Changes in the drought sensitivity of US maize yields


As climate change leads to increased frequency and severity of drought in many agricultural regions, a prominent adaptation goal is to reduce the drought sensitivity of crop yields. Yet many of the sources of average yield gains are more effective in good weather, leading to heightened drought sensitivity. Here we consider two empirical strategies for detecting changes in drought sensitivity and apply them to maize in the United States, a crop that has experienced myriad management changes including recent adoption of drought-tolerant varieties. We show that a strategy that utilizes weather-driven temporal variations in drought exposure is inconclusive because of the infrequent occurrence of substantial drought. In contrast, a strategy that exploits within-county spatial variability in drought exposure, driven primarily by differences in soil water storage capacity, reveals robust trends over time. Yield sensitivity to soil water storage increased by 55% on average across the US Corn Belt since 1999, with larger increases in drier states. Although yields have been increasing under all conditions, the cost of drought relative to good weather has also risen. These results highlight the difficulty of simultaneously raising average yields and lowering drought sensitivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of the study region.
Fig. 2: Sensitivity of maize yield to weather.
Fig. 3: Time trends in yield sensitivity to weather.
Fig. 4: Yield sensitivity to soil water storage.
Fig. 5: Changes over time in yield sensitivity to soil water.

Data availability

All historical weather, soil and county yield data used are publicly available and open access, with the data sources listed in the Methods. The other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used to perform analyses in this study is available at


  1. 1.

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects 485–534 (IPCC, Cambridge University Press, 2015).

  2. 2.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl Acad. Sci. USA 115, 10642–10647 (2018).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Müller, C., Bondeau, A., Popp, A., Waha, K. & Fader, M. Climate Change Impacts on Agricultural Yields (World Development Report, Background Note, 2010).

  5. 5.

    Liu, Z. et al. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Change 15, 919–929 (2015).

    Article  Google Scholar 

  6. 6.

    Meng, Q. et al. The benefits of recent warming for maize production in high latitude China. Clim. Change 122, 341–349 (2014).

  7. 7.

    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Zhu, P. et al. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob. Chang. Biol. 24, 4718–4730 (2018).

    ADS  Article  PubMed  Google Scholar 

  9. 9.

    Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Policy 8, 106–140 (2016).

  10. 10.

    Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).

    Article  Google Scholar 

  11. 11.

    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

  12. 12.

    McFadden, J., Smith, D., Wechsler, S. & Wallander, S. Development, Adoption, and Management of Drought-Tolerant Corn in the United States (US Department of Agriculture, Economic Research Service, 2019).

  13. 13.

    Gaffney, J. et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci. 55, 1608–1618 (2015).

    Article  Google Scholar 

  14. 14.

    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp Bot. 65, 6191–6204 (2014).

  15. 15.

    Goodwin, B. K. & Piggott, N. E. Has technology increased agricultural yield risk? Evidence from the crop insurance Biotech Endorsement. Am. J. Agric. Econ. (2020).

  16. 16.

    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Assefa, Y. et al. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8, 1–11 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B Biol. Sci. 276, 2333–2343 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 1–8 (2016).

    Article  Google Scholar 

  20. 20.

    Jin, Z., Ainsworth, E. A., Leakey, A. D. B. & Lobell, D. B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 24, e522–e533 (2018).

  21. 21.

    Mills, G. et al. Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa (Wash. DC) 6, 47 (2018).

    Google Scholar 

  22. 22.

    Mills, G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Chang. Biol. 24, 3560–3574 (2018).

  23. 23.

    McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).

  24. 24.

    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the US temperature–mortality relationship over the twentieth century. J. Polit. Econ. 124, 105–159 (2016).

    Article  Google Scholar 

  26. 26.

    Roberts, M. J. & Schlenker, W. in The Economics of Climate Change: Adaptations Past and Present (ed. Steckel, R. H.) 225–251 (University of Chicago Press, 2011).

  27. 27.

    Sakurai, G., Iizumi, T. & Yokozawa, M. Varying temporal and spatial effects of climate on maize and soybean affect yield prediction. Clim. Res 49, 143–154 (2011).

    Article  Google Scholar 

  28. 28.

    Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang. Biol 19, 937–947 (2013).

    ADS  Article  PubMed  Google Scholar 

  29. 29.

    Wang, E., Cresswell, H., Xu, J. & Jiang, Q. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agric. For. Meteorol. 149, 38–50 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    He, D. & Wang, E. On the relation between soil water holding capacity and dryland crop productivity. Geoderma 353, 11–24 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Wong, M. T. F. & Asseng, S. Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant Soil 283, 203–215 (2006).

  32. 32.

    Gridded Soil Survey Geographic (gSSURGO) Database User Guide 85 (National Resource Conservation Service, 2014).

  33. 33.

    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).

    Article  Google Scholar 

  34. 34.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  35. 35.

    Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).

  37. 37.

    Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032 (2003).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 3, 497–501 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Jin, Z. et al. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 23, 2687–2704 (2017).

  40. 40.

    Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).

    Article  Google Scholar 

  41. 41.

    Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region EIB-147, 40 (US Department of Agriculture, Economic Research Service, 2015).

  42. 42.

    Jin, Z., Azzari, G. & Lobell, D. B. Improving the accuracy of satellite-based high-resolution yield estimation: a test of multiple scalable approaches. Agric. For. Meteorol. 247, 207–220 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Lobell, D. B., Thau, D., Seifert, C., Engle, E. & Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 164, 324–333 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Urban, D. W., Roberts, M. J., Schlenker, W. & Lobell, D. B. The effects of extremely wet planting conditions on maize and soybean yields. Clim. Change 130, 1–14 (2015).

    Article  Google Scholar 

  45. 45.

    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).

  46. 46.

    Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).

  47. 47.

    Woodard, J. D. & Verteramo-Chiu, L. J. Efficiency impacts of utilizing soil data in the pricing of the federal crop insurance program. Am. J. Agric. Econ. 99, 757–772 (2017).

    Article  Google Scholar 

  48. 48.

    Wechsler, S. J., McFadden, J. R. & Smith, D. J. What do farmers’ weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields. Pest Manag. Sci. 74, 1143–1154 (2018).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).

  50. 50.

    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6194 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Adoption of Genetically Engineered Crops in the US (US Department of Agriculture, 2019);

  52. 52.

    Klümper, W. & Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629 (2014).

  53. 53.

    McFadden, J. R. Yield Maps, Soil Maps, and Technical Efficiency: Evidence from US Corn Fields (Agricultural and Applied Economics Association, 2017);

  54. 54.

    Duvick, D. N. in Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (eds J. R. Anderson and P. B. R. Hazel) 147–156 (Johns Hopkins University Press, 1989).

  55. 55.

    Daly, C., Halbleib, M. & Smith, J. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article  Google Scholar 

  56. 56.

    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program. Geocarto Int. 26, 341–358 (2011).

    Article  Google Scholar 

  57. 57.

    Wang, S., Di Tommaso, S., Deines, J. & Lobell, D. B. Mapping Twenty Years of Corn and Soybean Across the US Midwest Using the Landsat Archive. Sci. Data 7, 307 (2020).

  58. 58.

    Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).

    ADS  Article  Google Scholar 

  59. 59.

    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Chang. Biol. 19, 241–251 (2013).

  60. 60.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

  61. 61.

    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).

Download references


This work was supported by the NASA Harvest Consortium (NASA Applied 787 Sciences Grant Number 80NSSC17K0652, sub-award 54308-Z6059203) and the Stanford Data Science Initiative.

Author information




D.B.L. designed the research. D.B.L., J.M.D. and S.D.T. conducted the analysis. D.B.L. and J.M.D. wrote the paper.

Corresponding author

Correspondence to David B. Lobell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lobell, D.B., Deines, J.M. & Tommaso, S.D. Changes in the drought sensitivity of US maize yields. Nat Food 1, 729–735 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing