Narrowing uncertainties in the effects of elevated CO2 on crops

Abstract

Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the eCO2 experiments.
Fig. 2: Yield responses to eCO2 as measured in two FACE experiments and simulated by crop models.

References

  1. 1.

    Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    ADS  Google Scholar 

  2. 2.

    Hermwille, L., Siemons, A., Förster, H. & Jeffery, L. Catalyzing mitigation ambition under the Paris Agreement: elements for an effective global stocktake. Clim. Policy 9, 988–1001 (2019).

    Google Scholar 

  3. 3.

    Grassi, G. et al. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change 8, 914–920 (2018).

    ADS  CAS  Google Scholar 

  4. 4.

    Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Wiebe, K. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).

    Google Scholar 

  6. 6.

    Stefanovic, M. et al. The impact of high-end climate change on agriculture welfare. Sci. Adv. 2, e1501452 (2016).

    ADS  Google Scholar 

  7. 7.

    Ciscar, J. C. et al. Climate Impacts in Europe: Final Report of the JRC PESETA III Project (European Union, 2018).

  8. 8.

    de Saussure, N. T. Chemische Untersuchungen über die Vegetation (trans. Wieler, A.) 22 (Engelmann, 1890).

  9. 9.

    Gamage, D. et al. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ. 41, 1233–1246 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bloom, A. J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123, 117–128 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kimball, B. A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75, 779–788 (1983).

    Google Scholar 

  13. 13.

    Hasegawa, T. et al. Rice cultivar responses to elevated CO2 at two free-air enrichment sites in Japan. Funct. Plant Biol. 40, 148–159 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Aljazairi, S., Arias, C. & Nogues, S. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2-conditions. Plant Biol. 17, 647–659 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    Bishop, K. A., Betzelberger, A. M., Long, S. P. & Ainsworth, E. A. Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield of response of 18 genotypes to free-air CO2-enrichment. Plant Cell Environ. 38, 1765–1774 (2015).

    PubMed  Google Scholar 

  16. 16.

    Ziska, L. H. et al. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. Royal Soc. B 279, 4097–4105 (2012).

    Google Scholar 

  17. 17.

    Ziska, L. H. Three year field evaluation of early and late 20th century spring wheat cultivars to projected increase in atmospheric carbon dioxide. Field Crops Res. 108, 54–59 (2008).

    Google Scholar 

  18. 18.

    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Purcell, C. et al. Increasing stomatal conductance in response to rising atmospheric CO2. Ann. Bot. 121, 1137–1149 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Manderscheid, R. et al. Effects of free-air carbon dioxide enrichment on sap flow and canopy microclimate of maize grown under different water supply. J. Agron. Crop Sci. 202, 255–268 (2016).

    CAS  Google Scholar 

  21. 21.

    Manderscheid, R., Dier, M., Erbs, M., Sickora, J. & Weigel, H.-J. Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO2 enrichment. Agr. Water Manag. 210, 70–77 (2018).

    Google Scholar 

  22. 22.

    Ottman, M. J. et al. Elevated CO2 increases sorghum biomass under drought conditions. New Phytol. 150, 261–273 (2001).

    Google Scholar 

  23. 23.

    Wall, G. W. et al. Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytol. 152, 231–248 (2001).

    Google Scholar 

  24. 24.

    Manderscheid, R., Erbs, M. & Weigel, H.-J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 52, 11–21 (2014).

    CAS  Google Scholar 

  25. 25.

    Dier, D. et al. Decreased wheat grain yield stimulation by free air CO2 enrichment under N deficiency is strongly related to decreased radiation use efficiency enhancement. Eur. J. Agron. 101, 38–48 (2018).

    CAS  Google Scholar 

  26. 26.

    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Hovenden, M. J. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 5, 167–173 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Loladze, I. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 17, 457–461 (2002).

    Google Scholar 

  30. 30.

    Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Müller, C., Elliott, J. & Levermann, A. Fertilizing hidden hunger. Nat. Clim. Change 4, 540–541 (2014).

    ADS  Google Scholar 

  32. 32.

    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Taub, D. R., Miller, B. & Allen, H. Effects of elevated CO2 on the protein concentration of food crops: a meta‐analysis. Glob. Change Biol. 14, 565–575 (2008).

    ADS  Google Scholar 

  34. 34.

    Broberg, M. C., Högy, P. & Pleijel, H. CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy 7, 32 (2017).

    Google Scholar 

  35. 35.

    Usui, Y. et al. Rice grain yield and quality responses to free‐air CO2 enrichment combined with soil and water warming. Glob. Change Biol. 22, 1256–1270 (2016).

    ADS  Google Scholar 

  36. 36.

    Shewry, P. R., Pellny, T. K. & Lovegrove, A. Is modern wheat bad for health? Nat. Plants 2, 16097 (2016).

    Google Scholar 

  37. 37.

    Fernando, N. et al. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments. J. Cereal Sci. 59, 137–144 (2014).

    CAS  Google Scholar 

  38. 38.

    Fernando, N. et al. Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agric. Ecosyst. Environ. 185, 24–33 (2014).

    CAS  Google Scholar 

  39. 39.

    Fares, C. et al. Increasing atmospheric CO2 modifies durum wheat grain quality and pasta cooking quality. J. Cereal Sci. 69, 245–251 (2016).

    CAS  Google Scholar 

  40. 40.

    Beleggia, R. et al. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chem. 242, 53–61 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Verrillo, F. et al. Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains. Crop Pasture Sci. 68, 713–725 (2017).

    CAS  Google Scholar 

  42. 42.

    Dier, M. et al. Elevated atmospheric CO2 concentration has limited effect on wheat grain quality regardless of nitrogen supply. J. Agric. Food Chem. 68, 3711–3721 (2020).

    CAS  PubMed  Google Scholar 

  43. 43.

    Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3, e002245 (2014).

    Google Scholar 

  44. 44.

    Dong, J., Gruda, N., Lam, S. K., Li, X. & Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: a review. Front. Plant Sci. 9, 924–924 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Loladze, I., Nolan, J. M., Ziska, L. H. & Knobbe, A. R. Rising atmospheric CO2 lowers concentrations of plant carotenoids essential to human health: a meta‐analysis. Mol. Nutr. Food Res. 63, 1801047 (2019).

    Google Scholar 

  46. 46.

    Scheelbeek, P. F. D. et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl Acad. Sci. USA 115, 6804–6809 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Wujeska‐Klause, A., Crous, K. Y., Ghannoum, O. & Ellsworth, D. S. Lower photorespiration in elevated CO2 reduces leaf N concentrations in mature Eucalyptus trees in the field. Glob. Change Biol. 25, 1282–1295 (2019).

    ADS  Google Scholar 

  48. 48.

    Bloom, A. & Lancaster, K. M. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat. Plants 4, 414–422 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Bahrami, H. et al. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO2]. J. Plant Physiol. 216, 44–51 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Gesch, R. W., Boote, K. J., Vu, J. C. V., Allen, L. H. & Bowes, G. Changes in growth CO2 result in rapid adjustments of Ribulose-1,5-Bisphosphate carboxylase/oxygenase small subunit gene expression in expanding and mature leaves of rice. Plant Physiol. 118, 521–529 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Walker, C., Armstrong, R., Panozzo, J., Partington, D. & Fitzgerald, G. Can nitrogen fertiliser maintain wheat (Triticum aestivum) grain protein concentration in an elevated CO2 environment? Soil Res. 55, 518–523 (2017).

    CAS  Google Scholar 

  52. 52.

    Walker, C. K. et al. Adaptive traits do not mitigate the decline in bread wheat quality under elevated CO2. J. Cereal Sci. 88, 24–30 (2019).

    CAS  Google Scholar 

  53. 53.

    Medek, D. E., Schwartz, J. & Myers, S. S. Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environ. Health Perspect. 125, 087002 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Weyant, C. et al. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Med. 15, e1002586 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pastore, M. A., Lee, T. D., Hobbie, S. E. & Reich, P. B. Strong photosynthetic acclimation and enhanced water‐use efficiency in grassland functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply. Glob. Change Biol. 25, 3031–3044 (2019).

    ADS  Google Scholar 

  56. 56.

    Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Yuan, N. et al. Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Sci. Rep. 8, 17758 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO2. Glob. Change Biol. 24, 3875–3885 (2018).

    ADS  Google Scholar 

  59. 59.

    Obermeier, W. A. et al. Reduced CO2 fertilization in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).

    ADS  CAS  Google Scholar 

  60. 60.

    Crews, T. E. & Cattani, D. J. Strategies, advances, and challenges in breeding perennial grains. Sustainability 10, 2192 (2018).

    Google Scholar 

  61. 61.

    Li, X. et al. Effect of multigenerational exposure to elevated atmospheric CO2 concentration on grain quality in wheat. Environ. Exp. Bot. 157, 310–319 (2019).

    CAS  Google Scholar 

  62. 62.

    Bunce, J. A. CO2 enrichment at night affects the growth and yield of common beans. Crop Sci. 54, 1744–1747 (2014).

    CAS  Google Scholar 

  63. 63.

    Chen, T., van der Werf, G. R., Gobron, N., Moors, E. J. & Dolman, A. J. Global cropland monthly gross primary productivity in the year 2000. Biogeosciences 11, 3871–3880 (2014).

    ADS  Google Scholar 

  64. 64.

    Vanuytrecht, E. & Thorburn, P. J. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Glob. Change Biol. 23, 1806–1820 (2017).

    ADS  Google Scholar 

  65. 65.

    Galmes, J. et al. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ. 37, 1989–2001 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Tubiello, F. N. et al. Crop response to elevated CO2 and world food supply: A comment on “Food for Thought.” by Long et al., Science 312: 1918–1921, 2006. Eur. J. Agron. 26, 215–223 (2007).

    CAS  Google Scholar 

  67. 67.

    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173 (2019).

    ADS  Google Scholar 

  68. 68.

    O’Leary, G. J. et al. Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686 (2015).

    ADS  Google Scholar 

  69. 69.

    Tubiello, F. N. et al. Testing CERES-Wheat with Free-Air Carbon Dioxide Enrichment (FACE) experiment data: CO2 and water interactions. Agron. J. 91, 247–255 (1999).

    Google Scholar 

  70. 70.

    Hasegawa, T. et al. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Sci. Rep. 7, 14858 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Durand, J. L. et al. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur. J. Agron. 100, 65–75 (2018).

    Google Scholar 

  72. 72.

    Wall, G. W., Amthor, J. S. & Kimball, B. A. COTCO2: A cotton growth simulation-model for global change. Agric. For. Meteorol. 70, 289–342 (1994).

    ADS  Google Scholar 

  73. 73.

    Raymundo, R. et al. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98 (2018).

    Google Scholar 

  74. 74.

    Wolf, J. & Van Oijen, M. Model simulation of effects of changes in climate and atmospheric CO2 and O3 on tuber yield potential of potato (cv. Bintje) in the European Union. Agric. Ecosyst. Environ. 94, 141–157 (2003).

    CAS  Google Scholar 

  75. 75.

    Li, F. Y., Newton, P. C. D. & Lieffering, M. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO2 against measurements from an 11-year FACE experiment on grazed pasture. Glob. Change Biol. 20, 228–239 (2014).

    ADS  Google Scholar 

  76. 76.

    Mollah, M., Norton, R. & Huzzey, J. Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci. 60, 697–707 (2009).

    CAS  Google Scholar 

  77. 77.

    Müller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Elliott, J. D. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Mbow, C. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019).

  80. 80.

    Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food. 1, 94–97 (2020).

    Google Scholar 

  81. 81.

    Rosenzweig, C. et al. Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments. Philos. Trans. R. Soc. A 376, 20160455 (2018).

    ADS  Google Scholar 

  82. 82.

    Hutchings, N. J. et al. A model for simulating the timelines of field operations at a European scale for use in complex dynamic models. Biogeosciences 9, 4487–4496 (2012).

    ADS  Google Scholar 

  83. 83.

    van Bussel, L. G. J., Stehfest, E., Siebert, S., Müller, C. & Ewert, F. Simulation of the phenological development of wheat and maize at the global scale. Glob. Ecol. Biogeogr. 24, 1018–1029 (2015).

    Google Scholar 

  84. 84.

    Waha, K., van Bussel, L. G. J., Müller, C. & Bondeau, A. Climate-driven simulation of global crop sowing dates. Glob. Ecol. Biogeogr. 21, 247–259 (2012).

    Google Scholar 

  85. 85.

    Minoli, S., Egli, D. B., Rolinski, S. & Müller, C. Modelling cropping periods of grain crops at the global scale. Glob. Planet. Change 174, 35–46 (2019).

    ADS  Google Scholar 

  86. 86.

    Iizumi, T., Kim, W. & Nishimori, M. Modeling the global sowing and harvesting windows of major crops around the year 2000. J. Adv. Model. Earth Syst. 11, 99–112 (2019).

    ADS  Google Scholar 

  87. 87.

    Porwollik, V., Rolinski, S., Heinke, J. & Müller, C. Generating a global gridded tillage dataset. Earth Syst. Sci. Data 11, 823–843 (2019).

    ADS  Google Scholar 

  88. 88.

    Valdivia, R. O. et al. in Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 1 (eds Rosenzweig, C. & Hillel, D.) 101–145 (Imperial College Press, 2015).

  89. 89.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    ADS  Google Scholar 

  90. 90.

    Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 20, 2301–2320 (2014).

    ADS  Google Scholar 

  91. 91.

    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 328–1341 (2015).

    Google Scholar 

  92. 92.

    Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8, 1607 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) Ch. 7 (IPCC, Cambridge University Press, 2014).

  94. 94.

    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

    ADS  CAS  PubMed  Google Scholar 

  95. 95.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    ADS  Google Scholar 

  96. 96.

    Emberson, L. D. et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34 (2018).

    CAS  Google Scholar 

  97. 97.

    Schauberger, B., Rolinski, S., Schaphoff, S. & Müller, C. Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agr. For. Meteorol. 265, 1–15 (2019).

    Google Scholar 

  98. 98.

    Kellner, J. et al. Response of maize biomass and soil water fluxes on elevated CO2 and drought — From field experiments to process-based simulations. Glob. Change Biol. 25, 2947–2957 (2019).

    ADS  Google Scholar 

  99. 99.

    Van Straaten, P. in Innovations as Key to the Green Revolution in Africa (eds Bationo A. et al.) 31–47 (Springer, 2011).

  100. 100.

    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).

    CAS  PubMed  Google Scholar 

  101. 101.

    Buresh, R. J., Smithson, P. C. & Hellums, D. T. in Replenishing Soil Fertility in Africa (eds Buresh, R. J. et al.) 111–149 (Soil Science Society of America, American Society of Agronomy, 1997).

  102. 102.

    Nuttall, J. G. et al. Models of grain quality in wheat — a review. Field Crops Res. 202, 136–145 (2017).

    Google Scholar 

  103. 103.

    Beach, R. H. et al. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planet. Health 3, 307–317 (2019).

    Google Scholar 

  104. 104.

    Broberg, M. C., Högy, P., Feng, Z. & Pleijel, H. Effects of elevated CO2 on wheat yield: nonlinear response and relation to site productivity. Agronomy 9, 243 (2019).

    CAS  Google Scholar 

  105. 105.

    Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).

    CAS  PubMed  Google Scholar 

  106. 106.

    Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    ADS  Google Scholar 

  107. 107.

    Galmarini, S. et al. Adjusting climate model bias for agricultural impact assessment: how to cut the mustard. Clim. Serv. 13, 65–69 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Climate Change Manipulation Experiments in Terrestrial Ecosystems — Networking and Outreach (ClimMani) (COST, 2020); https://www.cost.eu/actions/ES1308

  109. 109.

    Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. AgMIP climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agr. For. Meteorol. 200, 233–248 (2015).

    Google Scholar 

  110. 110.

    Portmann, F. T., Siebert, S. & Döll, P. Mirca2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modelling. Glob. Biogeochem. Cy. 24, 1011 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank EC-JRC for hosting the ‘CO2 Effects on Crops: Current Understanding, Modeling Needs, and Challenges’ workshop held in Ispra, Italy (8–10 October 2018), co-sponsored by AgMIP. S.A. acknowledges support by the CGIAR research programme on wheat agri-food systems (CRP WHEAT) and the CGIAR Platform for Big Data in Agriculture. T.A.M.P. acknowledges the Birmingham Institute of Forest Research (paper no. 50). C.R. acknowledges the AgMIP Coordination Unit at Columbia University Earth Institute. F.N.T. acknowledges funding from the FAO Regular Programme. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of FAO and other organizations.

Author information

Affiliations

Authors

Contributions

A.T. and D.D. coordinated this community effort and share first authorship. All of the authors contributed to reviewing and interpreting the available literature, and writing the manuscript.

Corresponding authors

Correspondence to Andrea Toreti or Delphine Deryng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 3, Figs. 1 and 2, and discussion.

Supplementary Table 2

List and details of all identified eCO2 experiments shown in Fig. 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toreti, A., Deryng, D., Tubiello, F.N. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat Food 1, 775–782 (2020). https://doi.org/10.1038/s43016-020-00195-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing