Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brazil’s Amazon Soy Moratorium reduced deforestation

Abstract

Between 2004 and 2012, multiple policies contributed to one of the great conservation successes of the twenty-first century—an 84% decrease in the rate of Brazilian Amazon deforestation. Among the most prominent of these policies is the Amazon Soy Moratorium (ASM), an agreement by grain traders not to purchase soy grown on recently deforested land. The ASM inspired widespread adoption of similar zero-deforestation commitments, but its impact is poorly understood due to its overlap with other conservation policies. Here, we apply an econometric triple-differences model to remotely sensed deforestation data to isolate the ASM’s impact within Brazil’s Arc of Deforestation. We show that the ASM reduced deforestation in soy-suitable locations in the Amazon by 0.66 ± 0.32 percentage points relative to a counterfactual control, preventing 18,000 ± 9,000 km2 of deforestation over its first decade (2006–2016). Although these results highlight potential benefits of private conservation policies, the ASM’s success was dependent on complementarities with public property registries and deforestation monitoring.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deforestation patterns across Brazil’s Arc of Deforestation.
Fig. 2: Time-varying impacts of the ASM.
Fig. 3: Changes in patterns of soy establishment.

Similar content being viewed by others

Data availability

All of the data needed to replicate this study are available through the Harvard Dataverse at https://doi.org/10.7910/DVN/LE42B1.

Code availability

All of the code needed to reproduce the results, figures and tables is available at https://github.com/rheilmayr/asm.

References

  1. Schwartzman, S. & Zimmerman, B. Conservation alliances with indigenous peoples of the Amazon. Conserv. Biol. 19, 721–727 (2005).

    Google Scholar 

  2. Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).

    Google Scholar 

  3. Malhi, Y. et al. Climate change, deforestation, and the fate of the amazon. Science 319, 169–172 (2008).

    ADS  CAS  PubMed  Google Scholar 

  4. Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    ADS  CAS  PubMed  Google Scholar 

  5. Assunção, J., Gandour, C. & Rocha, R. Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ. Dev. Econ. 20, 697–722 (2015).

    Google Scholar 

  6. Assunção, J., Gandour, C. & Rocha, R. DETERring Deforestation in the Amazon: Environmental Monitoring and Law Enforcement (Climate Policy Initiative, 2017).

  7. Cisneros, E., Zhou, S. L. & Börner, J. Naming and shaming for conservation: evidence from the Brazilian Amazon. PLoS ONE 10, e0136402 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Arima, E. Y., Barreto, P., Araújo, E. & Soares-Filho, B. Public policies can reduce tropical deforestation: lessons and challenges from Brazil. Land Use Policy 41, 465–473 (2014).

    Google Scholar 

  9. Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

    ADS  CAS  PubMed  Google Scholar 

  10. Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).

    ADS  CAS  PubMed  Google Scholar 

  11. Assunção, J. & Rocha, R. Getting Greener by Going Black: The Priority Municipalities in Brazil (Climate Policy Initiative, 2014).

  12. Assunção, J., Gandour, C., Rocha, R. & Rocha, R. The effect of rural credit on deforestation: evidence from the Brazilian Amazon. Econ. J. 130, 290–330 (2020).

    Google Scholar 

  13. Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).

    ADS  CAS  PubMed  Google Scholar 

  14. Nepstad, D. C., Stickler, C. M. & Almeida, O. T. Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv. Biol. 20, 1595–1603 (2006).

    PubMed  Google Scholar 

  15. Gibbs, H. K. et al. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Brazil’s zero-deforestation pacts. Conserv. Lett. 9, 32–42 (2016).

    Google Scholar 

  16. Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  17. Eating up the Amazon (Greenpeace, 2006); https://www.greenpeace.org/usa/wp-content/uploads/legacy/Global/usa/report/2010/2/eating-up-the-amazon.pdf

  18. Soy Moratorium Announcement (ABIOVE, ANEC, 2006).

  19. Rudorff, B. F. T. et al. Remote sensing images to detect soy plantations in the Amazon biome—the Soy Moratorium Initiative. Sustainability 4, 1074–1088 (2012).

    Google Scholar 

  20. Trase Yearbook 2018: Sustainability in Forest-Risk Supply Chains: Spotlight on Brazilian Soy (Trase, 2018).

  21. Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2020).

    ADS  Google Scholar 

  22. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    ADS  Google Scholar 

  23. Soy Moratorium: 2016/2017 Crop Year (ABIOVE, Agrosatelite, GTS, INPE, 2017).

  24. Rudorff, B. F. T. et al. The Soy Moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).

    ADS  Google Scholar 

  25. Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).

    ADS  Google Scholar 

  26. Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).

    Google Scholar 

  27. Abessa, D., Famá, A. & Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 3, 510–511 (2019).

    PubMed  Google Scholar 

  28. Dauvergne, P. & Lister, J. The prospects and limits of eco-consumerism: shopping our way to less deforestation? Organ. Environ. 23, 132–154 (2010).

    Google Scholar 

  29. Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).

    ADS  CAS  PubMed  Google Scholar 

  30. Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. C. D. M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Svahn, J., Brunner, D. & Harding, T. Did the Soy Moratorium Reduce Deforestation in the Brazilian Amazon? A Counterfactual Analysis of the Impact of the Soy Moratorium on Deforestation in the Amazon Biome. MSc thesis, Norwegian School of Economics (2018).

  32. West, T. A. P., Börner, J. & Fearnside, P. M.Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).

    Google Scholar 

  33. Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

    ADS  Google Scholar 

  34. Moratatória da Soja: Monitoramento por Imagens de Satélites dos Plantios de Soja no Bioma Amazonia (ABIOVE & Agrosatélite, 2018); https://abiove.org.br/wp-content/uploads/2019/05/30012019-165924-portugues.pdf

  35. Alix-Garcia, J., Rausch, L. L., L’Roe, J., Gibbs, H. K. & Munger, J. Avoided deforestation linked to environmental registration of properties in the Brazilian Amazon: environmental registration in the Amazon. Conserv. Lett. 11, e12414 (2018).

    Google Scholar 

  36. Burgess, R., Costa, F. J. M. & Olken, B. A. Wilderness Conservation and the Reach of the State: Evidence from National Borders in the Amazon Working Paper 24861 (2018); https://doi.org/10.3386/w24861

  37. Silva Junior, C. H. L. et al. Fire responses to the 2010 and 2015/2016 Amazonian droughts. Front. Earth Sci. 7, 97 (2019).

    ADS  Google Scholar 

  38. Rudorff, B. F. T. & Risso, J. Geospatial Analyses of the Annual Crops Dynamic in the Brazilian Cerrado Biome: 2000 to 2014 (Agrosatélite Applied Geotechnology, 2015).

  39. Gollnow, F., Hissa, L., de, B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).

    Google Scholar 

  40. Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).

    ADS  CAS  PubMed  Google Scholar 

  41. Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).

    ADS  Google Scholar 

  42. Börner, J., Wunder, S., Wertz-Kanounnikoff, S., Hyman, G. & Nascimento, N. Forest law enforcement in the Brazilian Amazon: costs and income effects. Glob. Environ. Change 29, 294–305 (2014).

    Google Scholar 

  43. Sills, E. O. et al. Estimating the impacts of local policy innovation: the synthetic control method applied to tropical deforestation. PLoS ONE 10, e0132590 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS ONE 10, e0121544 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. L’Roe, J., Rausch, L., Munger, J. & Gibbs, H. K. Mapping properties to monitor forests: landholder response to a large environmental registration program in the Brazilian Amazon. Land Use Policy 57, 193–203 (2016).

    Google Scholar 

  46. Azevedo, A. A. et al. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).

    ADS  CAS  PubMed  Google Scholar 

  47. Brown, J. C. & Koeppe, M. in Environment and the Law in Amazonia: A Plurilateral Encounter (eds Cooper, J. M. & Hunefeldt, C.) 110–126 (Sussex Academic Press, 2013).

  48. Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).

    Google Scholar 

  49. Garrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the Round Table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil. Environ. Res. Lett. 11, 045003 (2016).

    ADS  Google Scholar 

  50. Le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).

    Google Scholar 

  51. Heilmayr, R., Carlson, K. M. & Benedict, J. J. Deforestation spillovers from oil palm sustainability certification. Environ. Res. Lett. 15, 075002 (2020).

    ADS  CAS  Google Scholar 

  52. Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).

    Google Scholar 

  53. Moffette, F. & Gibbs, H. Agricultural displacement and deforestation leakage in the Brazilian Legal Amazon. Land Econ. (in the press).

  54. Baylis, K. et al. Mainstreaming impact evaluation in nature conservation. Conserv. Lett. 9, 58–64 (2016).

    Google Scholar 

  55. Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).

    ADS  Google Scholar 

  56. Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).

    Google Scholar 

  57. S. Garcia, A. et al. Assessing land use/cover dynamics and exploring drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 15, 100233 (2019).

    Google Scholar 

  58. Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Richards, P. What drives indirect land use change? How Brazil’s agriculture sector influences frontier deforestation. Ann. Assoc. Am. Geogr. 105, 1026–1040 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Silva, C. A. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).

    Google Scholar 

  61. Rausch, L. & Gibbs, H. Property arrangements and soy governance in the Brazilian state of Mato Grosso: implications for deforestation-free production. Land 5, 7 (2016).

    Google Scholar 

  62. Garrett, R. D. et al. Intensification in agriculture–forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Google Scholar 

  63. Koch, N., zu Ermgassen, E. K. H. J., Wehkamp, J., Oliveira Filho, F. J. B. & Schwerhoff, G.Agricultural productivity and forest conservation: evidence from the Brazilian Amazon. Am. J. Agric. Econ. 101, 919–940 (2019).

    Google Scholar 

  64. Le Polain de Waroux, Y., Garrett, R. D., Heilmayr, R. & Lambin, E. F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl Acad. Sci. USA 113, 4021–4026 (2016).

    ADS  CAS  PubMed  Google Scholar 

  65. Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).

    Google Scholar 

  66. Soterroni, A. C. et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  67. Governo alega ameaça à soberania nacional e apoia fim da Moratória da Soja. Aprosoja http://www.aprosoja.com.br/comunicacao/noticia/governo-alega-ameaca-a-soberania-nacional-e-apoia-fim-da-moratoria-da-soja (2019).

  68. Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).

    ADS  Google Scholar 

  69. Project MapBiomas—Collection 2.3 of Brazilian Land Cover & Use Map Series (MapBiomas, 2018); http://mapbiomas.org/

  70. Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).

    Google Scholar 

  71. Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).

    PubMed  Google Scholar 

  72. Freyaldenhoven, S., Hansen, C. & Shapiro, J. M. Pre-event trends in the panel event-study design. Am. Econ. Rev. 109, 3307–3338 (2019).

    Google Scholar 

  73. Lechner, M. The estimation of causal effects by difference-in-difference methods estimation of spatial panels. Found. Trends Econom. 4, 165–224 (2010).

    MATH  Google Scholar 

  74. Clarke, D. Estimating Difference-in-Differences in the Presence of Spillovers MPRA Paper 81604 (Univ, Library of Munich, 2017).

  75. Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2019).

    ADS  Google Scholar 

  76. Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. Forest conservation and slippage: evidence from Mexico’s National Payments for Ecosystem Services program. Land Econ. 88, 613–638 (2012).

    Google Scholar 

  77. Hertel, T. W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 13, 075012 (2018).

    ADS  Google Scholar 

  78. Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global–local–global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This paper contributes to the Global Land Programme. Funding was provided by the Gordon and Betty Moore Foundation and the Norwegian Agency for Development Cooperation’s Civil Society Department under the Norwegian International Climate and Forest Initiative. We thank I. Schelly for outstanding cartographic support.

Author information

Authors and Affiliations

Authors

Contributions

R.H., L.L.R. and H.K.G. designed the research. R.H., L.L.R. and J.M. collected the data. R.H. and L.L.R. conducted the analysis. R.H., L.L.R. and H.K.G. wrote the paper.

Corresponding author

Correspondence to Robert Heilmayr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Andrea Garcia and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–3 and Tables 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heilmayr, R., Rausch, L.L., Munger, J. et al. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat Food 1, 801–810 (2020). https://doi.org/10.1038/s43016-020-00194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00194-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing