Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human exposure to polychlorinated biphenyls embodied in global fish trade

Abstract

International food trade poses food safety risks through the collateral transport of contaminants that are harmful to human health. Persistent organic pollutants, such as the polychlorinated biphenyl (PCB) congener PCB-153, are consumed via fish intake traded globally, but the estimated daily intake and risk to human health are poorly understood. Using a food trade pathway model, a global-scale atmospheric persistent organic pollutant transport model and UN Global Comtrade data, high PCB exposure was identified in Western Europe. Marine fish exported from Europe to Sub-Saharan African countries account for 84% of PCB-153 consumer exposure. In contrast, European fish consumers face reduced exposure to PCB-153 by consuming marine fish imported from countries where PCB-153 concentrations are low. People consuming aquaculture-farmed salmon fed with marine ingredients from PCB-153-contaminated seawaters face a higher PCB exposure. Our findings demonstrate that global fish trade can exacerbate PCB-153 exposure in regions where environmental PCB-153 levels are low. This approach demonstrates how the exposure to harmful food contaminants distributed through global food trade can be predicted and quantified.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: EDI of PCB-153 in marine fish species for an adult fish consumer and fractional contribution of PCB-153 to EDI in traded fish in 2012.
Fig. 2: PCB-153 EDI and fractional contribution of PCB-153 to EDI via fish consumption in 2012.
Fig. 3: Transfer of PCB-153 EDI via global fish trade among 14 global regions in 2012.
Fig. 4: PCB-153 EDI arising from international fish trade between 14 global regions in 2012.
Fig. 5: Fold change in PCB-153 EDI from traded fish consumption during global decline in PCB emission.
Fig. 6: PCB-153 EDI from farmed salmon consumption and international Atlantic salmon trade in 2012.

Data availability

Gridded fish catch data are available at the Sea Around Us (http://www.seaaroundus.org). Global fish trade data are available at UN Comtrade (https://comtrade.un.org). The authors declare that the other data supporting the findings of this study are available within the paper and its Supplementary Information.

Code availability

All datasets and model code generated and/or analysed that support the findings of this study are available from the corresponding author upon request, or on the website of one of our laboratories (http://kleppc.lzu.edu.cn/).

References

  1. 1.

    Rostami, I. & Juhasz, A. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Crit. Rev. Environ. Sci. Technol. 41, 623–656 (2011).

    Article  Google Scholar 

  2. 2.

    Batt, A. L., Wathen, J. B., Lazorchak, J. M., Olsen, A. R. & Kincaid, T. M. Statistical survey of persistent organic pollutants: risk estimations to humans and wildlife through consumption of fish from US rivers. Environ. Sci. Technol. 51, 3021–3031 (2017).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Batool, S. et al. Geographical distribution of persistent organic pollutants in the environment: a review. J. Environ. Biol. 37, 1125–1134 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    AMAP Assessment 2018: Biological Effects of Contaminants on Arctic Wildlife and Fish (Arctic Monitoring and Assessment Programme, 2018).

  5. 5.

    Guo, W. et al. Persistent organic pollutants in food: contamination sources, health effects and detection methods. Int. J. Environ. Res. Public Health 16, 4316 (2019).

    Article  Google Scholar 

  6. 6.

    Gascón, M. et al. Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ. Int. 52, 51–65 (2013).

    Article  Google Scholar 

  7. 7.

    Ng, C. A. & von Goetz, N. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ. Health Persp. 125, 1–7 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Breivik, K., Czub, G., McLachlan, M. S. & Wania, F. Towards an understanding of the link between environmental emissions and human body burdens of PCBs using CoZMoMAN. Environ. Int. 36, 85–91 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Undeman, E., Brown, T. N., McLachlan, M. S. & Wania, F. Who in the world is most exposed to polychlorinated biphenyls? Using models to identify highly exposed populations. Environ. Res. Lett. 13, 064036 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Faroon, O. & Ruiz, P. Polychlorinated biphenyls: new evidence from the last decade. Toxicol. Ind. Health 32, 1825–1847 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Mackay, D., Shiu, W. Y., Ma, K. C. & Lee, S. C. Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals (CRC, 2006).

  12. 12.

    Sethajintanin, D., Johnson, E. R., Loper, B. R. & Anderson, K. A. Bioaccumulation profiles of chemical contamination in fish from the Lower Willamette River, Portland Harbour, Oregon. Environ. Contam. Toxicol. 46, 114–123 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Breivik, K., Sweetman, A., Pacyna, J. M. K. & Jones, C. Towards a global historical emission inventory for selected PCB congeners — a mass balance approach. 1. Global production and consumption. Sci. Total Environ. 290, 181–198 (2002).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Breivik, K., Sweetman, A., Pacyna, J. M. K. & Jones, C. Towards a global historical emission inventory for selected PCB congeners — a mass balance approach. 3. An update. Sci. Total Environ. 377, 296–307 (2007).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Breivik, K., Armitage, J. M., Wania, F., Sweetman, A. & Jones, K. C. Tracking the global distribution of persistent organic pollutants accounting for E-waste exports to developing regions. Environ. Sci. Technol. 50, 798–805 (2016).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Undeman, E., Brown, T. N., Wania, F. & McLachlan, M. S. Susceptibility of human populations to environmental exposure to organic contaminants. Environ. Sci. Technol. 44, 6249–6255 (2010).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Kong, D., MacLeod, M., Hung, H. & Cousins, I. T. Statistical analysis of long-term monitoring data for persistent organic pollutants in the atmosphere at 20 monitoring stations broadly indicates declining concentrations. Environ. Sci. Technol. 48, 12492–12499 (2014).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    The State of World Fisheries and Aquaculture 2018 (FAO, 2018); http://www.fao.org/3/I9540EN/i9540en.pdf

  19. 19.

    Hites, R. A. et al. Global assessment of organic contaminants in farmed salmon. Science 303, 226–229 (2004).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Asche, F., Roll, K. H., Sandold, H. N., Dengjun, A. S. & Zhang, D. Salmon aquaculture: large companies and increased production. Aquac. Econ. Manag. 17, 322–339 (2013).

    Article  Google Scholar 

  21. 21.

    Salmon Farming Industry Handbook 2018 (Marine Harvest ASA, 2018); http://hugin.info/209/R/2200061/853178.pdf

  22. 22.

    Responsible Sourcing Guide: Farmed Atlantic Salmon (Seafish, 2015); https://www.seafish.org/media/1403303/_2_atlantic_salmon_rsg_-_cocker_04-15kg.pdf

  23. 23.

    Globefish Highlights 2014 (FAO, 2015); http://www.fao.org/3/a-bc008e.pdf

  24. 24.

    Knapp, G., Roheim, C. A. & Anderson, J. L. The Great Salmon Run: Competition Between Wild and Farmed Salmon (TRAFFIC North America, 2007); https://www.traffic.org/site/assets/files/3637/great-salmon-run.pdf

  25. 25.

    Carlson, D. L. & Hites, R. A. Polychlorinated biphenyls in salmon and salmon feed: global differences and bioaccumulation. Environ. Sci. Technol. 39, 7389–7395 (2005).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Bell, J. G. et al. Complete replacement of fish oil with a blend of vegetable oils affects dioxin, dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 3 Atlantic salmon (Salmo salar) families differing in flesh adiposity. Aquaculture 324–325, 118–126 (2012).

    Article  Google Scholar 

  27. 27.

    Berntssen, M. H. G., Lundebye, A. & Torstensen, B. E. Reducing the levels of dioxins and dioxin-like PCBs in farmed Atlantic salmon by substitution of fish oil with vegetable oil in the feed. Aquac. Nutr. 11, 219–231 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Buzby, J. C. International Trade and Food Safety: Economic Theory and Case Studies (USDA, 2003); https://arefiles.ucdavis.edu//uploads/filer_public/2014/05/19/lcfoodsafettrade03.pdf

  29. 29.

    Pesticide Residues in Food – Fact Sheet (WHO, 2018); http://www.who.int/mediacentre/factsheets/pesticide-residues-food/en

  30. 30.

    Workshop on Pesticide Maximum Residue Levels (MRLS): Recommendation for Endorsement by SPS Committee (WTO, 2017); https://docs.wto.org/dol2fe/Pages/SS/directdoc.aspx?filename=q:/G/SPS/W292R2.pdf

  31. 31.

    Montory, M. & Barra, R. Preliminary data on polybrominated diphenyl ethers (PBDEs) in farmed fish tissues (Salmo salar) and fish feed in Southern Chile. Chemosphere 63, 1252–1260 (2006).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    NRC Exposure Science in the 21st Century: A Vision and a Strategy (National Academies Press, 2012).

  33. 33.

    Ma, J., Daggupaty, S., Harner, T. & Li, Y. Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 1. Coupled atmospheric transport model and modeled concentrations in air and soil. Environ. Sci. Technol. 37, 3774–3781 (2003).

    ADS  CAS  Article  Google Scholar 

  34. 34.

    Zhang, L., Ma, J., Venkatesh, S., Li, Y. & Cheung, P. Modeling evidence of episodic intercontinental long-range Mackay transport of lindane. Environ. Sci. Technol. 42, 8791–8797 (2008).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Ma, J., Daggupaty, S. M., Harner, T., Pierrette, P. & Waite, D. Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 2. Modeled dry, wet depositions and net gas exchange fluxes, and loadings to the Great Lakes. Environ. Sci. Technol. 38, 984–990 (2004).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Wallberg, P. & Andersson, A. Transfer of carbon and a polychlorinated biphenyl through the pelagic microbial food web in a coastal ecosystem. Environ. Toxicol. Chem. 19, 827–835 (2000).

    CAS  Article  Google Scholar 

  37. 37.

    Mackay, D. Multimedia Environmental Models: The Fugacity Approach 2nd edn (CRC, 2001).

  38. 38.

    Vermeulen, N. P. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57–149 (2003).

    Article  Google Scholar 

  39. 39.

    Taffi, M., Paoletti, N., Liò, P., Pucciarelli, S. & Marini, M. Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: the case study of PCBs in the Adriatic Sea. Ecol. Model. 306, 205–215 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Gobas, F. A. P. C. J. & Arnot, A. Food web bioaccumulation model for polychlorinated biphenyls in San Francisco Bay, California, USA. Environ. Toxicol. Chem. 29, 1385–1395 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Tolosa, I. et al. PCBs in the western Mediterranean. Temporal trends and mass balance assessment. Deep-Sea Res. II 44, 907–928 (1997).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Boesch, D. F. et al. Marine Pollution in the United States (Pew Oceans Commission, 2001).

  43. 43.

    Preston, M. R. The interchange of pollutants between the atmosphere and oceans. Mar. Pollut. Bull. 24, 477–483 (1992).

    CAS  Article  Google Scholar 

  44. 44.

    Melymuk, L. et al. From the city to the lake: loadings of PCBs, PBDEs, PAHs and PCMs from Toronto to Lake Ontario. Environ. Sci. Technol. 48, 3732–3741 (2014).

    ADS  CAS  Article  Google Scholar 

  45. 45.

    Huang, T. et al. Trend of cancer risk of Chinese inhabitants to dioxins due to changes in dietary patterns: 1980–2009. Sci. Rep. 6, 21997 (2016).

    ADS  CAS  Article  Google Scholar 

  46. 46.

    Breivik, K., Sweetman, A., Pacyna, J. M. & Jones, K. C. Towards a global historical emission inventory for selected PCB congeners — a mass balance approach 2. Emission. Sci. Total Environ. 290, 199–224 (2002).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Wöhrnschimmel, H., Macleod, M. & Hungerbuhler, K. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. Environ. Sci. Technol. 47, 2323–2330 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Devine, B. J. Gentamicin therapy. Drug Intell. Clin. Pharmacol. 8, 650–655 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Wania for his detailed and constructive internal review, D. Carpenter for useful discussions, G. Tsui for providing gridded production data for various marine fish by country from the Sea Around Us, and H. Hung and H. Dryfhout-Clark for providing Integrated Atmospheric Deposition Network and Arctic sampling data. We also acknowledge the free use of global historical PCB emission data from the Norwegian Institute for Air Research and many research institutions contributing sampling data to the OSPAR Commission where we collected sampled data for model evaluation. This work was supported by the National Key R&D Program of China (2017YFC0212002), and the National Natural Science Foundation of China (grants 4187750, U1806207 and 41671460).

Author information

Affiliations

Authors

Contributions

J.M. and T.H. designed the study. T.H. performed model simulations. T.H. and W.J. coded the marine food-web model. Z.L., S.S. and W.J. collected the data used in the food-web model. T.H., S.S., Z.L., Y.Z., L.Z., C.G. and X.M. collected the global marine trade data. T.H., S.S., L.C. and K.C. collected the measured data to validate the model. T.H., J.M. and R.W.M. analysed the data, interpreted the results and drafted the manuscript. T.H., J.M., H.G., C.T., S.T. and Z.X. participated in the acquisition, analysis and interpretation of data.

Corresponding author

Correspondence to Jianmin Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Modeled concentrations (for 2012) of PCB-153.

a, Atmospheric gas (pg m−3), b, atmospheric particle phase (pg m−3), c, water (ng L−1), and d, sediment (ng g−1 ww).

Extended Data Fig. 2 Modeled PCB-153 concentrations in marine fish (ng g−1 ww) for various categories.

a, Total fish, b, anchovies, c, herring-likes, d, cod-likes, e, flatfish, f, salmon, g, tuna & billfish, and h, other fishes.

Extended Data Fig. 3 The map of 14 regions regrouped from countries involved in the global fish trade.

The map provides a key to the color scheme.

Extended Data Fig. 4 Global production (tonnes/cell) for selected marine fish at a 1° longitude by 1° latitude resolution in 2012.

a, Total fish. b, Anchovies. c, Herring-like fish. d, Cod-like fish. e, Flatfish. f, Salmon. g, Tuna and billfish. h, Other fishes.

Extended Data Fig. 5 Exports of various marine fish categories (1000 tonnes) through global trade in 2012.

The color shading in each region indicates the total export of marine fish. The width of the arrows represents the relative marine fish exports ≥ 1000 tonnes for anchovies (b), ≥ 10,000 tons for herring-like (c), cod-like (d), flatfish (e), salmon (f), and tuna & billfish (g), and ≥ 100,000 tons for total fishes (a) and other fishes (h) in 2012.

Extended Data Fig. 6 Difference of EDI between Trade and NO-Trade model runs.

The difference is estimated by EDIDF = EDIT-EDINT, referred to as Trade and NO-Trade simulated EDI, which is equivalent to the intake due to consumption of fish acquired through global trade.

Extended Data Fig. 7 Interregional EDI transfers embodied in the global marine fish trade illustrated as a Circos type graph.

Numbers in brackets indicate EDIs of PCB-153 in each region (Extended Data Fig. 3). The width of each band represents the magnitude of EDI and the band color represents the net inflow of EDI. The colors of outer circular rings correspond to the regions marked.

Extended Data Fig. 8 Percent change between 2003 and 2012.

a, Marine fish imported and b, marine fish exported for various countries and regions. Percent was calculated as (I2012 – I2003)/I2003×100, where I2012 and I2003 are marine fish imported or exported in 2012 and 2003.

Extended Data Fig. 9 Production (tonnes, bars) and percentage (pie chart) of farmed Atlantic salmon by countries.

Farmed Atlantic salmon production in 2012 from 9 countries (red bars) and their respective contribution to global total farmed salmon production (%, pie chart).

Extended Data Fig. 10 Export of Atlantic salmon from major countries with salmonid aquaculture (tonnes).

a, Norway, b, Chile, c, UK, and d, Canada. The colors in the ring chart represent the percentage of Atlantic salmon produced and exported from these 4 countries to those countries importing Atlantic salmon.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–9 and Notes 1–8.

Reporting Summary

Supplementary Data 1

Species name, lipid content, weight and diet composition represented in the global marine food web.

Supplementary Data 2

Comparisons between modelled and measured PCB-153 concentrations in air, water, sediment and fish.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Ling, Z., Ma, J. et al. Human exposure to polychlorinated biphenyls embodied in global fish trade. Nat Food 1, 292–300 (2020). https://doi.org/10.1038/s43016-020-0066-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing