Abstract
Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Using perennial plant varieties for use as living mulch for winter cereals. A review
Agronomy for Sustainable Development Open Access 22 November 2022
-
Climate service driven adaptation may alleviate the impacts of climate change in agriculture
Communications Biology Open Access 12 November 2022
-
Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield
Scientific Reports Open Access 13 May 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).
Hermwille, L., Siemons, A., Förster, H. & Jeffery, L. Catalyzing mitigation ambition under the Paris Agreement: elements for an effective global stocktake. Clim. Policy 9, 988–1001 (2019).
Grassi, G. et al. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change 8, 914–920 (2018).
Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).
Wiebe, K. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).
Stefanovic, M. et al. The impact of high-end climate change on agriculture welfare. Sci. Adv. 2, e1501452 (2016).
Ciscar, J. C. et al. Climate Impacts in Europe: Final Report of the JRC PESETA III Project (European Union, 2018).
de Saussure, N. T. Chemische Untersuchungen über die Vegetation (trans. Wieler, A.) 22 (Engelmann, 1890).
Gamage, D. et al. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ. 41, 1233–1246 (2018).
Bloom, A. J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123, 117–128 (2015).
Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).
Kimball, B. A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75, 779–788 (1983).
Hasegawa, T. et al. Rice cultivar responses to elevated CO2 at two free-air enrichment sites in Japan. Funct. Plant Biol. 40, 148–159 (2013).
Aljazairi, S., Arias, C. & Nogues, S. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2-conditions. Plant Biol. 17, 647–659 (2015).
Bishop, K. A., Betzelberger, A. M., Long, S. P. & Ainsworth, E. A. Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield of response of 18 genotypes to free-air CO2-enrichment. Plant Cell Environ. 38, 1765–1774 (2015).
Ziska, L. H. et al. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. Royal Soc. B 279, 4097–4105 (2012).
Ziska, L. H. Three year field evaluation of early and late 20th century spring wheat cultivars to projected increase in atmospheric carbon dioxide. Field Crops Res. 108, 54–59 (2008).
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).
Purcell, C. et al. Increasing stomatal conductance in response to rising atmospheric CO2. Ann. Bot. 121, 1137–1149 (2018).
Manderscheid, R. et al. Effects of free-air carbon dioxide enrichment on sap flow and canopy microclimate of maize grown under different water supply. J. Agron. Crop Sci. 202, 255–268 (2016).
Manderscheid, R., Dier, M., Erbs, M., Sickora, J. & Weigel, H.-J. Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO2 enrichment. Agr. Water Manag. 210, 70–77 (2018).
Ottman, M. J. et al. Elevated CO2 increases sorghum biomass under drought conditions. New Phytol. 150, 261–273 (2001).
Wall, G. W. et al. Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytol. 152, 231–248 (2001).
Manderscheid, R., Erbs, M. & Weigel, H.-J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 52, 11–21 (2014).
Dier, D. et al. Decreased wheat grain yield stimulation by free air CO2 enrichment under N deficiency is strongly related to decreased radiation use efficiency enhancement. Eur. J. Agron. 101, 38–48 (2018).
Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).
Hovenden, M. J. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 5, 167–173 (2019).
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
Loladze, I. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 17, 457–461 (2002).
Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).
Müller, C., Elliott, J. & Levermann, A. Fertilizing hidden hunger. Nat. Clim. Change 4, 540–541 (2014).
Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).
Taub, D. R., Miller, B. & Allen, H. Effects of elevated CO2 on the protein concentration of food crops: a meta‐analysis. Glob. Change Biol. 14, 565–575 (2008).
Broberg, M. C., Högy, P. & Pleijel, H. CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy 7, 32 (2017).
Usui, Y. et al. Rice grain yield and quality responses to free‐air CO2 enrichment combined with soil and water warming. Glob. Change Biol. 22, 1256–1270 (2016).
Shewry, P. R., Pellny, T. K. & Lovegrove, A. Is modern wheat bad for health? Nat. Plants 2, 16097 (2016).
Fernando, N. et al. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments. J. Cereal Sci. 59, 137–144 (2014).
Fernando, N. et al. Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agric. Ecosyst. Environ. 185, 24–33 (2014).
Fares, C. et al. Increasing atmospheric CO2 modifies durum wheat grain quality and pasta cooking quality. J. Cereal Sci. 69, 245–251 (2016).
Beleggia, R. et al. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chem. 242, 53–61 (2018).
Verrillo, F. et al. Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains. Crop Pasture Sci. 68, 713–725 (2017).
Dier, M. et al. Elevated atmospheric CO2 concentration has limited effect on wheat grain quality regardless of nitrogen supply. J. Agric. Food Chem. 68, 3711–3721 (2020).
Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3, e002245 (2014).
Dong, J., Gruda, N., Lam, S. K., Li, X. & Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: a review. Front. Plant Sci. 9, 924–924 (2018).
Loladze, I., Nolan, J. M., Ziska, L. H. & Knobbe, A. R. Rising atmospheric CO2 lowers concentrations of plant carotenoids essential to human health: a meta‐analysis. Mol. Nutr. Food Res. 63, 1801047 (2019).
Scheelbeek, P. F. D. et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl Acad. Sci. USA 115, 6804–6809 (2018).
Wujeska‐Klause, A., Crous, K. Y., Ghannoum, O. & Ellsworth, D. S. Lower photorespiration in elevated CO2 reduces leaf N concentrations in mature Eucalyptus trees in the field. Glob. Change Biol. 25, 1282–1295 (2019).
Bloom, A. & Lancaster, K. M. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat. Plants 4, 414–422 (2018).
Bahrami, H. et al. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO2]. J. Plant Physiol. 216, 44–51 (2017).
Gesch, R. W., Boote, K. J., Vu, J. C. V., Allen, L. H. & Bowes, G. Changes in growth CO2 result in rapid adjustments of Ribulose-1,5-Bisphosphate carboxylase/oxygenase small subunit gene expression in expanding and mature leaves of rice. Plant Physiol. 118, 521–529 (1998).
Walker, C., Armstrong, R., Panozzo, J., Partington, D. & Fitzgerald, G. Can nitrogen fertiliser maintain wheat (Triticum aestivum) grain protein concentration in an elevated CO2 environment? Soil Res. 55, 518–523 (2017).
Walker, C. K. et al. Adaptive traits do not mitigate the decline in bread wheat quality under elevated CO2. J. Cereal Sci. 88, 24–30 (2019).
Medek, D. E., Schwartz, J. & Myers, S. S. Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environ. Health Perspect. 125, 087002 (2017).
Weyant, C. et al. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Med. 15, e1002586 (2018).
Pastore, M. A., Lee, T. D., Hobbie, S. E. & Reich, P. B. Strong photosynthetic acclimation and enhanced water‐use efficiency in grassland functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply. Glob. Change Biol. 25, 3031–3044 (2019).
Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).
Yuan, N. et al. Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Sci. Rep. 8, 17758 (2018).
Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO2. Glob. Change Biol. 24, 3875–3885 (2018).
Obermeier, W. A. et al. Reduced CO2 fertilization in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).
Crews, T. E. & Cattani, D. J. Strategies, advances, and challenges in breeding perennial grains. Sustainability 10, 2192 (2018).
Li, X. et al. Effect of multigenerational exposure to elevated atmospheric CO2 concentration on grain quality in wheat. Environ. Exp. Bot. 157, 310–319 (2019).
Bunce, J. A. CO2 enrichment at night affects the growth and yield of common beans. Crop Sci. 54, 1744–1747 (2014).
Chen, T., van der Werf, G. R., Gobron, N., Moors, E. J. & Dolman, A. J. Global cropland monthly gross primary productivity in the year 2000. Biogeosciences 11, 3871–3880 (2014).
Vanuytrecht, E. & Thorburn, P. J. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Glob. Change Biol. 23, 1806–1820 (2017).
Galmes, J. et al. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ. 37, 1989–2001 (2014).
Tubiello, F. N. et al. Crop response to elevated CO2 and world food supply: A comment on “Food for Thought.” by Long et al., Science 312: 1918–1921, 2006. Eur. J. Agron. 26, 215–223 (2007).
Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173 (2019).
O’Leary, G. J. et al. Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686 (2015).
Tubiello, F. N. et al. Testing CERES-Wheat with Free-Air Carbon Dioxide Enrichment (FACE) experiment data: CO2 and water interactions. Agron. J. 91, 247–255 (1999).
Hasegawa, T. et al. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Sci. Rep. 7, 14858 (2017).
Durand, J. L. et al. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur. J. Agron. 100, 65–75 (2018).
Wall, G. W., Amthor, J. S. & Kimball, B. A. COTCO2: A cotton growth simulation-model for global change. Agric. For. Meteorol. 70, 289–342 (1994).
Raymundo, R. et al. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98 (2018).
Wolf, J. & Van Oijen, M. Model simulation of effects of changes in climate and atmospheric CO2 and O3 on tuber yield potential of potato (cv. Bintje) in the European Union. Agric. Ecosyst. Environ. 94, 141–157 (2003).
Li, F. Y., Newton, P. C. D. & Lieffering, M. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO2 against measurements from an 11-year FACE experiment on grazed pasture. Glob. Change Biol. 20, 228–239 (2014).
Mollah, M., Norton, R. & Huzzey, J. Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci. 60, 697–707 (2009).
Müller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).
Elliott, J. D. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
Mbow, C. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019).
Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food. 1, 94–97 (2020).
Rosenzweig, C. et al. Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments. Philos. Trans. R. Soc. A 376, 20160455 (2018).
Hutchings, N. J. et al. A model for simulating the timelines of field operations at a European scale for use in complex dynamic models. Biogeosciences 9, 4487–4496 (2012).
van Bussel, L. G. J., Stehfest, E., Siebert, S., Müller, C. & Ewert, F. Simulation of the phenological development of wheat and maize at the global scale. Glob. Ecol. Biogeogr. 24, 1018–1029 (2015).
Waha, K., van Bussel, L. G. J., Müller, C. & Bondeau, A. Climate-driven simulation of global crop sowing dates. Glob. Ecol. Biogeogr. 21, 247–259 (2012).
Minoli, S., Egli, D. B., Rolinski, S. & Müller, C. Modelling cropping periods of grain crops at the global scale. Glob. Planet. Change 174, 35–46 (2019).
Iizumi, T., Kim, W. & Nishimori, M. Modeling the global sowing and harvesting windows of major crops around the year 2000. J. Adv. Model. Earth Syst. 11, 99–112 (2019).
Porwollik, V., Rolinski, S., Heinke, J. & Müller, C. Generating a global gridded tillage dataset. Earth Syst. Sci. Data 11, 823–843 (2019).
Valdivia, R. O. et al. in Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 1 (eds Rosenzweig, C. & Hillel, D.) 101–145 (Imperial College Press, 2015).
Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 20, 2301–2320 (2014).
Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 328–1341 (2015).
Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8, 1607 (2017).
Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) Ch. 7 (IPCC, Cambridge University Press, 2014).
Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).
Emberson, L. D. et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34 (2018).
Schauberger, B., Rolinski, S., Schaphoff, S. & Müller, C. Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agr. For. Meteorol. 265, 1–15 (2019).
Kellner, J. et al. Response of maize biomass and soil water fluxes on elevated CO2 and drought — From field experiments to process-based simulations. Glob. Change Biol. 25, 2947–2957 (2019).
Van Straaten, P. in Innovations as Key to the Green Revolution in Africa (eds Bationo A. et al.) 31–47 (Springer, 2011).
Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).
Buresh, R. J., Smithson, P. C. & Hellums, D. T. in Replenishing Soil Fertility in Africa (eds Buresh, R. J. et al.) 111–149 (Soil Science Society of America, American Society of Agronomy, 1997).
Nuttall, J. G. et al. Models of grain quality in wheat — a review. Field Crops Res. 202, 136–145 (2017).
Beach, R. H. et al. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planet. Health 3, 307–317 (2019).
Broberg, M. C., Högy, P., Feng, Z. & Pleijel, H. Effects of elevated CO2 on wheat yield: nonlinear response and relation to site productivity. Agronomy 9, 243 (2019).
Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).
Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
Galmarini, S. et al. Adjusting climate model bias for agricultural impact assessment: how to cut the mustard. Clim. Serv. 13, 65–69 (2019).
Climate Change Manipulation Experiments in Terrestrial Ecosystems — Networking and Outreach (ClimMani) (COST, 2020); https://www.cost.eu/actions/ES1308
Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. AgMIP climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agr. For. Meteorol. 200, 233–248 (2015).
Portmann, F. T., Siebert, S. & Döll, P. Mirca2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modelling. Glob. Biogeochem. Cy. 24, 1011 (2010).
Acknowledgements
We thank EC-JRC for hosting the ‘CO2 Effects on Crops: Current Understanding, Modeling Needs, and Challenges’ workshop held in Ispra, Italy (8–10 October 2018), co-sponsored by AgMIP. S.A. acknowledges support by the CGIAR research programme on wheat agri-food systems (CRP WHEAT) and the CGIAR Platform for Big Data in Agriculture. T.A.M.P. acknowledges the Birmingham Institute of Forest Research (paper no. 50). C.R. acknowledges the AgMIP Coordination Unit at Columbia University Earth Institute. F.N.T. acknowledges funding from the FAO Regular Programme. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of FAO and other organizations.
Author information
Authors and Affiliations
Contributions
A.T. and D.D. coordinated this community effort and share first authorship. All of the authors contributed to reviewing and interpreting the available literature, and writing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1 and 3, Figs. 1 and 2, and discussion.
Supplementary Table 2
List and details of all identified eCO2 experiments shown in Fig. 1.
Rights and permissions
About this article
Cite this article
Toreti, A., Deryng, D., Tubiello, F.N. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat Food 1, 775–782 (2020). https://doi.org/10.1038/s43016-020-00195-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43016-020-00195-4
This article is cited by
-
Climate service driven adaptation may alleviate the impacts of climate change in agriculture
Communications Biology (2022)
-
Food insecurity
Nature Climate Change (2022)
-
Compound heat and moisture extreme impacts on global crop yields under climate change
Nature Reviews Earth & Environment (2022)
-
Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield
Scientific Reports (2022)
-
Using perennial plant varieties for use as living mulch for winter cereals. A review
Agronomy for Sustainable Development (2022)