sustainability could be optimally aligned and identify more sustainable dietary solutions, from the most conservative to the most disruptive, among 12,166 participants of the NutriNet-Santé cohort. We aim to concomitantly lower environmental impacts (including greenhouse gas emissions, cumulative energy demand and land occupation), increase organic food consumption and study departure from observed diets (considered as a proxy for acceptability). From the most conservative to the most disruptive scenario, optimized diets were gradually richer in fruits, vegetables and soya-based products and markedly poorer in animal-based foods and fatty and sweet foods. The contribution of animal protein to total protein intake gradually decreased by 12% to 70% of the observed value. The greenhouse gas emissions from food production for the diets gradually decreased across scenarios (as a percentage of observed values) by 36–86%, land occupation for food production by 32–78% and energy demand by 28–72%. Our results offer a benchmark of scenarios of graded dietary changes against graded sustainability improvements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sustainable characteristics of observed and optimized diets.
Fig. 2: Structure of observed and optimized diets.
Fig. 3: Organic food and the environmental impacts of observed and optimized diets.

Data availability

Data can be retrieved from the corresponding author upon reasonable request.

Code availability

Code and programs can be retrieved from the corresponding author upon reasonable request.


  1. Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P. & Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS ONE 11, e0165797 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perignon, M., Vieux, F., Soler, L.-G., Masset, G. & Darmon, N. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 75, 2–17 (2017).

    Article  PubMed  Google Scholar 

  3. Hallström, E., Carlsson-Kanyama, A. & Börjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).

    Article  Google Scholar 

  4. Willett, W. et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  5. Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA (2019).

  6. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. van Dooren, C. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Front. Nutr. 5, 48 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gazan, R. et al. Mathematical optimization to explore tomorrow’s sustainable diets: a narrative review. Adv. Nutr. 9, 602–616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilson, N., Clegharn, C. L., Cobiac, L. J., Mizdrak, A. & Nghiem, N. Achieving healthy and sustainable diets: a review of the results of recent studies using mathematical optimization. Adv. Nutr. 10 (Suppl. 4), S389–S403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Donati, M. et al. Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite 106, 48–57 (2016).

    Article  PubMed  Google Scholar 

  11. Barré, T. et al. Reaching nutritional adequacy does not necessarily increase exposure to food contaminants: evidence from a whole-diet modeling approach. J. Nutr. 146, 2149–2157 (2016).

    Article  PubMed  Google Scholar 

  12. Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    Article  PubMed  Google Scholar 

  13. Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).

    Article  Google Scholar 

  14. Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lynch, D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 7, 10 (2012).

    Google Scholar 

  16. Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Henckel, L., Börger, L., Meiss, H., Gaba, S. & Bretagnolle, V. Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc. R. Soc. B 282, 20150002 (2015).

    Article  PubMed  Google Scholar 

  18. Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Gavelle, E., Huneau, J.-F., Bianchi, C., Verger, E. & Mariotti, F. Protein adequacy is primarily a matter of protein quantity, not quality: modeling an increase in plant:animal protein ratio in French adults. Nutrients 9, 1333 (2017).

    Article  PubMed Central  Google Scholar 

  20. Andreeva, V. A. et al. Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French census data: the issue of volunteer bias revisited. J. Epidemiol. Commun. Health 69, 893–898 (2015).

    Article  Google Scholar 

  21. Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Barré, T. et al. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: how low should we reduce meat consumption? PLoS ONE 13, e0191767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seconda, L. et al. Association between sustainable dietary patterns and body weight, overweight, and obesity risk in the NutriNet-Santé prospective cohort. Am. J. Clin. Nutr. (2019).

  24. Soret, S. et al. Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am. J. Clin. Nutr. 100, 490S–495S (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Cobiac, L. J. & Scarborough, P. Modelling the health co-benefits of sustainable diets in the UK, France, Finland, Italy and Sweden. Eur. J. Clin. Nutr. 73, 624–633 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Milner, J. et al. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 5, e007364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Platel, K. & Srinivasan, K. Bioavailability of micronutrients from plant foods: an update. Crit. Rev. Food Sci. Nutr. 56, 1608–1619 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Nair, K. M. & Augustine, L. F. Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem. 238, 180–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Andreeva, V. A. et al. Comparison of dietary intakes between a large online cohort study (Etude NutriNet-Santé) and a nationally representative cross-sectional study (Etude Nationale Nutrition Santé) in France: addressing the issue of generalizability in e-epidemiology. Am. J. Epidemiol. 184, 660–669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clune, S., Crossi, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

    Article  CAS  Google Scholar 

  31. Kramer, G. F., Tyszler, M., van’t Veer, P. & Blonk, H. Decreasing the overall environmental impact of the Dutch diet: how to find healthy and sustainable diets with limited changes. Public Health Nutr. 20, 1699–1709 (2017).

    Article  PubMed  Google Scholar 

  32. Gehring, J. et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J. Nutr. (2020).

  33. Kesse-Guyot, E., Castetbon, K., Touvier, M., Hercberg, S. & Galan, P. Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann. Nutr. Metab. 57, 153–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hercberg, S. et al. The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10, 242 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baudry, J. et al. Contribution of organic food to the diet in a large sample of French adults (the NutriNet-Santé Cohort Study). Nutrients 7, 8615–8632 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Étude Nutrinet-Santé. Table de Composition des Aliments de l’étude Nutrinet-Santé (Economica, 2013).

  37. Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Appl. Soil Ecol. 123, 714–728 (2018).

    Article  Google Scholar 

  38. Verger, E. O., Mariotti, F., Holmes, B. A., Paineau, D. & Huneau, J.-F. Evaluation of a diet quality index based on the probability of adequate nutrient intake (PANDiet) using national French and US dietary surveys. PLoS ONE 7, e42155 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinez-Gonzalez, M. A. et al. A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 100, 320S–328S (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Colombet, Z. et al. Individual characteristics associated with changes in the contribution of plant foods to dietary intake in a French prospective cohort. Eur. J. Nutr. (2018).

  41. Lacour, C. et al. Environmental impacts of plant-based diets: how does organic food consumption contribute to environmental sustainability? Front. Nutr. (2018).

  42. Consumer Panels—Kantar Worldpanel Purchase Database (Kantar, 2012).

  43. Seconda, L. et al. Assessment of the sustainability of the Mediterranean diet combined with organic food consumption: an individual behaviour approach. Nutrients 9, 61 (2017).

    Article  PubMed Central  Google Scholar 

  44. Seconda, L. et al. Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions. Climatic Change (2018).

  45. ISO 14040:2006. Management Environnemental—Analyse du Cycle de Vie (ISO, 2006);

  46. Audsley, E. et al. Harmonisation of Environmental Life Cycle Assessment for Agriculture: Final Report Concerted Action AIR3-CT94-2028 (European Commission & Directorate-General for Agriculture, 2003).

  47. Cowell, S. J. & Clift, R. Impact assessment for LCAs involving agricultural production. Int. J. Life Cycle Assess. 2, 99–103 (1997).

    Article  Google Scholar 

  48. Nemecek, T. & Kägi, T. Life Cycle Inventories of Agricultural Production Systems Version 2 (Ecoinvent, 2007).

  49. International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Provisions and Action Steps (EU Science Hub, European Commission, 2010);

  50. Pointereau, P. et al. DIALECTE, a comprehensive and quick tool to assess the agro-environmental performance of farms. In 10th European IFSA Symposium (IFSA, 2012).

  51. Colomb, V. et al. (eds) in AGRIBALYSE: The French Public LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling D104 (EDP, 2015).

  52. Koch, P. et al. Methodological guidelines for LCA of French agricultural products. In Life Cycle Management Conference (LCM2011) (Agritop, 2011).

  53. ILCD HandbookGeneral Guide for Life Cycle AssessmentDetailed Guidance (EU Science Hub, European Commission, 2010).

  54. van Dooren, C., Aiking, H. & Vellinga, P. In search of indicators to assess the environmental impact of diets. Int. J. Life Cycle Assess. 23, 1297–1314 (2018).

    Article  Google Scholar 

  55. Goedkoop, M. et al. ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report 1: Characterization. (Ruimte en Milieu, 2013).

  56. Vanham, D. et al. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 693, 133642 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vergnaud, A.-C. et al. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int. J. Public Health 56, 407–417 (2011).

    Article  PubMed  Google Scholar 

  58. Touvier, M. et al. Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur. J. Epidemiol. 25, 287–296 (2010).

    Article  PubMed  Google Scholar 

  59. Hagströmer, M., Oja, P. & Sjöström, M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 9, 755–762 (2006).

    Article  PubMed  Google Scholar 

  60. Mausser, H. Fields-MITACS Industrial Problems Workshop: Normalization and Other Topics in Multi-Objective Optimization (2006).

  61. Schofield, W. N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 39(Suppl. 1), 5–41 (1985).

    PubMed  Google Scholar 

Download references


We thank O. Hamza, C. Boizot-Santai, L.-G. Soler and Bio Consom’acteurs’ members for price collection and data management. We thank C. Agaesse (dietitian); Y. Esseddik, T. Hong Van Duong, P. Flanzy, R. Gatibelza, J. Mohinder and A. Timera (computer scientists); F. Szabo de Edelenyi, N. Arnault, J. Allegre and L. Bourhis (data-manager/statisticians); and N. Druesne Pecollo (operational coordinator) for their technical contributions to the NutriNet-Santé study. We thank all of the volunteers of the NutriNet-Santé cohort. The NutriNet-Santé study is funded by French Ministry of Health and Social Affairs, Santé Publique France, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Conservatoire National des Arts et Métiers and Paris 13 University. The BioNutriNet project was supported by the French National Research Agency (Agence Nationale de la Recherche) in the context of the 2013 Programme de Recherche Systèmes Alimentaires Durables (ANR-13-ALID-0001). The funders had no role in the study design, data collection, analysis, interpretation of data, preparation of the manuscript, and decision to submit the paper.

Author information

Authors and Affiliations



J.B., D.L., B.A., M.T., S.H. and E.K.-G. conducted the study. L.S., H.F., J.-F.H., F.M. and E.K.-G. designed and conducted the research. L.S., P.P., J.B., B.L., D.L., B.A., M.T., S.H. and E.K.-G. provided essential materials. L.S., H.F., J.-F.H., F.M. and E.K.-G. analysed the data. L.S. wrote the paper. E.K.-G. had primary responsibility for the final content and supervised the research. All authors were involved in interpreting the results and editing the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Julia Baudry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Hanna Tuomisto, Timothy Griffin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–5 and Method 1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seconda, L., Fouillet, H., Huneau, JF. et al. Conservative to disruptive diets for optimizing nutrition, environmental impacts and cost in French adults from the NutriNet-Santé cohort. Nat Food 2, 174–182 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing