Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture


Nanotechnology offers potential solutions for sustainable agriculture, including increasing nutrient utilization efficiency, improving the efficacy of pest management, mitigating the impacts of climate change, and reducing adverse environmental impacts of agricultural food production. Many promising nanotechnologies have been proposed and evaluated at different scales, but several barriers to implementation must be addressed for technology to be adopted, including efficient delivery at field scale, regulatory and safety concerns, and consumer acceptance. Here we explore these barriers, and rank technology readiness and potential impacts of a wide range of agricultural applications of nanotechnology. We propose pathways to overcome these barriers and develop effective, safe and acceptable nanotechnologies for agriculture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Agricultural production will need to increase to meet the United Nations Sustainable Development Goals.

A. Desaulniers, Orcéine, Montreal, Canada

Fig. 2: Potential application of nanotechnology in plant agriculture.

A. Desaulniers, Orcéine, Montreal, Canada

Fig. 3: Strategies to overcome major barriers to nanotechnology deployment in agriculture.

A. Desaulniers, Orcéine, Montreal, Canada

Fig. 4: TRL for proposed applications or approaches for nano-enabled technologies that can benefit agriculture.

A. Desaulniers, Orcéine, Montreal, Canada


  1. 1.

    Schmidt-Traub, G., Obersteiner, M. & Mosnier, A. Fix the broken food system in three steps. Nature 569, 181–183 (2019).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Google Scholar 

  3. 3.

    Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

    CAS  Google Scholar 

  6. 6.

    Hochella, M. F., Spencer, M. G. & Jones, K. L. Nanotechnology: nature’s gift or scientists’ brainchild? Environ. Sci. Nano 2, 114–119 (2015).

    CAS  Google Scholar 

  7. 7.

    Vurro, M., Miguel-Rojas, C. & Pérez-de-Luque, A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 75, 2403–2412 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Frewer, L. J. et al. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 40, 211–225 (2014).

    CAS  Google Scholar 

  9. 9.

    Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 305, 221–222 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Raemdonck, K. & De Smedt, S. C. Lessons in simplicity that should shape the future of drug delivery. Nat. Biotechnol. 33, 1026–1027 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Vencalek, B. E. et al. In situ measurement of CuO and Cu(OH)2 nanoparticle dissolution rates in quiescent freshwater mesocosms. Environ. Sci. Technol. Lett. 3, 375–380 (2016).

    CAS  Google Scholar 

  12. 12.

    Anusuya, S. & Sathiyabama, M. Protection of turmeric plants from rhizome rot disease under field conditions by β-D-glucan nanoparticle. Int. J. Biol. Macromol. 77, 9–14 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Prasad, T. N. V. K. V. et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012).

    CAS  Google Scholar 

  14. 14.

    Wang, W., Tarafdar, J. C. & Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 15, 1417 (2013).

    ADS  Google Scholar 

  15. 15.

    Blythe, E. K., Sibley, J. L., Ruter, J. M. & Tilt, K. M. Cutting propagation of foliage crops using a foliar application of auxin. Sci. Hortic. 103, 31–37 (2004).

    CAS  Google Scholar 

  16. 16.

    Mitter, N., Worrall, E. A., Robinson, K. E., Xu, Z. P. & Carroll, B. J. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 26, 49–55 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 13, 708–714 (2018).

    ADS  CAS  PubMed  Google Scholar 

  18. 18.

    Borgatta, J. et al. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain. Chem. Eng. 6, 14847–14856 (2018).

    CAS  Google Scholar 

  19. 19.

    Servin, A. D. & White, J. C. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1, 9–12 (2016).

    Google Scholar 

  20. 20.

    Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 14, 523–531 (2019).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Williams, R. J. et al. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Curr. Opin. Environ. Sustain. 36, 105–115 (2019).

    Google Scholar 

  22. 22.

    Malloy, T., Trump, B. D. & Linkov, I. Risk-based and prevention-based governance for emerging materials. Environ. Sci. Technol. 50, 6822–6824 (2016).

    ADS  CAS  PubMed  Google Scholar 

  23. 23.

    Ruotolo, R. et al. Plant response to metal-containing engineered nanomaterials: an omics-based perspective. Environ. Sci. Technol. 52, 2451–2467 (2018).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Global Pesticides Market by Type, by Application, by Formulation, by Region: Competition Forecast & Opportunities 2013–2023 (Report Buyer, 2017).

  25. 25.

    Gajdosechova, Z. & Mester, Z. Recent trends in analysis of nanoparticles in biological matrices. Anal. Bioanal. Chem. 411, 4277–4292 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Clausen, L. P. W. & Hansen, S. F. The ten decrees of nanomaterials regulations. Nat. Nanotechnol. 13, 766–768 (2018).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

  28. 28.

    Montaño, M. D. & Lowry, G. V. Von Der Kammer, F., Blue, J. & Ranville, J. F. Current status and future direction for examining engineered nanoparticles in natural systems. Environ. Chem. 11, 351–366 (2014).

    Google Scholar 

  29. 29.

    Naasz, S. et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. J. Anal. At. Spectrom. 33, 835–845 (2018).

    CAS  Google Scholar 

  30. 30.

    Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Goodwin, D. G. et al. Detection and quantification of graphene-family nanomaterials in the environment. Environ. Sci. Technol. 52, 4491–4513 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Beumer, K. On the elusive nature of the public. Nat. Nanotechnol. 14, 510–512 (2019).

    ADS  CAS  PubMed  Google Scholar 

  33. 33.

    Roosen, J. et al. Trust and willingness to pay for nanotechnology food. Food Policy 52, 75–83 (2015).

    Google Scholar 

  34. 34.

    Camara, M. C. et al. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnology 17, 100 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nuruzzaman, M., Rahman, M. M., Liu, Y. & Naidu, R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem. 64, 1447–1483 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Chariou, P. L. et al. Soil mobility of synthetic and virus-based model nanopesticides. Nat. Nanotechnol. 14, 712–718 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Oliveira, J. L. D. et al. Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J. Agric. Food Chem. 66, 1330–1340 (2018).

    PubMed  Google Scholar 

  39. 39.

    Fugang, L. Methods to produce polymer nanoparticles and formulations of active ingredients. US patent 8, 808 (2014).

  40. 40.

    Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    ADS  CAS  PubMed  Google Scholar 

  41. 41.

    Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    ADS  CAS  PubMed  Google Scholar 

  42. 42.

    Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Wu, H., Shabala, L., Shabala, S. & Giraldo, J. P. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ. Sci. Nano 5, 1567–1583 (2018).

    CAS  Google Scholar 

  44. 44.

    Sun, D. et al. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 81–91 (2016).

    ADS  CAS  PubMed  Google Scholar 

  45. 45.

    Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    ADS  CAS  PubMed  Google Scholar 

  46. 46.

    McGehee, D. L., Lahiani, M. H., Irin, F., Green, M. J. & Khodakovskaya, M. V. Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl. Mater. Interfaces 9, 32430–32435 (2017).

    CAS  PubMed  Google Scholar 

  47. 47.

    Lahiani, M. H. et al. The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. Nanoscale 11, 3639–3655 (2019).

    CAS  PubMed  Google Scholar 

  48. 48.

    Pereira, A. E. S., Silva, P. M., Oliveira, J. L., Oliveira, H. C. & Fraceto, L. F. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloid. Surface. B 150, 141–152 (2017).

    CAS  Google Scholar 

  49. 49.

    Sun, D. et al. Delivery of abscisic acid to plants using glutathione responsive mesoporous silica nanoparticles. J. Nanosci. Nanotechnol. 18, 1615–1625 (2017).

    Google Scholar 

  50. 50.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Wu, H. et al. Monitoring plant health with near infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).

    ADS  CAS  PubMed  Google Scholar 

  52. 52.

    Li, Z. et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5, 856–866 (2019).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kottegoda, N. et al. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11, 1214–1221 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Xie, J. et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: Fabrication, enhanced performance, and mechanism. ACS Nano 13, 3320–3333 (2019).

    CAS  PubMed  Google Scholar 

  55. 55.

    Cai, D. et al. Controlling nitrogen migration through micro-nano networks. Sci. Rep. 4, 3665 (2015).

    Google Scholar 

  56. 56.

    Liu, R. & Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686 (2015).

    Google Scholar 

  57. 57.

    Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A. & Devotta, S. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J. Agric. Food Chem. 54, 4773–4779 (2006).

    CAS  PubMed  Google Scholar 

  58. 58.

    Mikhak, A., Sohrabi, A., Kassaee, M. Z. & Feizian, M. Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Ind. Crops Prod. 95, 444–452 (2017).

    CAS  Google Scholar 

  59. 59.

    Kumar, R., Ashfaq, M. & Verma, N. Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J. Mater. Sci. 53, 7150–7164 (2018).

    ADS  CAS  Google Scholar 

  60. 60.

    Meurer, R. A. et al. Biofunctional microgel-based fertilizers for controlled foliar delivery of nutrients to plants. Angew. Chem. Int. Ed. 56, 7380–7386 (2017).

    CAS  Google Scholar 

  61. 61.

    Adisa, I. O. et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6, 2002–2030 (2019).

    CAS  Google Scholar 

  62. 62.

    Pradhan, S. et al. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 62, 8777–8785 (2014).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dimkpa, C. O. et al. Exposure to weathered and fresh nanoparticle and ionic Zn in soil promotes grain yield and modulates nutrient acquisition in wheat (Triticum aestivum L.). J. Agric. Food Chem. 66, 9645–9656 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ma, C. et al. Time-dependent transcriptional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustain. Chem. Eng. 7, 10064–10074 (2019).

    CAS  Google Scholar 

  65. 65.

    Dimkpa, C. O. et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 688, 926–934 (2019).

    ADS  CAS  PubMed  Google Scholar 

  66. 66.

    Fernandez, V. & Eichert, T. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. CRC Crit. Rev. Plant Sci. 28, 36–68 (2009).

    CAS  Google Scholar 

  67. 67.

    Krishnamoorthy, V. & Rajiv, S. Potential seed coatings fabricated from electrospinning hexaaminocyclotriphosphazene and cobalt nanoparticles incorporated polyvinylpyrrolidone for sustainable agriculture. ACS Sustain. Chem. Eng. 5, 146–152 (2017).

    CAS  Google Scholar 

  68. 68.

    Mahakham, W., Sarmah, A. K., Maensiri, S. & Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 7, 8263 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Elhaj Baddar, Z. & Unrine, J. M. Functionalized-ZnO-nanoparticle seed treatments to enhance growth and Zn content of wheat (Triticum aestivum) seedlings. J. Agric. Food Chem. 66, 12166–12178 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Microbiome Interagency Working Group. Interagency Strategic Plan for Microbiome Research (Office of Science and Technical Information, 2018).

  71. 71.

    Qin, Y., Druzhinina, I. S., Pan, X. & Yuan, Z. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 34, 1245–1259 (2016).

    CAS  PubMed  Google Scholar 

  72. 72.

    Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).

    PubMed  Google Scholar 

  73. 73.

    Frenk, S., Ben-Moshe, T., Dror, I., Berkowitz, B. & Minz, D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8, e84441 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ge, Y., Priester, J. H., Van De Werfhorst, L. C., Schimel, J. P. & Holden, P. A. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 47, 14411–14417 (2013).

    ADS  CAS  PubMed  Google Scholar 

  75. 75.

    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).

    ADS  CAS  PubMed  Google Scholar 

  76. 76.

    O’Day, P. A. & Vlassopoulos, D. Mineral-based amendments for remediation. Elements 6, 375–381 (2010).

    PubMed  Google Scholar 

  77. 77.

    Adrees, M. et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol. Environ. Saf. 119, 186–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Liu, S. et al. Novel nano-submicron mineral-based soil conditioner for sustainable agricultural development. J. Clean. Prod. 149, 896–903 (2017).

    CAS  Google Scholar 

  79. 79.

    Kiran, Tiwari & Krishnamoorthi, R. S. & Kumar, K. Synthesis of cross-linker devoid novel hydrogels: swelling behaviour and controlled urea release studies. J. Environ. Chem. Eng. 7, 103162 (2019).

    CAS  Google Scholar 

  80. 80.

    El-Abdeen, H. A. Z. & Farroh, K. Y. Preparation and characterization of nano organic soil conditioners and it’s effected on sandy soil properties and wheat productivity. Nat. Sci. 17, 115–128 (2019).

    Google Scholar 

  81. 81.

    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    ADS  CAS  Google Scholar 

  82. 82.

    Wang, J. W. et al. Nanoparticle-mediated genetic engineering of plants. Mol. Plant 12, 1037–1040 (2019).

    CAS  PubMed  Google Scholar 

  83. 83.

    Demirer, G. S. et al. High aspect ratio nanomaterials enable biomolecule delivery and transgene expression or silencing in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    ADS  CAS  PubMed  Google Scholar 

  84. 84.

    Landry, M. P. & Mitter, N. How nanocarriers delivering cargos in plants can change the GMO landscape. Nat. Nanotechnol. 14, 512–514 (2019).

    ADS  CAS  PubMed  Google Scholar 

  85. 85.

    Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    ADS  CAS  PubMed  Google Scholar 

  86. 86.

    Worrall, E. A. et al. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant Sci. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    ADS  CAS  PubMed  Google Scholar 

  88. 88.

    Robinson, K. E., Worrall, E. A. & Mitter, N. Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. J. Plant Biochem. Biotechnol. 23, 231–237 (2014).

    CAS  Google Scholar 

  89. 89.

    Wang, M. et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2, 16151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Gan, D. et al. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 29, 1261–1268 (2010).

    CAS  PubMed  Google Scholar 

  91. 91.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Das, S., Debnath, N., Cui, Y., Unrine, J. & Palli, S. R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Appl. Mater. Interfaces 7, 19530–19535 (2015).

    CAS  PubMed  Google Scholar 

  93. 93.

    Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36, 882–897 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Boverhof, D. R. et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73, 137–150 (2015).

    CAS  PubMed  Google Scholar 

  95. 95.

    Docherty, D., King, J. & McKellar, Q. Leading Food 4.0: Growing University-Business Collaboration for the UK’s Food Economy (National Centre for Universities and Business, 2015).

  96. 96.

    University–Industry Collaboration: New Evidence and Policy Options (OECD, 2019).

Download references


This Review Article resulted from an expert workshop held in July 2019, hosted and supported by the Trottier Institute for Sustainability in Engineering and Design, McGill University. N.T. and J.R.D. acknowledge support from the Canada Research Chairs program. J.P.G., J.A.P. and J.C.W. acknowledge support from the National Science Foundation under the Center for Sustainable Nanotechnology (CHE-1503408). T.H. and J.A.P. acknowledge support from the TISED Scholar-In-Residence program. J.P.G. and G.V.L. acknowledge support from the National Science Foundation (CBET-1911820). J.M.U. acknowledges support from the National Science Foundation (CBET-1712323). K.J.W. acknowledges the Natural Sciences and Engineering Research Council and Environment and Climate Change Canada. D.B. acknowledges support from the Canadian Generic Pharmaceutical Association and Biosimilars, Canada. We acknowledge the input from S. R. Leslie and M. Kurylowicz during the workshop, and A. Kundu in preparing the reference list.

Author information




T.H., G.V.L., S.G. and N.T. planned and organized the workshop. All authors, except J.P.G., L.M.G. and J.M.U. participated in the workshop. T.H. and G.V.L. conceived of and led the manuscript writing and editing. The sections of this manuscript are based on the written input from all authors, which were the basis of the final manuscript. All authors carefully revised the manuscript and approved the submission.

Corresponding authors

Correspondence to Thilo Hofmann or Gregory Victor Lowry.

Ethics declarations

Competing interests

W.L. is an employee of Vive Crop Protection Inc., a company that produces products for agricultural markets. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hofmann, T., Lowry, G.V., Ghoshal, S. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat Food 1, 416–425 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing