Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality

Abstract

A detailed understanding of the cheese microbiome is key to the optimization of flavour, appearance, quality and safety. Accordingly, we conducted a high-resolution meta-analysis of cheese microbiomes and corresponding volatilomes. Using 77 new samples from 55 artisanal cheeses from 27 Irish producers combined with 107 publicly available cheese metagenomes, we recovered 328 metagenome-assembled genomes, including 47 putative new species that could influence taste or colour through the secretion of volatiles or biosynthesis of pigments. Additionally, from a subset of samples, we found that differences in the abundances of strains corresponded with levels of volatiles. Genes encoding bacteriocins and other antimicrobials, such as pseudoalterin, were common, potentially contributing to the control of undesirable microorganisms. Although antibiotic-resistance genes were detected, evidence suggested they are not of major concern with respect to dissemination to other microbiomes. Phages, a potential cause of fermentation failure, were abundant and evidence for phage-mediated gene transfer was detected. The anti-phage defence mechanism CRISPR was widespread and analysis thereof, and of anti-CRISPR proteins, revealed a complex interaction between phages and bacteria. Overall, our results provide new and substantial technological and ecological insights into the cheese microbiome that can be applied to further improve cheese production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The microbial composition of cheeses.
Fig. 2: The relationship between strain-level variation and the metabolome.
Fig. 3: Assembly and characterization of cheese MAGs.
Fig. 4: Analysis of ARGs on cheese MAGs and plasmids.
Fig. 5: LGTs in cheese microbiomes.
Fig. 6: Phages, CRISPRs and Acrs in cheese microbiomes.

Similar content being viewed by others

Data availability

Raw reads have been deposited to the European Nucleotide Archive under the project accession number PRJEB32768, while MAGs are available at https://drive.google.com/file/d/1TCLYBX7kkxNUWn4jr4YGXNL_qV97lc70/view.

References

  1. Yeluri Jonnala, B. R., McSweeney, P. L. H., Sheehan, J. J. & Cotter, P. D. Sequencing of the cheese microbiome and its relevance to industry. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01020 (2018).

  2. De Filippis, F., Genovese, A., Ferranti, P., Gilbert, J. A. & Ercolini, D. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. Rep. 6, 21871 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bertuzzi, A. S. et al. Omics-based insights into flavor development and microbial succession within surface-ripened cheese. mSystems https://doi.org/10.1128/mSystems.00211-17 (2018).

  4. Dugat-Bony, E. et al. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS ONE 10, e0124360 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morin, M., Pierce, E. C. & Dutton, R. J. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7, e37072 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonham, K. S., Wolfe, B. E. & Dutton, R. J. Extensive horizontal gene transfer in cheese-associated bacteria. eLife 6, e22144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Filippis, F., Parente, E. & Ercolini, D. Metagenomics insights into food fermentations. Microb. Biotechnol. 10, 91–102 (2017).

    Article  PubMed  Google Scholar 

  9. Franzosa, E. A. et al. Sequencing and beyond: integrating molecular’omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Melo, A. G., Levesque, S. & Moineau, S. Phages as friends and enemies in food processing. Curr. Opin. Biotechnol. 49, 185–190 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Scholz, M. et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat. Methods 13, 435–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Thierry, A. et al. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–a review. Dairy Sci. Technol. 95, 895–918 (2015).

    Article  CAS  Google Scholar 

  13. Quigley, L. et al. Thermus and the pink discoloration defect in cheese. mSystems 1, e00023-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kamelamela, N., Zalesne, M., Morimoto, J., Robbat, A. & Wolfe, B. E. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese. Food Microbiol. 76, 543–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, B. L. et al. A predator–prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nat. Commun. 11, 285 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 9, 870 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Quigley, L. et al. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl. Environ. Microbiol. 78, 5717–5723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walsh, A. M. et al. Microbial succession and flavor production in the fermented dairy beverage Kefir. mSystems https://doi.org/10.1128/mSystems.00052-16 (2016).

  23. Niccum, B. A., Kastman, E. K., Kfoury, N., Robbat, A. & Wolfe, B. E. Strain-level diversity impacts cheese rind microbiome assembly and function. mSystems 5, e00149-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dugat-Bony, E. et al. Viral metagenomic analysis of the cheese surface: a comparative study of rapid procedures for extracting viral particles. Food Microbiol. 85, 103278 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Gobbetti, M. et al. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 78, 244–254 (2018).

    Article  CAS  Google Scholar 

  26. Mahony, J. & van Sinderen, D. Novel strategies to prevent or exploit phages in fermentations, insights from phage–host interactions. Curr. Opin. Biotechnol. 32, 8–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Millen, A. M., Horvath, P., Boyaval, P. & Romero, D. A. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS ONE 7, e51663 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. McDonnell, B. et al. Identification and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Appl. Environ. Microbiol. 82, 5153–5165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hynes, A. P. et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9, 2919 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168, 150–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Marino, N. D. et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240–242 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verraes, C. et al. Antimicrobial resistance in the food chain: a review. Int. J. Environ. Res. Public Health 10, 2643–2669 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. García-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science 361, eaat2456 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Favaro, L., Barretto Penna, A. L. & Todorov, S. D. Bacteriocinogenic LAB from cheeses – application in biopreservation? Trends Food Sci. Technol. 41, 37–48 (2015).

    Article  CAS  Google Scholar 

  36. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, Y., Leung, H. C., Yiu, S.-M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Silva, G. G. Z., Green, K. T., Dutilh, B. E. & Edwards, R. A. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics 32, 354–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Lipinski, L., Dziembowski, A. & Krawczyk, P. S. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Segata, N., Bornigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  48. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article  CAS  Google Scholar 

  50. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nupur, L. N. et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 16, 96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Machado, D., Tramontano, M., Andrejev, S. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Neviani, E., Juliano De Dea, L., Bernini, V. & Gatti, M. Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiol. 26, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cury, J., Jové, T., Touchon, M., Néron, B. & Rocha, E. P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 44, 4539–4550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Heel, A. J., de Jong, A., Montalban-Lopez, M., Kok, J. & Kuipers, O. P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41, 448–453 (2013).

    Article  Google Scholar 

  58. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Yin, Y., Yang, B. & Entwistle, S. Bioinformatics identification of anti-CRISPR loci by using homology, guilt-by-association, and CRISPR self-targeting spacer approaches. mSystems https://doi.org/10.1128/mSystems.00455-19 (2019).

  62. Oksanen, J. et al. vegan: Community ecology package. R package v.2.5-6 (2019); https://CRAN.R-project.org/package=vegan

  63. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  66. Kolde, R. pheatmap: Pretty heatmaps. R package v.1.0.12 (2019); https://CRAN.R-project.org/package=pheatmap

Download references

Acknowledgements

We thank J. Mahony, D. Van Sinderen and members of the Vision 1 laboratory, particularly W. Barton, for helpful discussions and a critical review of the manuscript, as well as F. Crispie and L. Finnegan for their contributions to DNA sequencing. This research was conducted with the financial support of the Science Foundation Ireland (SFI) under grant numbers SFI/12/RC/2273P1 and SFI/12/RC/2273P2 (APC Microbiome Ireland). Research in the Cotter laboratory is also funded through MASTER, an Innovation Action funded by the European Commission under the Horizon 2020 Programme under grant number 818368, SFI and the Department of Agriculture, Food and Marine under grant 16/RC/3835 (VistaMilk) and the Enterprise Ireland Technology Centre, Food for Health Ireland.

Author information

Authors and Affiliations

Authors

Contributions

A.M.W. performed bioinformatic and statistical analysis and data visualization. G.M. collected samples and prepared DNA sequencing libraries. K.N.K. performed volatile analysis. A.M.W., G.M. and P.D.C. conceived the study. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Paul D. Cotter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Discussion and Figs. 1–5.

Supplementary Table 1

Taxa that were differentially abundant between the core versus the rind, as determined by LEfSe.

Supplementary Table 2

Taxa that were differentially abundant between cheeses of different maturity, as determined by LEfSe.

Supplementary Table 3

SUPER-FOCUS subsystems (level 2) that were differentially abundant between the core versus the rind, as determined by LEfSe.

Supplementary Table 4

SUPER-FOCUS subsystems that were differentially abundant between cheeses of different maturity, as determined by LEfSe.

Supplementary Table 5

SUPER-FOCUS subsystems that were differentially abundant between cheeses produced by different types of milk, as determined by LEfSe.

Supplementary Table 6

Volatile profile of CheeseSeq samples.

Supplementary Table 7

Volatile compounds detected in the CheeseSeq and Bertuzzi datasets.

Supplementary Table 8

The taxonomy of the 328 high-quality prokaryotic MAGs, as determined using CAT–BAT, PhyloPhlAn and FastANI.

Supplementary Table 9

Bacterial enzymes associated with the biosynthesis of indigo.

Supplementary Table 10

The genera to which MAGs containing bacteriocin genes, as determined by BAGEL3, were assigned by CAT–BAT.

Supplementary Table 11

Metadata describing the 77 newly sequenced cheese samples.

Supplementary Table 12

The accession numbers of each of the publicly available metagenomic samples that were included in the meta-analysis of the cheese microbiome.

Supplementary Table 13

The publicly available shotgun metagenomic datasets that were included in the meta-analysis of the cheese microbiome.

Supplementary Table 14

The components of the cheese agar medium (CAM) used to initialize genome-scale metabolic models with CarveMe.

Supplementary Table 15

a, The datasets from which non-cheese MAGs were downloaded. b, The ID of non-cheese MAGs included in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, A.M., Macori, G., Kilcawley, K.N. et al. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nat Food 1, 500–510 (2020). https://doi.org/10.1038/s43016-020-0129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0129-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology