Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blue water footprint linked to national consumption and international trade is unsustainable

Abstract

Increasing pressure on the world’s freshwater resources raises serious concerns about global food security and the sustainability of water use in agriculture. Here we quantify and map at a 5-arcmin spatial resolution the blue water footprint of each country’s national consumption and where they infringe sustainable environmental flows as defined by the presumptive environmental flow standard or the 80% rule, in which runoff depletion by more than 20% will pose risk to ecosystems. We find that 52% of the blue water footprint of global consumption and 43% of international blue virtual water flows come from places where the sustainable environmental flow is violated. About 22% of the environmental flow infringement of the blue water footprint of global consumption lies outside the specific countries of consumption, indicating that a number of them have externalized their impacts. By establishing a link between the consumption of a product in one place and water scarcity in places far from the place of consumption, our assessment may aid a dialogue on how to assign and share responsibilities concerning water use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relative contribution of countries to the total EFR-infringing blue WF of global consumption.
Fig. 2: Global blue WF associated with national consumption for selected countries.
Fig. 3: EFR-infringing blue virtual water flows between regions of the world.

Similar content being viewed by others

Data availability

Most of the data used in this study are available through the WaterStat Database of the Water Footprint Network (https://waterfootprint.org/en/resources/waterstat/). The other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The Python code used to automate the calculation of the EFR-infringing blue WF in the ArcGIS environment is available on request from the corresponding author.

References

  1. Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    ADS  CAS  PubMed  Google Scholar 

  2. WWAP The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).

  3. Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).

    Google Scholar 

  4. Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H. & Rozelle, S. The nature and causes of the global water crisis: syndromes from a meta-analysis of coupled human–water studies. Water Resour. Res. 48, W10516 (2012).

    ADS  Google Scholar 

  5. Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. 106, 3349–3356 (2001).

    ADS  Google Scholar 

  6. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    ADS  CAS  PubMed  Google Scholar 

  7. Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).

    Google Scholar 

  8. Richter, B. Chasing Water: A Guide for Moving from Scarcity to Sustainability (Island, 2014).

  9. Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).

    Google Scholar 

  10. Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 2, 422–430 (2010).

    Google Scholar 

  11. Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008).

    ADS  Google Scholar 

  12. Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).

    ADS  Google Scholar 

  13. Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa https://doi.org/10.12952/journal.elementa.000083 (2016).

  15. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    ADS  PubMed  Google Scholar 

  17. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    ADS  CAS  PubMed  Google Scholar 

  18. Burek, P. et al. Water Futures and Solution - Fast Track Initiative (Final Report) (IIASA, 2016).

  19. Alcamo, J. et al. Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol. Sci. J. 48, 339–348 (2003).

    Google Scholar 

  20. WWAP The United Nations World Water Development Report 2019: Leaving No One Behind (UNESCO, 2019).

  21. Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).

    ADS  PubMed  Google Scholar 

  22. Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).

  23. Hoekstra, A. Y. The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 3, 21–46 (2011).

    Google Scholar 

  24. Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    CAS  PubMed  Google Scholar 

  25. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545–546 (1998).

    CAS  Google Scholar 

  27. Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

    Google Scholar 

  28. Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manag. 31, 3061–3081 (2017).

    Google Scholar 

  29. Boulay, A. M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).

    ADS  CAS  PubMed  Google Scholar 

  30. Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).

    Google Scholar 

  31. Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).

    ADS  Google Scholar 

  33. Dolganova, I. et al. The water footprint of European agricultural imports: hotspots in the context of water scarcity. Resources 8, 141 (2019).

    Google Scholar 

  34. Finogenova, N. et al. Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci. Total Environ. 662, 521–529 (2019).

    ADS  CAS  PubMed  Google Scholar 

  35. Feng, K., Hubacek, K., Pfister, S., Yu, Y. & Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 48, 7704–7713 (2014).

    ADS  CAS  PubMed  Google Scholar 

  36. Yano, S., Hanasaki, N., Itsubo, N. & Oki, T. Water scarcity footprints by considering the differences in water sources. Sustainability 7, 9753 (2015).

    Google Scholar 

  37. Hoekstra, A. Y. & Chapagain, A. K. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour. Manag. 21, 35–48 (2007).

    Google Scholar 

  38. Fader, M. et al. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15, 1641–1660 (2011).

    ADS  Google Scholar 

  39. Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

    Google Scholar 

  40. Wang, R. & Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 50, 5143–5153 (2016).

    ADS  CAS  PubMed  Google Scholar 

  41. Vanham, D. The water footprint of the EU: quantification, sustainability and relevance. Water Int. 43, 731–745 (2018).

    Google Scholar 

  42. Galli, A. et al. Integrating ecological, carbon and water footprint into a ‘Footprint Family’ of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16, 100–112 (2012).

    Google Scholar 

  43. Ercin, E., Chico, D. & Chapagain, A. K. Vulnerabilities of the European Union’s economy to hydrological extremes outside its borders. Atmosphere 10, 593 (2019).

    ADS  Google Scholar 

  44. Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).

    Google Scholar 

  45. Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: a study for China (1978–2008). Water Res. 94, 73–85 (2016).

    CAS  PubMed  Google Scholar 

  46. Rushforth, R. R. & Ruddell, B. L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 22, 3007–3032 (2018).

    ADS  Google Scholar 

  47. Hou, S. et al. Blue and green water footprint assessment for China—a multi-region input–output approach. Sustainability 10, 2822 (2018).

    Google Scholar 

  48. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siebert, S. et al. Groundwater use for irrigation - a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7, 3977–4021 (2010).

    ADS  Google Scholar 

  52. Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    ADS  CAS  Google Scholar 

  53. Qu, S. et al. Virtual water scarcity risk to the global trade system. Environ. Sci. Technol. 52, 673–683 (2018).

    ADS  CAS  PubMed  Google Scholar 

  54. Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).

    Google Scholar 

  55. Han, M. Y., Chen, G. Q. & Li, Y. L. Global water transfers embodied in international trade: tracking imbalanced and inefficient flows. J. Clean. Prod. 184, 50–64 (2018).

    Google Scholar 

  56. Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).

    ADS  Google Scholar 

  58. Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

    ADS  Google Scholar 

  59. Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).

    ADS  Google Scholar 

  60. Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).

    Google Scholar 

  61. Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  62. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    ADS  CAS  PubMed  Google Scholar 

  63. Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).

    Google Scholar 

  64. Tessmann, S. A. in Environmental Use Sector: Reconnaissance Elements of the Western Dakotas Region of South Dakota Study (Water Resources Institute, South Dakota State Univ., 1980).

  65. Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    ADS  Google Scholar 

  67. Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. 234, 106122 (2020).

    Google Scholar 

  68. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    ADS  CAS  PubMed  Google Scholar 

  69. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  70. Hoekstra, A. Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett. 9, 091003 (2014).

    ADS  Google Scholar 

  71. Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).

    Google Scholar 

  72. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    ADS  CAS  PubMed  Google Scholar 

  73. Rockström, J. et al. Managing water in rainfed agriculture—the need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).

    Google Scholar 

  74. Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19, 4877–4891 (2015).

    ADS  CAS  Google Scholar 

  75. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Google Scholar 

  76. Mekonnen, M. M. & Hoekstra, A. Y. Water footprint benchmarks for crop production: a first global assessment. Ecol. Indic. 46, 214–223 (2014).

    Google Scholar 

  77. Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indic. 32, 1–8 (2013).

    Google Scholar 

  78. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    ADS  CAS  PubMed  Google Scholar 

  79. Mekonnen, M. & Hoekstra, A. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS  Google Scholar 

  80. Mekonnen, M. M. et al. Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environ. Sci. Technol. 52, 14508–14518 (2018).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I dedicate this article to my esteemed mentor and co-author Prof. Arjen Y. Hoekstra (1967–2019), who died suddenly before its publication.

Author information

Authors and Affiliations

Authors

Contributions

M.M.M. and A.Y.H. designed the study. M.M.M. performed research and analysed data. M.M.M. and A.Y.H. wrote the manuscript.

Corresponding author

Correspondence to Mesfin M. Mekonnen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekonnen, M.M., Hoekstra, A.Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat Food 1, 792–800 (2020). https://doi.org/10.1038/s43016-020-00198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00198-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene