Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conservation policies informed by food system feedbacks can avoid unintended consequences


Understanding the feedbacks between food systems and conservation policies can help avoid unintended environmental consequences. Using a survey-based choice experiment and economic modelling, we quantify the potential impact of tourists’ responses to a shift in offshore fish supply after the designation of a large-scale marine protected area in Palau. We find that this conservation policy may increase offshore fish prices and tourists’ consumption of reef fish, thereby further endangering local reef ecosystems. However, if tourists are offered a sustainable offshore choice, their demand for fish could be kept at current levels, and environmental impacts from increased reef fish consumption would be avoided.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Demand functions of reef fish and offshore fish for different levels of offshore fish price.
Fig. 2: WTP estimates and scenarios.

Data availability

The authors declare that all of the data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data files.

Code availability

The custom code generated for this study is available in the Supplementary Data file.


  1. Polasky, S. Planning with feedback effects. Proc. Natl Acad. Sci. USA 103, 5245–5246 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).

    Article  Google Scholar 

  3. Canavire-Bacarreza, G., Diaz-Gutierrez, J. E. & Hanauer, M. M. Unintended consequences of conservation: estimating the impact of protected areas on violence in Colombia. J. Environ. Econ. Manage. 89, 46–70 (2018).

    Article  Google Scholar 

  4. Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article  ADS  CAS  Google Scholar 

  5. Glamann, J., Hanspach, J., Abson, D. J., Collier, N. & Fischer, J.The intersection of food security and biodiversity conservation: a review. Reg. Environ. Change 17, 1303–1313 (2017).

    Article  Google Scholar 

  6. Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    Article  ADS  CAS  Google Scholar 

  7. Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).

    Article  ADS  CAS  Google Scholar 

  8. Ngoc, Q. T. K. Impacts on the ecosystem and human well-being of the marine protected area in Cu Lao Cham, Vietnam. Mar. Policy 90, 174–183 (2018).

    Article  Google Scholar 

  9. Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    Article  ADS  CAS  Google Scholar 

  10. Rentsch, D. & Damon, A. Prices, poaching, and protein alternatives: an analysis of bushmeat consumption around Serengeti National Park, Tanzania. Ecol. Econ. 91, 1–9 (2013).

    Article  Google Scholar 

  11. Inogwabini, B. I. Bushmeat, over-fishing and covariates explaining fish abundance declines in the Central Congo Basin. Environ. Biol. Fishes 97, 787–796 (2014).

    Article  Google Scholar 

  12. Degarege, G. A. & Lovelock, B. Sustainable tourism development and food security in Ethiopia: policy-making and planning. Tour. Plan. Dev. 16, 142–160 (2019).

    Article  Google Scholar 

  13. Wood, L. J., Fish, L., Laughren, J. & Pauly, D. Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42, 340–351 (2008).

    Article  Google Scholar 

  14. Toonen, R. J. et al. One size does not fit all: the emerging frontier in large-scale marine conservation. Mar. Pollut. Bull. 77, 7–10 (2013).

    Article  CAS  Google Scholar 

  15. Smyth, C. & Hanich, Q. Large Scale Marine Protected Areas: Current Status and Consideration of Socio-Economic Dimensions (Pew Charitable Trusts, 2019).

  16. Gray, N. J. et al. Human dimensions of large-scale marine protected areas: advancing research and practice. Coast. Manag. 45, 407–415 (2017).

    Article  Google Scholar 

  17. Lester, S. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Article  ADS  Google Scholar 

  18. Gruby, R. L. et al. Policy interactions in large-scale marine protected areas. Conserv. Lett. 2020, e12753 (2020).

    Google Scholar 

  19. Friedlander, A. M. et al. Size, age, and habitat determine effectiveness of Palau’s marine protected areas. PLoS ONE 12, e0174787 (2017).

    Article  Google Scholar 

  20. Golbuu, Y. & Friedlander, A. M. Spatial and temporal characteristics of grouper spawning aggregations in marine protected areas in Palau, western Micronesia. Estuar. Coast. Shelf Sci. 92, 223–231 (2011).

    Article  ADS  Google Scholar 

  21. Dacks, R., Lewis, S. A., James, P., Marino, L. L. & Oleson, K. Documenting baseline value chains of Palau’s nearshore and offshore fisheries prior to implementing a large-scale marine protected area. Mar. Policy 117, 103754 (2020).

    Article  Google Scholar 

  22. Carreon, B. Palau’s marine sanctuary backfires, leading to increased consumption of reef fish. The Guardian (26 February 2020).

  23. Birkeland, C. Working with, not against, coral-reef fisheries. Coral Reefs 36, 1–11 (2017).

    Article  ADS  Google Scholar 

  24. Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).

    Article  Google Scholar 

  25. Kemmerly, J. D. & Macfarlane, V. The elements of a consumer-based initiative in contributing to positive environmental change: Monterey Bay Aquarium’s seafood watch program. Zoo Biol. 28, 398–411 (2009).

    Article  Google Scholar 

  26. Palau Responsible Tourism Policy Framework: 2017–2021 (Bureau of Tourism, 2016).

  27. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  28. Bradburn, N. M., Rips, L. J. & Shevell, S. K. Answering autobiographical questions: the impact of memory and inference on surveys. Science 236, 157–161 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Johnston, R. J. et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4, 319–405 (2017).

    Google Scholar 

  30. McFadden, D. in Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic Press, 1973).

  31. Krinsky, I. & Robb, A. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 86, 715–719 (1986).

    Article  Google Scholar 

  32. Loomis, J. What’s to know about hypothetical bias in stated preference valuation studies? J. Econ. Surv. 25, 363–370 (2011).

    Article  Google Scholar 

  33. Hudson, D., Gallardo, R. K. & Hanson, T. R. A comparison of choice experiments and actual grocery store behavior: an empirical application to seafood products. J. Agric. Appl. Econ. 44, 49–62 (2012).

    Article  Google Scholar 

  34. Beck, M. J., Fifer, S. & Rose, J. M. Can you ever be certain? Reducing hypothetical bias in stated choice experiments via respondent reported choice certainty. Transp. Res. B Methodol. 89, 149–167 (2016).

    Article  Google Scholar 

Download references


We thank National Geographic Pristine Seas for funding this project; the Palau International Coral Reef Center for coordinating and supporting the data collection; the survey enumerators, including A. Uchel and T. Holm; and T. Oliver for providing advice on our statistical analysis.

Author information

Authors and Affiliations



S.A.L., K.L.L.O. and R.D. planned the project. S.A.L., K.L.L.O., R.D., C.F., S.F and P.A.S.J. designed the study. S.A.L. K.L.L.O., R.D. and L.M. collected the surveys. C.F., S.A.L., K.L.L.O., R.D. and S.F. conducted the analysis. C.F. and S.F. designed and estimated the choice experiment analysis. S.A.L., C.F. and K.L.L.O. wrote the paper. R.D., S.F., P.A.S.J., L.M. and Y.G. contributed to the writing.

Corresponding author

Correspondence to Staci A. Lewis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Mark Zimring and Hollie Booth for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Survey instrument, Supplementary Figs. 1–5 and Supplementary Tables 1–12.

Reporting Summary

Supplementary Data

Data and code for the choice experiment calculations, WTP modelling, demographics analysis and consumption calculations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewis, S.A., Fezzi, C., Dacks, R. et al. Conservation policies informed by food system feedbacks can avoid unintended consequences. Nat Food 1, 783–786 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing