Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crop biotechnology and the future of food

Abstract

The global population continues to rise, as does the likelihood of reduced yields of major food crops due to the changing climate, thus making the development of genetically improved, stress-resilient crops a research priority. The convergence of low-cost genome sequencing with improved computational power and high-throughput molecular phenotyping technologies has accelerated the identification of genes underlying important agronomic traits relevant to food production and quality. Here, we discuss the evolution of plant improvement, and how researchers leverage genomic analyses and revolutionary new plant breeding technologies like site-directed nucleases to enhance food crop traits through agricultural biotechnology. Deployment of these products from the laboratory to the field remains hindered by biological and regulatory bottlenecks that require further development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of genetically altered agricultural species.
Fig. 2: Omics data can be used to inform marker-assisted breeding, genomic selection and site-directed nuclease targets.

Scott Camazine / Alamy Stock Photo (protein structure)

Fig. 3: Classification of possible products produced via site-directed nuclease technology.

References

  1. Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    ADS  CAS  PubMed  Google Scholar 

  2. Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).

    CAS  PubMed  Google Scholar 

  3. Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).

    Google Scholar 

  4. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  Google Scholar 

  5. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    ADS  PubMed  Google Scholar 

  6. Tietjen, B. et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob. Chang. Biol. 23, 2743–2754 (2017).

    ADS  PubMed  Google Scholar 

  7. Hirabayashi, Y. et al. Global flood risk underclimate change. Nat. Clim. Chang. 3, 816–821 (2013).

    ADS  Google Scholar 

  8. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS  CAS  PubMed  Google Scholar 

  9. Zhao, C. et al. Plausible rice yield losses under future climate warming. Nat. Plants 3, 16202 (2017).

    Google Scholar 

  10. Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 3, 985–988 (2013).

    ADS  Google Scholar 

  12. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    CAS  PubMed  Google Scholar 

  13. Olsen, K. M. & Wendel, J. F. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64, 47–70 (2013).

    CAS  PubMed  Google Scholar 

  14. Hufford, M. B., Berny Mier y Teran, J. C. & Gepts, P. Crop biodiversity: an unfinished magnum opus of nature. Annu. Rev. Plant Biol. 70, 727–751 (2019).

    CAS  PubMed  Google Scholar 

  15. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shang, Y. et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346, 1084–1088 (2014).

    ADS  CAS  PubMed  Google Scholar 

  17. Casañas, F., Simó, J., Casals, J. & Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 8, 145 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Varshney, R. K. et al. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30, 1172–1176 (2012).

    CAS  PubMed  Google Scholar 

  19. Gaut, B. S., Díez, C. M. & Morrell, P. L. Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet. 31, 709–719 (2015).

    CAS  PubMed  Google Scholar 

  20. Moyers, B. T., Morrell, P. L. & McKay, J. K. Genetic costs of domestication and improvement. J. Hered. 109, 103–116 (2018).

    PubMed  Google Scholar 

  21. Oladosu, Y. et al. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip. 30, 1–16 (2016).

    CAS  Google Scholar 

  22. Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    ADS  CAS  PubMed  Google Scholar 

  23. Rattanpal, H. S., Singh, G. & Gupta, M. Studies on mutation breeding in mandarin variety Kinnow. Curr. Sci. 116, 483–487 (2019).

    Google Scholar 

  24. Dwivedi, S. L. et al. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 21, 31–42 (2016).

    CAS  PubMed  Google Scholar 

  25. Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251 (2015).

    CAS  PubMed  Google Scholar 

  26. Xu, K. & Mackill, D. J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 2, 219–224 (1996).

    CAS  Google Scholar 

  27. Xu, K., Xu, X., Ronald, P. C. & Mackill, D. J. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol. Gen. Genet. 263, 681–689 (2000).

    CAS  PubMed  Google Scholar 

  28. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006).

    ADS  CAS  PubMed  Google Scholar 

  29. Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H. & Mackill, D. J. The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crop. Res. 152, 83–93 (2013).

    Google Scholar 

  30. Emerick, K. & Ronald, P. C. Sub1 rice: engineering rice for climate change. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a034637 (2019).

  31. Li, Z. et al. The 3,000 rice genomes project. Gigascience 3, 7 (2014).

    Google Scholar 

  32. Hendre, P. S. et al. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Planta 250, 989–1003 (2019).

    CAS  PubMed  Google Scholar 

  33. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).

    CAS  PubMed  Google Scholar 

  35. Jouanin, A. et al. Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. J. Cereal Sci. 88, 157–166 (2019).

    CAS  Google Scholar 

  36. Tardieu, F., Cabrera-Bosquet, L., Pridmore, T. & Bennett, M. Plant phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783 (2017).

    CAS  PubMed  Google Scholar 

  37. Lee, T. et al. AraNet v2: An improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 43, D996–D1002 (2015).

    CAS  PubMed  Google Scholar 

  38. Brooks, M. D. et al. Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat. Commun. 10, 1569 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. Lee, I. et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc. Natl Acad. Sci. USA 108, 18548–18553 (2011).

    ADS  CAS  PubMed  Google Scholar 

  40. Friso, G. & Van Wijk, K. J. Posttranslational protein modifications in plant metabolism. Plant Physiol. 169, 1469–1487 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McWhite, C. D. et al. A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181, 460–474 (2020).

    CAS  PubMed  Google Scholar 

  42. Huang, X. & Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531–551 (2014).

    CAS  PubMed  Google Scholar 

  43. Zhu, G., Gou, J., Klee, H. & Huang, S. Next-gen approaches to flavor-related metabolism. Annu. Rev. Plant Biol. 70, 187–212 (2019).

    CAS  PubMed  Google Scholar 

  44. Powell, A. L. T. et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336, 1711–1715 (2012).

    ADS  CAS  PubMed  Google Scholar 

  45. Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261.e12 (2018).

    CAS  PubMed  Google Scholar 

  46. Bauchet, G. et al. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytol. 215, 624–641 (2017).

    CAS  PubMed  Google Scholar 

  47. Sauvage, C. et al. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 165, 1120–1132 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, J. et al. Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front. Plant Sci. 6, 1042 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355, 391–394 (2017).

    ADS  CAS  PubMed  Google Scholar 

  50. Zhao, J. et al. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat. Commun. 10, 1534 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Crossa, J. et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961–975 (2017).

    CAS  PubMed  Google Scholar 

  52. Singh, A., Ganapathysubramanian, B., Singh, A. K. & Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21, 110–124 (2016).

    CAS  PubMed  Google Scholar 

  53. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    PubMed  Google Scholar 

  54. Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14 (2005).

    CAS  PubMed  Google Scholar 

  55. Huang, T.-K. & Puchta, H. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep. 38, 443–453 (2019).

    CAS  PubMed  Google Scholar 

  56. Hayut, S. F., Bessudo, C. M. & Levy, A. A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat. Commun. 8, 15605 (2017).

    ADS  Google Scholar 

  57. Swinnen, G., Goossens, A. & Pauwels, L. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. 21, 506–515 (2016).

    CAS  PubMed  Google Scholar 

  58. Modrzejewski, D. et al. What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ. Evid. 8, 27 (2019).

    Google Scholar 

  59. Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    CAS  PubMed  Google Scholar 

  60. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480.e8 (2017).

    PubMed  Google Scholar 

  61. Weeks, D. P. Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. Prog. Mol. Biol. Transl. Sci. 149, 65–80 (2017).

    CAS  PubMed  Google Scholar 

  62. Dederer, H.-G. & Hamburger, D. (eds) Regulation of Genome Editing in Plant Biotechnology. Regulation of Genome Editing in Plant Biotechnology (Springer, 2019).

  63. Breitler, J.-C. et al. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tiss. Org. Cult. 134, 383–394 (2018).

    CAS  Google Scholar 

  64. Trevaskis, B. Developmental pathways are blueprints for designing successful crops. Front. Plant Sci. 9, 745 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Yang, Y. et al. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol. J. 16, 1322–1335 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng, M. et al. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18, 644–654 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Zhou, J. et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep. 38, 475–485 (2019).

    CAS  PubMed  Google Scholar 

  68. Huang, L. et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop J. 6, 475–481 (2018).

    Google Scholar 

  69. Li, M. et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377 (2016).

    Google Scholar 

  70. Miao, C. et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc. Natl Acad. Sci. USA 115, 6058–6063 (2018).

    CAS  PubMed  Google Scholar 

  71. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    PubMed  Google Scholar 

  72. Pavan, S., Jacobsen, E., Visser, R. G. F. & Bai, Y. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25, 1–12 (2010).

    PubMed  Google Scholar 

  73. van Schie, C. C. N. & Takken, F. L. W. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52, 551–581 (2014).

    PubMed  Google Scholar 

  74. Nekrasov, V. et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7, 482 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    CAS  PubMed  Google Scholar 

  76. Fister, A. S., Landherr, L., Maximova, S. N. & Guiltinan, M. J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front. Plant Sci. 9, 268 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).

    CAS  PubMed  Google Scholar 

  78. Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Peng, A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chandrasekaran, J. et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140–1153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gomez, M. A. et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol. J. 17, 421–434 (2019).

    CAS  PubMed  Google Scholar 

  82. Breiteneder, H. & Radauer, C. A classification of plant food allergens. J. Allergy Clin. Immunol. 113, 821–830 (2004).

    CAS  PubMed  Google Scholar 

  83. Juhász, A. et al. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci. Adv. 4, eaar8602 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  84. Sánchez-León, S. et al. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910 (2018).

    PubMed  Google Scholar 

  85. García-Molina, M., Giménez, M., Sánchez-León, S. & Barro, F. Gluten free wheat: are we there? Nutrients 11, 487 (2019).

    PubMed Central  Google Scholar 

  86. Dubois, A. E. J. et al. First successful reduction of clinical allergenicity of food by genetic modification: Mal d 1-silenced apples cause fewer allergy symptoms than the wild-type cultivar. Allergy Eur. J. Allergy Clin. Immunol. 70, 1406–1412 (2015).

    CAS  Google Scholar 

  87. Dodo, H. W., Konan, K. N., Chen, F. C., Egnin, M. & Viquez, O. M. Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol. J. 6, 135–145 (2008).

    CAS  PubMed  Google Scholar 

  88. Wakasa, Y., Hirano, K., Urisu, A., Matsuda, T. & Takaiwa, F. Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol. 52, 2190–2199 (2011).

    CAS  PubMed  Google Scholar 

  89. Herman, E. M., Helm, R. M., Jung, R. & Kinney, A. J. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132, 36–43 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, X. et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 9, 559 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Li, R. et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol. J. 16, 415–427 (2018).

    CAS  PubMed  Google Scholar 

  92. Nonaka, S., Arai, C., Takayama, M., Matsukura, C. & Ezura, H. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 7, 7057 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    CAS  PubMed  Google Scholar 

  94. Li, A. et al. Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiol. 177, 1425–1438 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Haun, W. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12, 934–940 (2014).

    CAS  PubMed  Google Scholar 

  96. Morineau, C. et al. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol. J. 15, 729–739 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Alexander, P. et al. Losses, inefficiencies and waste in the global food system. Agric. Syst. 153, 190–200 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Bachem, C. W. B. et al. Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Nat. Biotechnol. 12, 1101–1105 (1994).

    CAS  Google Scholar 

  99. Waltz, E. Nonbrowning GM apple cleared for market. Nature Biotechnology Blog http://blogs.nature.com/tradesecrets/2015/03/30/nonbrowning-gm-apple-cleared-for-market (2015).

  100. Waltz, E. Gene-edited CRISPR mushroom escapes US regulation. Nature 532, 293 (2016).

    ADS  CAS  PubMed  Google Scholar 

  101. Re: Confirmation that PPO _ KO Potato is not a Regulated Article (United States Department of Agriculture, 2016); https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/16-090-01_air_response_signed.pdf

  102. Re: Confirmation of the Regulatory Status of Genome edited Lactuca sativa (Lettuce) (United States Department of Agriculture, 2019); https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/18-243-01_air_response_signed.pdf

  103. Non-browning lettuce is making its way to the market. AG Daily https://www.agdaily.com/news/non-browning-lettuce-market/ (3 June 2019).

  104. Bruening, G. & Lyons, J. M. The case of the FLAVR SAVR tomato. Calif. Agric. 54, 6–7 (2000).

    Google Scholar 

  105. Wang, D. et al. Characterisation of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. 179, 544–557 (2019).

    CAS  PubMed  Google Scholar 

  106. Yang, L. et al. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol. J. 15, 1544–1555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Uluisik, S. et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34, 950–952 (2016).

    CAS  PubMed  Google Scholar 

  108. Mieulet, D. et al. Turning rice meiosis into mitosis. Cell Res. 26, 1242–1254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37, 283–286 (2019).

    CAS  PubMed  Google Scholar 

  110. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    ADS  CAS  PubMed  Google Scholar 

  111. Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).

    PubMed  Google Scholar 

  112. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    CAS  Google Scholar 

  113. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Google Scholar 

  114. Chopra, R. et al. Identification and stacking of crucial traits required for the domestication of pennycress. Nat. Food 1, 84–91 (2020).

    Google Scholar 

  115. Ribaut, J.-M. & Ragot, M. Modernising breeding for orphan crops: tools, methodologies, and beyond. Planta 250, 971–977 (2019).

    CAS  PubMed  Google Scholar 

  116. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    CAS  PubMed  Google Scholar 

  117. Kwon, C., Heo, J., Lemmon, Z. H., Capua, Y. & Hutton, S. F. Rapid adaptation of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38, 182–188 (2020).

    CAS  PubMed  Google Scholar 

  118. Bull, S. E. et al. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Sci. Adv. 4, eaat6086 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jørgensen, K. et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363–374 (2005).

    PubMed  PubMed Central  Google Scholar 

  120. Tadele, Z. Orphan crops: their importance and the urgency of improvement. Planta 250, 677–694 (2019).

    CAS  PubMed  Google Scholar 

  121. Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

    CAS  PubMed  Google Scholar 

  122. Sunilkumar, G., Campbell, L. A. M., Puckhaber, L., Stipanovic, R. D. & Rathore, K. S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl Acad. Sci. USA 103, 18054–18059 (2006).

    ADS  CAS  PubMed  Google Scholar 

  123. Bradford, K. J., Van Deynze, A., Gutterson, N., Parrott, W. & Strauss, S. H. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat. Biotechnol. 23, 439–444 (2005).

    CAS  PubMed  Google Scholar 

  124. Napier, J. A., Haslam, R. P., Tsalavouta, M. & Sayanova, O. The challenges of delivering genetically modified crops with nutritional enhancement traits. Nat. Plants 5, 563–567 (2019).

    PubMed  Google Scholar 

  125. Brief 54: Global Status of Commercialized Biotech/GM Crops in 2018 (ISAAA, 2018).

  126. GM Approval Database (ISAAA, accessed 1 October 2019); http://www.isaaa.org/gmapprovaldatabase/

  127. Klümper, W. & Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS One 9, e111629 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  128. Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl Acad. Sci. USA 115, 3320–3325 (2018).

    CAS  PubMed  Google Scholar 

  129. Kouser, S. & Qaim, M. Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol. Econ. 70, 2105–2113 (2011).

    Google Scholar 

  130. Wu, F. Mycotoxin reduction in Bt corn: Potential economic, health, and regulatory impacts. Transgenic Res. 15, 277–289 (2006).

    PubMed  Google Scholar 

  131. Shelton, A. M. et al. Bt brinjal in Bangladesh: the first genetically engineered food crop in a developing country. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a034678 (2019).

  132. Kawashima, C. G. et al. A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat. Biotechnol. 34, 661–665 (2016).

    CAS  PubMed  Google Scholar 

  133. La Concepcion, J. D., Franceschetti, M., Terauchi, R., Kamoun, S. & Banfield, M. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8, e47713 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Wurtzel, E. T. et al. Revolutionizing agriculture with synthetic biology. Nat. Plants 5, 1207–1210 (2019).

    PubMed  Google Scholar 

  135. South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9077 (2019).

    CAS  PubMed  Google Scholar 

  136. Dalal, J. et al. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol. Biofuels 8, 175 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Manna, M., Achary, V. M. M., Islam, T., Agrawal, P. K. & Reddy, M. K. The development of a phosphite-mediated fertilization and weed control system for rice. Sci. Rep. 6, 24942 (2016).

    ADS  Google Scholar 

  138. Pandeya, D. et al. Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proc. Natl Acad. Sci. USA 115, E6946–E6955 (2018).

    CAS  PubMed  Google Scholar 

  139. Mus, F. et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 82, 3698–3710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ye, X. & Beyer, P. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).

    ADS  CAS  PubMed  Google Scholar 

  141. Paine, J. A. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487 (2005).

    CAS  PubMed  Google Scholar 

  142. Paul, J.-Y. et al. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol. J. 15, 520–532 (2017).

    CAS  PubMed  Google Scholar 

  143. Zhu, Q. et al. From Golden Rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol. Plant 11, 1440–1448 (2018).

    CAS  PubMed  Google Scholar 

  144. Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ainley, W. M. et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 11, 1126–1134 (2013).

    CAS  PubMed  Google Scholar 

  146. Sun, Y., Li, J. & Xia, L. Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front. Plant Sci. 7, 1928 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Qi, Y. et al. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 23, 547–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas, D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151–63 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dahan-Meir, T. et al. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J. 95, 5–16 (2018).

    CAS  PubMed  Google Scholar 

  150. Gil-Humanes, J. et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251–1262 (2017).

    CAS  PubMed  Google Scholar 

  151. Altpeter, F. et al. Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Camacho, A., Van Deynze, A., Chi-Ham, C. & Bennett, A. B. Genetically engineered crops that fly under the US regulatory radar. Nat. Biotechnol. 32, 1087–1091 (2014).

    CAS  PubMed  Google Scholar 

  153. McHughen, A. & Smyth, S. US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol. J. 6, 2–12 (2008).

    PubMed  Google Scholar 

  154. Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Jupe, F. et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 15, e1007819 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lowe, K. et al. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant 54, 240–252 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2019).

    PubMed  Google Scholar 

  160. Larkin, P. J. & Scowcroft, W. R. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60, 197–214 (1981).

    CAS  PubMed  Google Scholar 

  161. Tang, X. et al. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Li, J. et al. Whole genome sequencing reveals rare off‐target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR /Cas9‐edited cotton plants. Plant Biotechnol. J. 17, 858–868 (2019).

    CAS  PubMed  Google Scholar 

  163. Fossi, M., Amundson, K., Kuppu, S., Britt, A. & Comai, L. Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol. 180, 78–86 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Han, Z. et al. Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics 209, 983–995 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, K. & Seo, P. J. Dynamic epigenetic changes during plant regeneration. Trends Plant Sci. 23, 235–247 (2018).

    CAS  PubMed  Google Scholar 

  166. Stroud, H. et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2, e00354 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Wibowo, A. et al. Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc. Natl Acad. Sci. USA 115, E9145–E9152 (2018).

    ADS  CAS  PubMed  Google Scholar 

  168. Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36, 882–897 (2018).

    CAS  PubMed  Google Scholar 

  169. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    ADS  CAS  PubMed  Google Scholar 

  170. Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    ADS  CAS  PubMed  Google Scholar 

  171. Zhao, X. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 3, 956–964 (2017).

    CAS  PubMed  Google Scholar 

  172. Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).

    CAS  PubMed  Google Scholar 

  173. Wang, B. et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol. Plant 12, 597–602 (2019).

    PubMed  Google Scholar 

  174. Miller, J. K. & Bradford, K. J. The regulatory bottleneck for biotech specialty crops. Nat. Biotechnol. 28, 1012–1014 (2010).

    CAS  PubMed  Google Scholar 

  175. National Organic Standards Board Materials/GMO Subcommittee Proposal Excluded Methods Determinations (2019); https://www.ams.usda.gov/sites/default/files/media/MSExcludedMethodsProposaFall2019.pdf

  176. National Organic Program Policy Memorandum 13 (USDA, 2013); https://www.ams.usda.gov/sites/default/files/media/NOP-PM-13-1-CellFusion.pdf

  177. Ishii, T. & Araki, M. Consumer acceptance of food crops developed by genome editing. Plant Cell Rep. 35, 1507–1518 (2016).

    CAS  PubMed  Google Scholar 

  178. Urnov, F. D., Ronald, P. C. & Carroll, D. A call for science-based review of the European court’s decision on gene-edited crops. Nat. Biotechnol. 36, 800–802 (2018).

    CAS  PubMed  Google Scholar 

  179. Faure, J. D. & Napier, J. A. Europe’s first and last field trial of gene-edited plants? eLife 7, e42379 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Secretary Perdue Issues USDA Statement on Plant Breeding Innovation USDA Press Release https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation (2018).

  181. Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 36, 6–7 (2018).

    CAS  PubMed  Google Scholar 

  182. Gheysen, G., Custers, R., Gheysen, G. & Custers, R. Why organic farming should embrace co-existence with cisgenic late blight–resistant potato. Sustainability 9, 172 (2017).

    Google Scholar 

  183. Husaini, A. M. & Sohail, M. Time to redefine organic agriculture: can’t GM crops be certified as organics? Front. Plant Sci. 9, 423 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Andersen, M. M. et al. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 20, 426–434 (2015).

    CAS  PubMed  Google Scholar 

  185. Scheufele, D. A. & Krause, N. M. Science audiences, misinformation, and fake news. Proc. Natl Acad. Sci. USA 116, 7662–7669 (2019).

    CAS  PubMed  Google Scholar 

  186. Hilscher, J., Bürstmayr, H. & Stoger, E. Targeted modification of plant genomes for precision crop breeding. Biotechnol. J. 12, 1600173 (2017).

    Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose research could not be cited due to space limits. We thank H. Bartram for a careful reading of the manuscript. M.A.S. was supported by the Corteva Agriscience Open Innovation programme grant entitled “Gene Editing for Organic Agriculture.” P.C.R. was supported by grants from the US National Science Foundation (award no. 1237975), the Crary Social Ecology Fund, the Foundation for Food and Agricultural Research (award no. 534683) and the National Institutes of Health (GM122968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela C. Ronald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinwand, M.A., Ronald, P.C. Crop biotechnology and the future of food. Nat Food 1, 273–283 (2020). https://doi.org/10.1038/s43016-020-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0072-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing