Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Livestock policy for sustainable development


The production and consumption of livestock products are under examination on environmental, human health and animal welfare grounds. However, a wealth of evidence suggests that the livestock sector has complex interactions with the UN Sustainable Development Goals, with both the problem and solution spaces for livestock interventions varying depending on the context. To circumvent the uncertainty associated with incomplete or conflicting evidence for making policy recommendations, we suggest a sharper focus on local solutions to global targets, as well as due attention to cross-scale feedbacks that occur between them. Our analysis offers a lens that focuses on balancing both the costs and benefits of the livestock sector, and can be used to define better livestock policy that steers the planet towards a more sustainable and food-secure future.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interactions between the livestock sector and the SDGs.
Fig. 2: Hotspots of leverage in the livestock sector.


  1. 1.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  Google Scholar 

  2. 2.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS  CAS  Google Scholar 

  3. 3.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    ADS  CAS  Google Scholar 

  4. 4.

    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    ADS  Google Scholar 

  5. 5.

    Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 6736, 462–512 (2017).

    Google Scholar 

  6. 6.

    Nilsson, M., Griggs, D. & Visback, M. Map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    ADS  Google Scholar 

  7. 7.

    Shepherd, K. D. et al. Development goals should enable decision-making. Nature 523, 152–154 (2015).

    ADS  CAS  Google Scholar 

  8. 8.

    Bowen, K. J. et al. Implementing the “Sustainable Development Goals”: towards addressing three key governance challenges—collective action, trade-offs, and accountability. Curr. Opin. Environ. Sustain. 26–27, 90–96 (2017).

    Google Scholar 

  9. 9.

    Obersteiner, M. et al. Assessing the land resource–food price nexus of the Sustainable Development Goals. Sci. Adv. 2, e1501499 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 992, 987–992 (2018).

    ADS  Google Scholar 

  11. 11.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS  CAS  Google Scholar 

  12. 12.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS  CAS  Google Scholar 

  13. 13.

    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 6736, 447–492 (2019).

    Google Scholar 

  14. 14.

    Pica-Ciamarra, U., Tasciotti, L., Otte, J. & Zezza, A. Livestock Assets, Livestock Income and Rural Households: Cross-Country Evidence from Household Surveys 18 (World Bank, 2011).

  15. 15.

    Frelat, R., Lopez-ridaura, S., Giller, K. E., Herrero, M. & Douxchamps, S. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl Acad. Sci. USA 113, 458–463 (2016).

    ADS  CAS  Google Scholar 

  16. 16.

    Coughenour, M. B. et al. Energy extraction and use in a nomadic pastoral ecosystem. Science 230, 619–625 (1985).

    ADS  CAS  Google Scholar 

  17. 17.

    Cordain, L., Eaton, S., Miller, J. B., Mann, N. & Hill, K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 56, 42–52 (2002).

    Google Scholar 

  18. 18.

    Grace, D. et al. The Influence of Livestock-Derived Foods on Nutrition During the First 1,000 Days of Life Research Report No. 44 (ILRI, 2018).

  19. 19.

    The State of Food and Agriculture: Livestock in Balance (FAO, 2009);

  20. 20.

    Smil, V. Eating meat. Popul. Dev. Rev. 28, 299–639 (2009).

    Google Scholar 

  21. 21.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  Google Scholar 

  22. 22.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS  CAS  Google Scholar 

  23. 23.

    FAOSTAT (FAO, 2020);

  24. 24.

    2000 World Census of Agriculture (FAO, 2013).

  25. 25.

    Megersa, B., Markemann, A., Angassa, A. & Valle Zárate, A. The role of livestock diversification in ensuring household food security under a changing climate in Borana, Ethiopia. Food Secur. 6, 15–28 (2014).

    Google Scholar 

  26. 26.

    Sloat, L. L. et al. The increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    ADS  Google Scholar 

  27. 27.

    Hiernaux, P. & Ayantunde, A. The Fakara: A Semi-arid Agro-ecosystem Under Stress GEF/2711-02-4516 1–95 (ILRI, 2004).

  28. 28.

    The Contribution of Livestock to the Ethiopian Economy (IGAD, 2009).

  29. 29.

    Ashley, S., Holden, S. & Bazeley, P. Livestock in Development (OutHouse, 1999).

  30. 30.

    Alam, J. Impact of smallholder livestock development project in some selected areas of rural Bangladesh. Livest. Res. Rural Dev. 9, 25 (1997).

    Google Scholar 

  31. 31.

    Fraval, S. Food Security in Rural Sub-Saharan Africa. A Household Level Assessment of Crop-Livestock Systems. PhD thesis, Wageningen Univ. (2019).

  32. 32.

    Murphy, S. P. et al. Animal source foods to improve micronutrient nutrition and human function in developing countries: school snacks containing animal source foods improve dietary quality for children in rural Kenya. J. Nutr. 133, 3950S–3956S (2003).

    CAS  Google Scholar 

  33. 33.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    ADS  Google Scholar 

  34. 34.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, 1–19 (2008).

    Google Scholar 

  35. 35.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    ADS  Google Scholar 

  36. 36.

    Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS  Google Scholar 

  37. 37.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS  CAS  Google Scholar 

  38. 38.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS  CAS  Google Scholar 

  39. 39.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323–e1500323 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 201618082 (2017).

    Google Scholar 

  41. 41.

    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

    ADS  CAS  Google Scholar 

  42. 42.

    Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    Google Scholar 

  43. 43.

    Littmann, J., Zorzet, A. & Cars, O. Antimicrobial resistance—a threat to the world’s sustainable development. Upsala J. Med. Sci. 121, 159–164 (2016).

    Google Scholar 

  44. 44.

    Global Burden of Disease Collaborative Network Global Burden of Disease Study 2017 (GBD 2017) (Institute for Health Metrics and Evaluation, 2018).

  45. 45.

    International Livestock Research Institute. Mapping of poverty and likely zoonoses hotspots. Zoonoses Rep. 4, 1–119 (2012).

    Google Scholar 

  46. 46.

    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    ADS  CAS  Google Scholar 

  47. 47.

    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Global Nutrition Targets 2025: Stunting Policy Brief WHO/NMH/NHD/14.3 (WHO, 2014).

  49. 49.

    Brody, H. Poverty reduction through animal health. Nature 543, S41–S41 (2017).

    ADS  CAS  Google Scholar 

  50. 50.

    Awokuse, T. O. & Xie, R. Does agriculture really matter for economic growth in developing countries? Can J. Agric. Econ. 63, 77–99 (2015).

    Google Scholar 

  51. 51.

    Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    ADS  Google Scholar 

  52. 52.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS  CAS  Google Scholar 

  53. 53.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    ADS  CAS  Google Scholar 

  54. 54.

    A European Union One Health Action Plan against Antimicrobial Resistance (AMR) (European Commission, 2017).

  55. 55.

    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    CAS  Google Scholar 

  56. 56.

    Agriculture Value Added (%GDP) (World Bank, accessed 10 June 2017);

  57. 57.

    Herforth, A. et al. A global review of food-based dietary guidelines. Adv. Nutr. 10, 590–605 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Stokstad, P. Enforcing environmental law in an unequal market: the case of concentrated animal feeding operations. Missouri Environ. Law Policy Rev. 15, 229–272 (2008).

    Google Scholar 

  59. 59.

    Clay, N., Garnett, T. & Lorimer, J. Dairy intensification: drivers, impacts and alternatives. Ambio 49, 35–48 (2020).

    Google Scholar 

  60. 60.

    Thornton, P. K. & Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change 5, 830–836 (2015).

    ADS  Google Scholar 

  61. 61.

    Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).

    CAS  Google Scholar 

  62. 62.

    Herrero, M. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327, 822–825 (2010).

    ADS  CAS  Google Scholar 

  63. 63.

    Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, 1–12 (2018).

    Google Scholar 

  64. 64.

    Defries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    ADS  CAS  Google Scholar 

  65. 65.

    Brick, C. et al. Winners and losers: communicating the potential impacts of policies. Palgrave Commun. 4, 69 (2018).

    ADS  Google Scholar 

  66. 66.

    Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019).

    ADS  Google Scholar 

  67. 67.

    Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    ADS  Google Scholar 

  68. 68.

    Allen, A. M. & Hof, A. R. Paying the price for the meat we eat. Environ. Sci. Policy 97, 90–94 (2019).

    Google Scholar 

  69. 69.

    Caro, D., Frederiksen, P., Thomsen, M. & Pedersen, A. B. Toward a more consistent combined approach of reduction targets and climate policy regulations: The illustrative case of a meat tax in Denmark. Environ. Sci. Policy 76, 78–81 (2017).

    Google Scholar 

  70. 70.

    Canadian Food Guide (Government of Canada, 2019);

  71. 71.

    How School Meals Contribute to the Sustainable Development Goals (WFP, 2017).

  72. 72.

    Mayberry, D., Bartlett, H., Moss, J., Davison, T. & Herrero, M. Pathways to carbon-neutrality for the Australian red meat sector. Agric. Syst. 175, 13–21 (2019).

    Google Scholar 

  73. 73.

    Reducing Enteric Methane for Improving Food Security and Livelihoods (FAO, 2019);

  74. 74.

    Global Methane Initiative (GMI, 2019);

  75. 75.

    Agriculture, Nature and Food: Valuable and Connected (Ministry of Agriculture Nature and Food Quality of the Netherlands, 2018).

  76. 76.

    East Africa Dairy Development Project (Heifer International, 2019);

  77. 77.

    EU Nitrates Directive (European Commission, 2019).

  78. 78.

    Low Emissions Development of the Beef Cattle Sector in Uruguay (FAO & NZAGRC, 2017).

  79. 79.

    Certified Sustainable Beef Framework (CRSB, 2019);

  80. 80.

    Global Agenda for Sustainable Livestock (FAO, 2019);

  81. 81.

    Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    ADS  CAS  Google Scholar 

  82. 82.

    Roth, D. E., Caulfield, L. E., Ezzati, M. & Black, R. E. Acute lower respiratory infections in childhood: Opportunities for reducing the global burden through nutritional interventions. Bull. World Health Organ. 86, 356–364 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references


N.R. and Z.M. were funded by NSERC Discovery grant number RGPIN-2017–04648.

Author information




Z.M. led the study. All authors contributed to writing and revisions.

Corresponding author

Correspondence to Zia Mehrabi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Tables 1–3 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, Z., Gill, M., Wijk, M. et al. Livestock policy for sustainable development. Nat Food 1, 160–165 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing