Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scientific, sustainability and regulatory challenges of cultured meat

Abstract

Cellular agriculture is an emerging branch of biotechnology that aims to address issues associated with the environmental impact, animal welfare and sustainability challenges of conventional animal farming for meat production. Cultured meat can be produced by applying current cell culture practices and biomanufacturing methods and utilizing mammalian cell lines and cell and gene therapy products to generate tissue or nutritional proteins for human consumption. However, significant improvements and modifications are needed for the process to be cost efficient and robust enough to be brought to production at scale for food supply. Here, we review the scientific and social challenges in transforming cultured meat into a viable commercial option, covering aspects from cell selection and medium optimization to biomaterials, tissue engineering, regulation and consumer acceptance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept of cultured meat.
Fig. 2: Most common bioreactor designs for mammalian cell culture.
Fig. 3: Production of complex meat products from muscle, fat, connective tissue and vascular cells using a scaffold method.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Sharma, S., Thind, S. S. & Kaur, A. In vitro meat production system: why and how? J. Food Sci. Technol. 52, 7599–7607 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

    PubMed  Google Scholar 

  3. Mattick, C. S., Landis, A. E., Allenby, B. R. & Genovese, N. J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941–11949 (2015).

    ADS  CAS  PubMed  Google Scholar 

  4. Tuomisto, H. L. & de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    ADS  CAS  PubMed  Google Scholar 

  5. Tuomisto, H. L., Ellis, M. J. & Haastrup, P. in LCA Food 2014 (eds Schenck, R. & Huizenga, D.) 1360–1367 (Vashon, 2014).

  6. Lynch, J. & Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2019.00005 (2019).

    Article  Google Scholar 

  7. Schaefer, G. O. & Savulescu, J. The ethics of producing in vitro meat. J. Appl. Philos. 31, 188–202 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Census of Agriculture (USDA, 2012).

  9. Painter, J. A. et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 19, 407–415 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Mathew, A. G., Cissell, R. & Liamthong, S. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Food. Pathog. Dis. 4, 115–133 (2007).

    CAS  Google Scholar 

  11. Oliver, S. P., Murinda, S. E. & Jayarao, M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Food. Pathog. Dis. 8, 337–355 (2011).

    CAS  Google Scholar 

  12. World Livestock 2011: Livestock in Food Security (FAO, 2011).

  13. Young, P. The Victorians caused the meat eating crisis the world faces today – but they might help us solve it. The Conversation (21 January 2019).

  14. Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agri. 94, 1039–1041 (2014).

    CAS  Google Scholar 

  15. Williams, L. A., Davis-Dusenbery, B. N. & Eggan, K. C. SnapShot: directed differentiation of pluripotent stem cells. Cell 149, 1174 (2012).

    CAS  PubMed  Google Scholar 

  16. Diaz-Flores, L.Jr et al. Adult stem and transit-amplifying cell location. Histol. Histopathol. 21, 995–1027 (2006).

    PubMed  Google Scholar 

  17. Post, M. J. Cultured meat from stem cells: challenges and prospects. Meat Sci. 92, 297–301 (2012).

    PubMed  Google Scholar 

  18. Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Tech. 78, 155–166 (2018).

    CAS  Google Scholar 

  19. Wosczyna, M. N. & Rando, T. A. A Muscle stem cell support group: coordinated cellular responses in muscle regeneration. Development. Cell 46, 135–143 (2018).

    CAS  Google Scholar 

  20. Post, M. J. & van der Weele, C. in Principles of Tissue Engineering (eds Lanza, R., Langer, R. & Vacanti, J. P.) 1647–1658 (Elsevier, 2014).

  21. Zhu, H. et al. Porcine satellite cells are restricted to a phenotype resembling their muscle origin. J. Anim. Sci. 91, 4684–4691 (2013).

    CAS  PubMed  Google Scholar 

  22. Ding, S. et al. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8, 11 (2018).

    ADS  Google Scholar 

  23. Ding, S. et al. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 3, 17003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rouger, K. et al. Progenitor cell isolation from muscle-derived cells based on adhesion properties. J. Histochem. Cytochem. 55, 607–618 (2007).

    CAS  PubMed  Google Scholar 

  25. Wilschut, K. J., Jaksani, S., van den Dolder, J., Haagsman, H. P. & Roelen, B. A. J. Isolation and characterization of porcine adult muscle-derived progenitor cells. J. Cell. Biochem. 105, 1228–1239 (2008).

    CAS  PubMed  Google Scholar 

  26. Specht, E. A., Welch, D. R., Rees Clayton, E. M. & Lagally, C. D. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Engineer. J. 132, 161–168 (2018).

    Google Scholar 

  27. van der Weele, C. & Tramper, J. Cultured meat: every village its own factory? Trends Biotechnol. 32, 294–296 (2014).

    PubMed  Google Scholar 

  28. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 36 (1961).

    Google Scholar 

  29. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl Acad. Sci. USA 61, 477–483 (1968).

    ADS  CAS  PubMed  Google Scholar 

  30. Yaffe, D. & Saxel, O. R. A. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725–727 (1977).

    ADS  CAS  PubMed  Google Scholar 

  31. Antin, P. B. & Ordahl, C. P. Isolation and characterization of an avian myogenic cell line. Dev. Biol. 143, 111–121 (1991).

    CAS  PubMed  Google Scholar 

  32. Zhu, C.-H. et al. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6, 515–523 (2007).

    CAS  PubMed  Google Scholar 

  33. Roberts, R. M., Yuan, Y., Genovese, N. & Ezashi, T. Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56, 74–82 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  35. Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).

    CAS  PubMed  Google Scholar 

  36. Choi, K.-H. et al. Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Rep. 13, 221–234 (2019).

    CAS  Google Scholar 

  37. Ezashi, T. et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10993–10998 (2009).

    ADS  CAS  PubMed  Google Scholar 

  38. Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pain, B., Kress, C. & Rival-Gervier, S. Pluripotency in avian species. Int. J. Dev. Biol. 62, 245–255 (2018).

    CAS  PubMed  Google Scholar 

  40. Chal, J. & Pourquié, O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104–2122 (2017).

    CAS  PubMed  Google Scholar 

  41. Rao, L., Qian, Y., Khodabukus, A., Ribar, T. & Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 9, 126 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  42. Genovese, N. J., Domeier, T. L., Telugu, B. P. V. L. & Roberts, R. M. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci. Rep. 7, 41833 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ludwig, T. & Thomson, A. J. Defined, feeder-independent medium for human embryonic stem cell culture. Curr. Protoc. Stem Cell Biol. 2, 1C.2.1–1C.2.16 (2007).

    Google Scholar 

  44. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Burrell, K. et al. Stirred suspension bioreactor culture of porcine induced pluripotent stem cells. Stem Cells Dev. 28, 1264–1275 (2019).

    CAS  PubMed  Google Scholar 

  47. Manstein, F., Halloin, C. & Zweigerdt, R. in Cell-Based Assays Using iPSCs for Drug Development and Testing (eds Mandenius, C.-F. & Ross, J. A.) 79–91 (Springer, 2019).

  48. Mizukami, A. & Swiech, K. Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cell. Intl 2018, 4083921 (2018).

    Google Scholar 

  49. Amable, P. & Butler, M. in Animal Cell Technology (eds Castilho, L. et al.) 36 (Taylor & Francis, 2008).

  50. Altamirano, C., Illanes, A., Becerra, S., Cairo, J. J. & Godia, F. Considerations on the lactate consumption by CHO cells in the presence of galactose. J. Biotechnol. 125, 547–556 (2006).

    CAS  PubMed  Google Scholar 

  51. Europa, A. F., Gambhir, A., Fu, P.-C. & Hu, W.-S. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotech. Bioengineer. 67, 25–34 (2000).

    CAS  Google Scholar 

  52. Bell, S. L. et al. Genetic engineering of hybridoma glutamine metabolism. Enzyme Microbial. Tech. 17, 98–106 (1995).

    CAS  Google Scholar 

  53. Bell, S. L. et al. in Animal Cell Technology (eds Spier, R. E., Griffiths, J. B. & MacDonald, C.) 180–182 (Butterworth-Heinemann, 1992).

  54. Weidemann, R., Ludwig, A. & Kretzmer, G. Low temperature cultivation — a step towards process optimisation. Cytotechnology 15, 111–116 (1994).

    CAS  PubMed  Google Scholar 

  55. Hulland, T. J. in Pathology of Domestic Animals 4th edn (eds Jubb, K. V. F., Kennedy, P. C. & Palmer, N.) 183–265 (Academic Press, 1993).

  56. Lindholm, A., Johansson, H. E. & Kjaersgaard, P. Acute rhabdomyolysis (“tying-up”) in standardbred horses: a morphological and biochemical study. Acta Vet. Scand. 15, 14 (1974).

    Google Scholar 

  57. McLean, J. G. Equine paralytic myoglobinuria (“azoturia”): a review. Austr. Vet. J. 49, 41–43 (1973).

    CAS  Google Scholar 

  58. Goedegebuure, S. A. Spontaneous primary myopathies in domestic mammals: a review. Vet. Quart. 9, 16 (1987).

    Google Scholar 

  59. Ryan, P. A., Maher, V. M. & McCormick, J. J. Modification of MCDB 110 medium to support prolonged growth and consistent high cloning efficiency of diploid human fibroblasts. Exp. Cell Res. 172, 318–328 (1987).

    CAS  PubMed  Google Scholar 

  60. Braga, M., Simmons, Z., Norris, K. C., Ferrini, M. G. & Artaza, J. N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr. Connect. 6, 139–150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. van der Valk, J. et al. Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol. In Vitro 24, 1053–1063 (2010).

    PubMed  Google Scholar 

  62. Goonoo, N. & Bhaw-Luximon, A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv. 9, 22 (2019).

    Google Scholar 

  63. Ikeda, M. & Nakagawa, S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62, 99–109 (2003).

    CAS  PubMed  Google Scholar 

  64. Vercalsteren, A. & Boonen, K. Life Cycle Assessment Study of Starch Products for the European Starch Industry Association (Starch Europe): Sector Study (European Starch Industry Association, 2015).

  65. Kim, S.-K. Marine Proteins and Peptides: Biological Activities and Applications (Wiley Blackwell, 2013).

  66. Matassa, S., Verstraete, W., Pikaar, I. & Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016).

    CAS  PubMed  Google Scholar 

  67. Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H. & Ghasemi, Y. Single cell protein: production and process. J. Food Tech. 6, 13 (2011).

    Google Scholar 

  68. Ramos Tercero, E. A., Sforza, E., Morandini, M. & Bertucco, A. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl. Biochem. Biotechnol. 172, 1470–1485 (2014).

    CAS  PubMed  Google Scholar 

  69. Xu, H., Miao, X. & Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499–507 (2006).

    CAS  PubMed  Google Scholar 

  70. Lowrey, J., Armenta, R. E. & Brooks, M. S. Nutrient and media recycling in heterotrophic microalgae cultures. Appl. Microbiol. Biotechnol. 100, 1061–1075 (2016).

    CAS  PubMed  Google Scholar 

  71. Yang, L. et al. A novel low cost microalgal harvesting technique with coagulant recovery and recycling. Biores. Technol. 266, 343–348 (2018).

    CAS  Google Scholar 

  72. Zhu, C., Zhang, R., Cheng, L. & Chi, Z. A recycling culture of Neochloris oleoabundans in a bicarbonate-based integrated carbon capture and algae production system with harvesting by auto-flocculation. Biotechnol. Biofuels 11, 204 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Khodayari, A. & Maranas, C. D. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun. 7, 13806 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mannan, A. A. et al. Integrating kinetic model of E. coli with genome scale metabolic fluxes overcomes its open system problem and reveals bistability in central metabolism. PLoS ONE 10, e0139507 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Reed, L. K., Baer, C. F. & Edison, A. S. Considerations when choosing a genetic model organism for metabolomics studies. Curr. Opin. Chem. Biol. 36, 7–14 (2017).

    CAS  PubMed  Google Scholar 

  76. Fuhrer, T., Zampieri, M., Sévin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Molec. Syst. Biol. 13, 907 (2017).

    Google Scholar 

  77. Birch, E. W., Udell, M. & Covert, M. W. Incorporation of flexible objectives and time-linked simulation with flux balance analysis. J. Theor. Biol. 345, 12–21 (2014).

    PubMed  MATH  Google Scholar 

  78. Feist, A. M. & Palsson, B. O. What do cells actually want? Genome Biol. 17, 110 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).

    ADS  Google Scholar 

  80. Vijayakumar, S., Conway, M., Lió, P. & Angione, C. in Metabolic Network Reconstruction and Modeling: Methods and Protocols (ed. Marco Fondi) 389–408 (Springer, 2018).

  81. Zakrzewski, P. et al. MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models. PLoS ONE 7, e51511 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heng, B. C. et al. Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture. Cytotherapy 13, 606–617 (2011).

    CAS  PubMed  Google Scholar 

  83. Larson, B. L., Ylostalo, J. & Prockop, D. J. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 26, 193–201 (2008).

  84. Rafiq, Q. A., Brosnan, K. M., Coopman, K., Nienow, A. W. & Hewitt, C. J. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol. Lett. 35, 1233–1245 (2013).

    CAS  PubMed  Google Scholar 

  85. Simaria, A. S. et al. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol. Bioengineer. 111, 69–83 (2014).

    CAS  Google Scholar 

  86. Stephenson, M. & Grayson, W. Recent advances in bioreactors for cell-based therapies. F1000Res 7, 517 (2018).

    Google Scholar 

  87. Moritz, M. S. M., Verbruggen, S. E. L. & Post, M. J. Alternatives for large-scale production of cultured beef: a review. J. Intergrat. Agri. 14, 208–216 (2015).

    CAS  Google Scholar 

  88. Verbruggen, S., Luining, D., van Essen, A. & Post, M. J. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70, 503–512 (2018).

    CAS  PubMed  Google Scholar 

  89. Lipsitz, Y. Y., Woodford, C., Yin, T., Hanna, J. H. & Zandstra, P. W. Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc. Natl Acad. Sci. USA 115, 6369 (2018).

    ADS  CAS  PubMed  Google Scholar 

  90. Fok, E. Y. & Zandstra, P. W. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23, 1333–1342 (2005).

    CAS  PubMed  Google Scholar 

  91. Abbasalizadeh, S., Larijani, M. R., Samadian, A. & Baharvand, H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Engineer. Part C: Methods 18, 831–851 (2012).

    CAS  Google Scholar 

  92. Chen, V. C. et al. Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res. 8, 388–402 (2012).

    CAS  PubMed  Google Scholar 

  93. Tsai, A.-C., Liu, Y., Yuan, X., Chella, R. & Ma, T. Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol. J. 12, 1600448 (2017).

    Google Scholar 

  94. Aguanno, S. et al. A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Intl 2019, 7548160 (2019).

    Google Scholar 

  95. Schnitzler, A. C. et al. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem. Engineer. J. 108, 3–13 (2016).

    CAS  Google Scholar 

  96. Schönherr, O. T. in Advanced Research on Animal Cell Technology (ed Milleri, A. O. A.) 107–117 (Springer, 1989).

  97. Meyer, H.-P., Minas, W. & Schmidhalter, D. Industrial Biotechnology (Wiley‐VCH, 2016).

  98. Wung, N., Acott, S. M., Tosh, D. & Ellis, M. J. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol. Lett. 36, 2357–2366 (2014).

    CAS  PubMed  Google Scholar 

  99. Warnock, J. N., Bratch, K. & Al-Rubeai, M. in Bioreactors for Tissue Engineering: Principles, Design and Operation (eds Chaudhuri, J. & Al-Rubeai, M.) 87–113 (Springer, 2005).

  100. Morrow, D., Ussi, A. & Migliaccio, G. Addressing pressing needs in the development of advanced therapies. Front. Bioeng. Biotechnol. 5, 55 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Moutsatsou, P., Ochs, J., Schmitt, R. H., Hewitt, C. J. & Hanga, M. P. Automation in cell and gene therapy manufacturing: from past to future. Biotechnol. Lett. 41, 1245–1253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Garg, T. & Goyal, A. K. Biomaterial-based scaffolds – current status and future directions. Expert Opin. Drug Deliv. 11, 767–789 (2014).

    CAS  PubMed  Google Scholar 

  104. Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005).

    CAS  PubMed  Google Scholar 

  105. O’Brien, J. A. et al. Long-term histologic and mechanical results of a Permacol abdominal wall explant. Hernia 15, 211–215 (2011).

    PubMed  Google Scholar 

  106. Owen, S. C. & Shoichet, M. S. Design of three-dimensional biomimetic scaffolds. J. Biomed. Mater. Res. Part A 94, 1321–1331 (2010).

    Google Scholar 

  107. Cunha, A. G. & Gandini, A. Turning polysaccharides into hydrophobic materials: a critical review. Part 2: hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17, 1045–1065 (2010).

    CAS  Google Scholar 

  108. Ben-Arye, T. et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 1, 210–220 (2020).

    Google Scholar 

  109. Bugnicourt, E., Cinelli, P., Lazzeri, A. & Alvarez, V. A. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polymer Lett. 8, 17 (2014).

    Google Scholar 

  110. Modulevsky, D. J., Lefebvre, C., Haase, K., Al-Rekabi, Z. & Pelling, A. E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE 9, e97835 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  111. Woodard, L. N. & Grunlan, M. A. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett. 7, 976–982 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. de Boer, A. & Bast, A. Demanding safe foods – safety testing under the novel food regulation (2015/2283). Trends Food. Sci. Tech. 72, 125–133 (2018).

    Google Scholar 

  113. Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2019.00046 (2019).

    Article  Google Scholar 

  114. Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA 108, 14789–14794 (2011).

    ADS  CAS  PubMed  Google Scholar 

  115. Perry, L., Flugelman, M. Y. & Levenberg, S. Elderly patient-derived endothelial cells for vascularization of engineered muscle. Molec. Ther. 25, 935–948 (2017).

    CAS  Google Scholar 

  116. Shandalov, Y. et al. An engineered muscle flap for reconstruction of large soft tissue defects. Proc. Natl Acad. Sci. USA 111, 6010–6015 (2014).

    ADS  CAS  PubMed  Google Scholar 

  117. Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Molec. Biol. Cell 18, 1397–1409 (2007).

    CAS  PubMed  Google Scholar 

  118. Guo, B. et al. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics 16, 177 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117, 2362–2368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    CAS  PubMed  Google Scholar 

  121. Du, M., Wang, B., Fu, X., Yang, Q. & Zhu, M. J. Fetal programming in meat production. Meat Sci. 109, 40–47 (2015).

    PubMed  Google Scholar 

  122. Varzaneh, F. E., Shillabeer, G., Wong, K. L. & Lau, D. C. W. Extracellular matrix components secreted by microvascular endothelial cells stimulate preadipocyte differentiation in vitro. Metabolism 43, 906–912 (1994).

    CAS  PubMed  Google Scholar 

  123. Pullens, R. A., Stekelenburg, M., Baaijens, F. P. & Post, M. J. The influence of endothelial cells on the ECM composition of 3D engineered cardiovascular constructs. J. Tissue Engineer. Regen. Med. 3, 11–18 (2009).

    CAS  Google Scholar 

  124. Levy-Mishali, M., Zoldan, J. & Levenberg, S. Effect of scaffold stiffness on myoblast differentiation. Tissue Eng. Part A 15, 935–944 (2009).

    CAS  PubMed  Google Scholar 

  125. Comley, K. & Fleck, N. A. The toughness of adipose tissue: measurements and physical basis. J. Biomech. 43, 1823–1826 (2010).

    PubMed  Google Scholar 

  126. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Boonen, K. J. et al. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J. Biomech. 43, 1514–1521 (2010).

    PubMed  Google Scholar 

  128. Powell, C. A., Smiley, B. L., Mills, J. & Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. 283, 1557–1565 (2002).

    Google Scholar 

  129. Suman, S. P. & Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 4, 79–99 (2013).

    CAS  PubMed  Google Scholar 

  130. Post, M. J., Rahimi, N. & Caolo, V. Update on vascularization in tissue engineering. Regen. Med. 8, 759–770 (2013).

    CAS  PubMed  Google Scholar 

  131. Rouwkema, J., Rivron, N. C. & van Blitterswijk, C. A. Vascularization in tissue engineering. Trends Biotechnol. 26, 434–441 (2008).

    CAS  PubMed  Google Scholar 

  132. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    ADS  CAS  PubMed  Google Scholar 

  133. Formal Agreement Between the US Department of Health and Human Services Food and Drug Administration and US Department of Agriculture Office of Food Safety (USDA, 2019).

  134. Gottlieb, S. Statement from USDA Secretary Perdue and FDA Commissioner Gottlieb on the regulation of cell-cultured food products from cell lines of livestock and poultry. FDA https://www.fda.gov/news-events/press-announcements/statement-usda-secretary-perdue-and-fda-commissioner-gottlieb-regulation-cell-cultured-food-products (2018).

  135. Remarks Prepared for Delivery by Rosalyn Murphy-Jenkins, Director Labeling and Program Delivery Staff Office of Policy and Program Development USDA Food Safety and Inspection Service at the FDA Public Meeting for Horizontal Approaches to Food Standards of Identity Modernization September 27, 2019 (USDA, 2019).

  136. Regulation (EU) 2015/2283 of the European Parliament and of the Council (European Commission, 2015).

  137. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC (European Commission, 2001).

  138. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on Genetically Modified Food and Feed (European Commission, 2013).

  139. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods (European Commission, 2015).

  140. Regulation (EU) 2019/1381 of the European Parliament and of the Council of 20 June 2019 on the Transparency and Sustainability of the EU Risk Assessment in the Food Chain (European Commission, 2019).

  141. EFSA Panel on Dietetic Products, Nutrition and Allergies et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. https://doi.org/10.2903/j.efsa.2016.4594 (2016).

  142. European Food Safety Authority. Administrative guidance on the submission of applications for authorisation of a novel food pursuant to Article 10 of Regulation (EU) 2015/2283. EFSA Support. Publ. https://doi.org/10.2903/sp.efsa.2018.EN-1381 (2018).

  143. Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143, 8–17 (2018).

    PubMed  Google Scholar 

  144. Bryant, C. & Dillard, C. The impact of framing on acceptance of cultured meat. Front. Nutr. 6, 103 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Dutch People Wouldn’t Mind Trying the “Cultivated Burger” (Flycatcher, 2017); http://www.flycatcherpanel.nl/news/item/nwsA1697/media/images/Resultaten_onderzoek_kweekvlees.pdf

  146. Wilks, M. & Phillips, C. J. Attitudes to in vitro meat: a survey of potential consumers in the United States. PLoS ONE 12, e0171904 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Smith, A. U.S. views of technology and the future: science in the next 50 years. Pew Research Center (17 April 2014).

  148. Tatum, M. Meat the future… and how to market it. The Grocer (6 January 2017).

  149. Bekker, G. A., Fischer, A. R. H., Tobi, H. & van Trijp, H. C. M. Explicit and implicit attitude toward an emerging food technology: the case of cultured meat. Appetite 108, 245–254 (2017).

  150. Siegrist, M., Sütterlin, B. & Hartmann, C. Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci. 139, 213–219 (2018).

    PubMed  Google Scholar 

  151. Slade, P. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers. Appetite 125, 428–437 (2018).

    PubMed  Google Scholar 

  152. Bryant, C., Szejda, K., Parekh, N., Desphande, V. & Tse, B. A Survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front. Sustain. Food Syst. 3, 11 (2019).

    Google Scholar 

  153. Wilks, M., Phillips, C. J. C., Fielding, K. & Hornsey, M. J. Testing potential psychological predictors of attitudes towards cultured meat. Appetite 136, 137–145 (2019).

    PubMed  Google Scholar 

  154. Tucker, C. A. The significance of sensory appeal for reduced meat consumption. Appetite 81, 168–179 (2014).

    PubMed  Google Scholar 

  155. Verbeke, W., Sans, P. & Van Loo, E. J. Challenges and prospects for consumer acceptance of cultured meat. J. Integrat. Agri. 14, 285–294 (2015).

    Google Scholar 

  156. Goodwin, J. N. & Shoulders, C. W. The future of meat: a qualitative analysis of cultured meat media coverage. Meat Sci. 95, 445–450 (2013).

    CAS  PubMed  Google Scholar 

  157. McCrae, R. R. et al. Age differences in personality across the adult life span: parallels in five cultures. Dev. Psychol. 35, 466–477 (1999).

    CAS  PubMed  Google Scholar 

  158. Lea, E. & Worsley, A. Benefits and barriers to the consumption of a vegetarian diet in Australia. Public Health Nutr. 6, 505–511 (2003).

    PubMed  Google Scholar 

  159. Fessler, D. M. T., Arguello, A. P., Mekdara, J. M. & Macias, R. Disgust sensitivity and meat consumption: a test of an emotivist account of moral vegetarianism. Appetite 41, 31–41 (2003).

    PubMed  Google Scholar 

  160. Rozin, P., Markwith, M. & Stoess, C. Moralization and becoming a vegetarian: the transformation of preferences into values and the recruitment of disgust. Psychol. Sci. 8, 67–73 (1997).

    Google Scholar 

  161. Social Values, Science and Technology (European Commission, 2005).

  162. Nearly One in Three Consumers Willing to Eat Lab-Grown Meat, According to New Research (Surveygoo, 2018); https://www.datasmoothie.com/@surveygoo/nearly-one-in-three-consumers-willing-to-eat-lab-g/

  163. Marcu, A. et al. Analogies, metaphors, and wondering about the future: lay sense-making around synthetic meat. Public Understand. Sci. 24, 547–562 (2015).

    Google Scholar 

  164. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin (European Commission, 2004).

  165. Warenwetbesluit Hygiëne van Levensmiddelen (Overheid, 2019); https://wetten.overheid.nl/BWBR0018823/2016-02-19

  166. Warenwetbesluit Bereiding en Behandeling van Levensmiddelen (Overheid, 2019); https://wetten.overheid.nl/BWBR0005758/2016-10-06

  167. Regulation (EU) 2017/625 of the European Parliament and of the Council (European Commission, 2017).

  168. Regulation (EC) No 178/2002 of the European Parliament and of the Council (European Commission, 2002).

  169. Would You Eat Artificial Meat? (YouGov, 2012); https://yougov.co.uk/topics/consumer/articles-reports/2012/03/12/would-you-eat-artifical-meat

Download references

Acknowledgements

We thank J. Breemhaar for designing and drafting Fig. 2, and N. Rubio, A. Stout, J. Yuen, K. Fish, N. Xiang and A. Szklanny for their contributions. D.K. is supported by Advanced Research Projects Agency, National Institute of Health, the Good Food Institute and New Harvest. M.J.P. is supported by EU Horizon 2020, Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Post.

Ethics declarations

Competing interests

M.J.P. is chief scientific officer, co-founder and shareholder of Mosa Meat B.V.; P.M. is lead bioprocess engineer at Mosa Meat B.V.; S.L. is chief scientific officer, co-founder and shareholder of Aleph Farms; N.G. is chief scientific officer, co-founder and shareholder of Memphis Meats; J.F. is chief scientific officer and employee of PAN-Biotech GmbH; K.V. is lawyer and partner at AXON lawyers, a law firm that is active in the cellular agriculture space.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Post, M.J., Levenberg, S., Kaplan, D.L. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat Food 1, 403–415 (2020). https://doi.org/10.1038/s43016-020-0112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0112-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing