Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improved performance of Eimeria-infected chickens fed corn expressing a single-domain antibody against interleukin-10

Abstract

Antimicrobial resistance is a significant challenge for human and animal health, and developing effective antibiotic-free treatments is a strategy to help mitigate microbial resistance. The global poultry industry faces growing challenges from Eimeria-induced coccidiosis, a serious enteric disease of chickens that currently requires treatment using ionophore antibiotics. Eimeria stimulates interleukin-10 (IL-10) expression in the small intestine and caecum of infected chickens, suppressing their immune response and facilitating disease progression. Single-domain antibodies raised from llamas immunized with chicken IL-10 (cIL-10) were developed that bind cIL-10 in vitro, block cIL-10 receptor binding and induce interferon gamma (IFN-γ) secretion from cIL-10-repressed primary chicken splenocytes. Single-domain antibodies expressed in transgenic corn demonstrated significant accumulation in phenotypically normal plants. When fed to Eimeria-challenged chickens, the transgenic corn significantly improved body weight gain (equal to that of salinomycin-treated animals), normalized the feed conversion ratio (to the same level as uninfected control animals), lowered E. tenella lesion scores to those of salinomycin-treated control animals, and reduced oocyst counts below those of infected untreated control animals. Here, we propose that transgenic corn may have a role in reducing the use of antibiotics in poultry production and maintaining animal health and productivity, and may contribute to efforts against global antimicrobial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro analysis of candidate anti-cIL-10 antibodies.
Fig. 2: Comparison of two candidate sdAbs for transformation into corn.
Fig. 3: Temperature resilience of the candidate AgThG11 antibody.
Fig. 4: Transformation of corn with genes expressing the AgThG11 antibody.
Fig. 5: Inclusion of grain that expresses sdAb AgThG11 in the diet helps birds overcome the effects of a coccidiosis challenge.

Similar content being viewed by others

Data availability

Source data for Figs. 1, 3 and 5 are provided with the paper. Data from these studies are available through Figshare (www.figshare.com) at https://doi.org/10.6084/m9.figshare.10286153.v1.

References

  1. Livestock and Poultry: World Markets and Trade (USDA, 2019); https://usda.library.cornell.edu/concern/publications/73666448x

  2. Ritchie, H. & Roser, M. Meat and Seafood Production & Consumption (Our World In Data, accessed 2017); https://ourworldindata.org/meat-and-seafood-production-consumption

  3. Eshel, G., Shepon, A., Makov, T. & Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl Acad. Sci. USA 111, 11996–12001 (2014).

    ADS  CAS  PubMed  Google Scholar 

  4. Laurent, F., Mancassola, R., Lacroix, S., Menezes, R. & Naciri, M. Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect. Immun. 69, 2527–2534 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, P. J., Niemi, J., Christensen, J.-P., Tranter, R. B. & Bennett, R. M. A review of the financial impact of production diseases in poultry production systems. Anim. Prod. Sci. 59, 1585–1597 (2018).

    Google Scholar 

  6. Dalloul, R. A. & Lillehoj, H. S. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev. Vaccines 5, 143–163 (2006).

    CAS  PubMed  Google Scholar 

  7. Noack, S., Chapman, H. D. & Selzer, P. M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 118, 2009–2026 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Tensa, L. R. & Jordan, B. J. Comparison of the application parameters of coccidia vaccines by gel and spray. Poult. Sci. 98, 634–641 (2019).

    PubMed  Google Scholar 

  9. Price, K. R., Hafeez, M. A., Bulfon, J. & Barta, J. R. Live Eimeria vaccination success in the face of artificial non-uniform vaccine administration in conventionally reared pullets. Avian Pathol. 45, 82–93 (2016).

    CAS  PubMed  Google Scholar 

  10. Blake, D. P. & Tomley, F. M. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 30, 12–19 (2014).

    PubMed  Google Scholar 

  11. Hermans, P. G., Fradkin, D., Muchnik, I. B. & Morgan, K. L. Prevalence of wet litter and the associated risk factors in broiler flocks in the United Kingdom. Vet. Rec. 158, 615–622 (2006).

    CAS  PubMed  Google Scholar 

  12. Fatoba, A. J. & Adeleke, M. A. Diagnosis and control of chicken coccidiosis: a recent update. J. Parasit. Dis. 42, 483–493 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Arendt, M. K., Sand, J. M., Marcone, T. M. & Cook, M. E. Interleukin-10 neutralizing antibody for detection of intestinal luminal levels and as a dietary additive in Eimeria challenged broiler chicks. Poult. Sci. 95, 430–438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong, Y. H., Lillehoj, H. S., Lillehoj, E. P. & Lee, S. H. Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet. Immunol. Immunopathol. 114, 259–272 (2006).

    CAS  PubMed  Google Scholar 

  15. Rothwell, L. et al. Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J Immunol. 173, 2675–2682 (2004).

    CAS  PubMed  Google Scholar 

  16. Wu, Z. et al. Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Dev. Comp. Immunol. 63, 206–212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sand, J. M., Arendt, M. K., Repasy, A., Deniz, G. & Cook, M. E. Oral antibody to interleukin-10 reduces growth rate depression due to Eimeria spp. infection in broiler chickens. Poult. Sci. 95, 439–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. He, Z., Tong, C., Sheng, L., Ma, M. & Cai, Z. Monitoring glycation-induced structural and biofunctional changes in chicken immunoglobulin Y by different monosaccharides. Poult. Sci. 95, 2715–2723 (2016).

    CAS  PubMed  Google Scholar 

  19. Mizukami, M. et al. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr. Purif. 105, 23–32 (2015).

    CAS  PubMed  Google Scholar 

  20. Egelkrout, E. et al. Enhanced expression levels of cellulase enzymes using multiple transcription units. BioEnergy Res. 6, 699–710 (2012).

    Google Scholar 

  21. Tschofen, M., Knopp, D., Hood, E. & Stöger, E. Plant molecular farming: much more than medicines. Annu. Rev. Anal. Chem. 9, 271–294 (2016).

    Google Scholar 

  22. Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zdanov, A. et al. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon γ. Structure 3, 591–601 (1995).

    CAS  PubMed  Google Scholar 

  24. Terai, M. et al. Human interleukin 10 receptor 1/IgG1-Fc fusion proteins: Immunoadhesins for human IL-10 with therapeutic potential. Cancer Immunol. Immunother. 58, 1307–1317 (2009).

    CAS  PubMed  Google Scholar 

  25. Shouval, D. S. et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 122, 177–210 (2014).

  26. Negrotto, D., Jolley, M., Beer, S., Wenck, A. R. & Hansen, G. The use of phosphomannose isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19, 798–803 (2000).

    CAS  PubMed  Google Scholar 

  27. Reina, M., Guillén, P., Ponte, I., Boronat, A. & Palau, J. DNA sequence of the gene encoding the Zc1 protein from Zea mays W64 A. Nucleic Acids Res. 18, 6425 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu, L. Q. & Takaiwa, F. Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol. J. 2, 113–125 (2004).

    CAS  Google Scholar 

  29. Prat, S., Cortadas, J., Puigdomrnech, P. & Palau, J. Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2. Nucleic Acids Res. 13, 1493–1504 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Semenza, J. C., Hardwick, K. G., Dean, N. & Pelham, H. R. B. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    CAS  PubMed  Google Scholar 

  31. Broiler Performance and Nutrition Supplement (Cobb-Vantress, 2015).

  32. Angelakis, E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 106, 162–170 (2017).

    PubMed  Google Scholar 

  33. Ben Lagha, A., Haas, B., Gottschalk, M. & Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 48, 1–12 (2017).

    Google Scholar 

  34. Roth, N. et al. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult. Sci. 98, 1791–1804 (2019).

    PubMed  Google Scholar 

  35. Kadykalo, S. et al. The value of anticoccidials for sustainable global poultry production. Int. J. Antimicrob. Agents 51, 304–310 (2018).

    CAS  PubMed  Google Scholar 

  36. Mathis, G. et al. Effect of lasalocid or salinomycin administration on performance and immunity following coccidia vaccination of commercial broilers 1. J. Appl. Poult. Res. 23, 577–585 (2014).

    CAS  Google Scholar 

  37. Lillehoj, H. S. et al. A recombinant Eimeria protein inducing interferon-γ production: comparison of different gene expression systems and immunization strategies for vaccination against coccidiosis. Avian Dis. 44, 379–389 (2017).

    Google Scholar 

  38. Yusibov, V., Kushnir, N. & Streatfield, S. J. Antibody production in plants and green algae. Annu. Rev. Plant Biol. 67, 669–701 (2016).

    CAS  PubMed  Google Scholar 

  39. Wang, S. et al. Increasing stability of antibody via antibody engineering: stability engineering on an anti-hVEGF. Proteins 82, 2620–2630 (2014).

    CAS  PubMed  Google Scholar 

  40. Kusnadi, A. R., Nikolov, Z. L. & Howard, J. A. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioeng. 56, 473–484 (1997).

    CAS  PubMed  Google Scholar 

  41. Smith, M. D. & Glick, B. R. The production of antibodies in plants: an idea whose time has come? Biotechnol. Adv. 18, 85–89 (2000).

    CAS  PubMed  Google Scholar 

  42. Lee, Y., Kim, W. H., Lee, S. J. & Lillehoj, H. S. Detection of chicken interleukin-10 production in intestinal epithelial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA. Vet. Immunol. Immunopathol. 204, 52–58 (2018).

    CAS  PubMed  Google Scholar 

  43. Zhang, R. et al. Mutual interactions of the apicomplexan parasites Toxoplasma gondii and Eimeria tenella with cultured poultry macrophages. Parasites Vectors 11, 1–12 (2018).

    Google Scholar 

  44. Virdi, V. et al. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat. Biotechnol. 37, 527–530 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Josephson, K. et al. Design and analysis of an engineered human interleukin-10 monomer. J. Biol. Chem. 275, 13552–13557 (2000).

    CAS  PubMed  Google Scholar 

  46. Komari, T., Hiei, Y., Saito, Y., Murai, N. & Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174 (1996).

    CAS  PubMed  Google Scholar 

  47. Ishida, Y., Saito, H., Ohta, S., Hiei, Y. & Komari, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature 14, 745–750 (1996).

    CAS  Google Scholar 

  48. Abdelrahman, W. et al. Comparative evaluation of probiotic and salinomycin effects on performance and coccidiosis control in broiler chickens. Poult. Sci. 93, 3002–3008 (2014).

    MathSciNet  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of the following scientists: A. Lee (ProSci); K. Wilhelmsen (Marin Biologic); L. Bartlett (University of Massachusetts Biophysical Characterization Facility); B. Lumpkins and G. Mathis (Southern Poultry Feed and Research).

Author information

Authors and Affiliations

Authors

Contributions

P.A.L. led the antibody discovery programme, led the cell-based assay development and performance, managed analytical development, helped transplant, water and harvest plants, milled transgenic grain for use in the feeding studies, and reviewed and edited the manuscript. M.P. characterized the antibodies in vitro and in the cell-based assay, which required microbial antibody and IL-10r soluble-domain production, performed Biacore experiments, performed western blots and reviewed the manuscript. O.B. conducted all gene design and synthesis, constructed transformation vectors, helped genotype transgenic plants, developed the ELISA assay, performed ELISAs, measured the thermal stability of the antibodies, and reviewed and edited the manuscript. B.S. conducted western blot analysis, helped develop the ELISA assay, performed ELISAs and reviewed the manuscript. V.S. conducted plant transformation and plant tissue culture, generated all transgenic events, managed and conducted plant production, and reviewed the manuscript. J.B. led the animal challenge studies and reviewed the manuscript. X.L. helped transplant, water and harvest plants, conducted assays, and reviewed and edited the manuscript. R.M.R. developed the overall research plan and strategy, managed and coordinated studies between groups, prioritized antibodies for development, helped transplant, water and harvest plants, drafted the initial paper, and reviewed and approved the final manuscript.

Corresponding author

Correspondence to R. Michael Raab.

Ethics declarations

Competing interests

The authors declare the following competing interests: employment at Agrivida, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Numerical data for the graphs.

Source Data Fig. 3

Numerical data for the graphs.

Source Data Fig. 5

Numerical data for the graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessard, P.A., Parker, M., Bougri, O. et al. Improved performance of Eimeria-infected chickens fed corn expressing a single-domain antibody against interleukin-10. Nat Food 1, 119–126 (2020). https://doi.org/10.1038/s43016-020-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0029-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing