Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management

Abstract

China’s gains in food production over the past four decades have been associated with substantial agricultural nitrogen losses, which contribute to air and water pollution, greenhouse gas emissions and damage to human health. Here, we explore the potential to improve agricultural production practices that simultaneously increase yields while addressing these environmental challenges. We link agronomic research with air quality modelling for an integrated assessment of four improved nitrogen management strategies: improved farm management practices with nitrogen use reductions; machine deep placement of fertilizer; enhanced-efficiency fertilizer use; and improved manure management. We find that simultaneous implementation of the four strategies provides the largest benefits, which include: reductions in PM2.5 concentrations and associated premature deaths; increases in grain yields and grain nitrogen use efficiency; reductions in NO3 leaching and runoff and greenhouse gas emissions. Total benefits of US$30 billion per year exceed the US$18 billion per year in costs. Our findings indicate that policies that improve farmers’ agricultural nitrogen management in China will improve both food security and public health while addressing multiple environmental challenges. Similar increases in attention on agricultural policy around the world are likely to provide large benefits in food security, environmental integrity and public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An integrated assessment framework for evaluating the impacts of improved N management in China.
Fig. 2: NH3 emission reductions achieved through the implementation of N management scenarios.
Fig. 3: PM2.5 air quality impacts of the implementation of N management scenarios.
Fig. 4: Yield, NUE, GHG emissions and water pollution impacts of implementing improved N management scenarios.

Similar content being viewed by others

Data availability

The datasets generated during this study are available from Princeton University’s DataSpace repository (http://arks.princeton.edu/ark:/88435/dsp01pz50gz996). Source data are provided with this paper.

Code availability

NCAR Command Language (NCL) is used for analyses and visualizations in this study50. The NCL code is available from Princeton University’s DataSpace repository (http://arks.princeton.edu/ark:/88435/dsp01pz50gz996).

References

  1. Shi, Y., Cui, S., Ju, X., Cai, Z. & Zhu, Y.-G. Impacts of reactive nitrogen on climate change in China. Sci. Rep. 5, 8118 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gu, B., Sutton, M. A., Chang, S. X., Ge, Y. & Chang, J. Agricultural ammonia emissions contribute to China’s urban air pollution. Environ. Sci. Technol. 45, 168–174 (2014).

    Google Scholar 

  3. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    ADS  CAS  PubMed  Google Scholar 

  4. Cui, K. & Shoemaker, S. P. A look at food security in China. NPJ Sci. Food 2, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    ADS  CAS  PubMed  Google Scholar 

  6. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Google Scholar 

  7. Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bai, Z. et al. Livestock housing and manure storage need to be improved in China. Environ. Sci. Technol. 51, 8212–8214 (2017).

    ADS  CAS  PubMed  Google Scholar 

  9. Bai, Z. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).

    ADS  CAS  PubMed  Google Scholar 

  10. Brauer, M. et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50, 79–88 (2016).

    ADS  CAS  PubMed  Google Scholar 

  11. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1803222115 (2018).

  12. Huang, R. J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    ADS  CAS  PubMed  Google Scholar 

  13. Pinder, R. W., Adams, P. J. & Pandis, S. N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environ. Sci. Technol. 41, 380–386 (2007).

    ADS  CAS  PubMed  Google Scholar 

  14. Banzhaf, S. et al. Impact of emission changes on secondary inorganic aerosol episodes across Germany. Atmos. Chem. Phys. 13, 11675–11693 (2013).

    ADS  Google Scholar 

  15. Megaritis, A. G., Fountoukis, C., Charalampidis, P. E., Pilinis, C. & Pandis, S. N. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 13, 3423–3443 (2013).

    ADS  Google Scholar 

  16. Wang, S. et al. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45, 9293–9300 (2011).

    ADS  CAS  PubMed  Google Scholar 

  17. Three-Year Action Plan to Win the Battle for a Blue Sky [in Chinese] (The National Development and Reform Commission of the State Council of China, 2018); http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm?gs_ws=weixin_636662351573937202&from=timeline&isappinstalled=0

  18. Xia, L. et al. Can knowledge‐based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta‐analysis. Glob. Change Biol. 23, 1917–1925 (2017).

    ADS  Google Scholar 

  19. Action Plan for Zero Growth of Fertilizer Consumption by 2020 [in Chinese] (Chinese Ministry of Agriculture, 2015); http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm

  20. Action Plan for Manure Nutrient Usage (20172020) [in Chinese] (Chinese Ministry of Agriculture, 2017); http://www.moa.gov.cn/nybgb/2017/dbq/201801/t20180103_6134011.htm

  21. Standard of Animal Waste Discharge to Waters (Draft Version for Public Review) [in Chinese] (Ministry of Ecology and Environment of the People’s Republic of China, 2011); http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110328492079276914.pdf

  22. Paulot, F. & Jacob, D. J. Hidden cost of US agricultural exports: particulate matter from ammonia emissions. Environ. Sci. Technol. 48, 903–908 (2014).

    ADS  CAS  PubMed  Google Scholar 

  23. Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl Acad. Sci. USA 116, 7760–7765 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    ADS  CAS  PubMed  Google Scholar 

  25. Velthof, G. L. et al. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 468, 1225–1233 (2014).

    ADS  PubMed  Google Scholar 

  26. Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).

    ADS  CAS  Google Scholar 

  27. Seinfeld, J. H., Pandis, S. N. & Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (American Institute of Physics, 1998).

  28. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    CAS  PubMed  Google Scholar 

  29. Huang, X. et al. A high-resolution ammonia emission inventory in China.Global Biogeochem. Cycles 26, GB1030 (2012).

    ADS  Google Scholar 

  30. Gu, B. J. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).

    ADS  CAS  PubMed  Google Scholar 

  31. Kang, Y. et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 2043–2058 (2016).

    ADS  CAS  Google Scholar 

  32. Wu, L., Chen, X., Cui, Z., Zhang, W. & Zhang, F. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE 9, e98481 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. FAOSTAT Database (Food and Agriculture Organization of the United Nations, accessed 13 March 2018); http://www.fao.org/faostat/en/#data

  34. Li, Q. et al. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Sci. Rep. 7, 43853 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  35. Strokal, M. et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ. Res. Lett. 11, 024014 (2016).

    ADS  Google Scholar 

  36. Lu, X. et al. Exploring 2016-2017 surface ozone pollution over China: source contributions and meteorological influences. Atmos. Chem. Phys. 19, 8339–8361 (2019).

    ADS  CAS  Google Scholar 

  37. Lin, J.-T. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. Atmos. Chem. Phys. 12, 2881–2898 (2012).

    ADS  CAS  Google Scholar 

  38. Zhu, L. et al. Sources and impacts of atmospheric NH3: current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep. 1, 95–116 (2015).

    CAS  Google Scholar 

  39. Zhu, L. et al. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys. 15, 12823–12843 (2015).

    ADS  CAS  Google Scholar 

  40. Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans. R. Soc. B Biol. Sci. 368, 20130166 (2013).

    Google Scholar 

  41. Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    ADS  CAS  PubMed  Google Scholar 

  42. Erda, L. et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Phil. Trans. R. Soc. B Biol. Sci. 360, 2149–2154 (2005).

    Google Scholar 

  43. Chen, X.-P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oikawa, P. et al. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat. Commun. 6, 8753 (2015).

    ADS  CAS  PubMed  Google Scholar 

  45. Riddick, S. N. et al. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 12, 3397–3426 (2015).

    Google Scholar 

  46. Kanada, M. et al. Regional disparity and cost-effective SO2 pollution control in China: a case study in 5 mega-cities. Energy Policy 61, 1322–1331 (2013).

    Google Scholar 

  47. Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    ADS  CAS  PubMed  Google Scholar 

  48. Development Research Center of the State Council of China & Shandong Supply and Marketing Cooperatives Scale service and modernization of agriculture: supply and marketing cooperatives in Shandong Province Exploration Theory and Practice [in Chinese] (China Development Press, 2015).

  49. Baylis, K., Peplow, S., Rausser, G. & Simon, L. Agri-environmental policies in the EU and United States: a comparison. Ecol. Econ. 65, 753–764 (2008).

    Google Scholar 

  50. NCAR Command Language Version 6.3.0 (UCAR, NCAR, CISL & TDD, 2020); http://dx.doi.org/10.5065/D6WD3XH5

  51. Zhang, W. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, L. et al. Current potassium-management status and grain-yield response of Chinese maize to potassium application. J. Plant Nutr. Soil Sci. 176, 441–449 (2013).

    CAS  Google Scholar 

  53. Huang, J., Hu, R., Cao, J. & Rozelle, S. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. J. Soil Water Conserv. 63, 165A–167A (2008).

    Google Scholar 

  54. Wu, L. Fertilizer Recommendations for Three Major Cereal Crops Based on Regional Fertilizer Formula and Site Specific Adjustment in China. PhD thesis, China Agricultural Univ. (2014).

  55. Chen, X. Fertilizer Use Recommendations for China’s Three Major Crops in Their Typical Agri-Ecological Zones [in Chinese] (China Agricultural Press, 2016).

  56. Wu, L. Nitrogen Fertilizer Demand and Greenhouse Gas Mitigation Potential Under Nitrogen Limiting Conditions for Chinese Agriculture Production. PhD thesis, China Agricultural Univ. (2014).

  57. Wu, L., Chen, X., Cui, Z., Wang, G. & Zhang, W. Improving nitrogen management via a regional management plan for Chinese rice production. Environ. Res. Lett. 10, 095011 (2015).

    ADS  Google Scholar 

  58. Mi, G. et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 53, 1369–1373 (2010).

    PubMed  Google Scholar 

  59. Trenkel, M. E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture (International Fertilizer Association, 2010).

  60. Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).

    ADS  CAS  PubMed  Google Scholar 

  61. Chen, S., Zhang, S., Sun, X. & Li, Y. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization [in Chinese with English abstract]. Trans. Chin. Soc. Agricult. Eng. 28, 16–21 (2012).

    CAS  Google Scholar 

  62. Cao, Y. et al. Review on ammonia emission mitigation techniques of crop-livestock production system [in Chinese]. Sci. Agricult. Sinica 51, 566–580 (2018).

    Google Scholar 

  63. Paulot, F. et al. Ammonia emissions in the United States, European Union, and China derived by high‐resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 119, 4343–4364 (2014).

    ADS  CAS  Google Scholar 

  64. Morrison, H., Curry, J. A. & Khvorostyanov, V. I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci. 62, 1665–1677 (2005).

    ADS  Google Scholar 

  65. Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    ADS  Google Scholar 

  66. Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).

    ADS  Google Scholar 

  67. Li, M. et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935–963 (2017).

    ADS  CAS  Google Scholar 

  68. Janssens-Maenhout, G. et al. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).

    ADS  CAS  Google Scholar 

  69. Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006).

    ADS  CAS  Google Scholar 

  70. Cui, Z. et al. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Glob. Change Biol. 19, 2467–2477 (2013).

    ADS  Google Scholar 

  71. Cui, Z. et al. Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

    ADS  CAS  PubMed  Google Scholar 

  72. Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 153, 32–40 (2017).

    ADS  CAS  Google Scholar 

  73. Gu, B. J., Ju, X. T., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    ADS  CAS  PubMed  Google Scholar 

  75. All China Marketing Research Co, China Census Data by County 2000–2010 (2014); https://chinadatacenter.net/Data/ServiceContent.aspx?id=1622

  76. Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Xu, X., Chen, R., Kan, H. & Ying, X. Meta-analysis of contingent valuation studies on air pollution-related value of statistical life in China. Chin. Health Res. 1, 64–67 (2013).

    Google Scholar 

  78. Xie, X. The Value of Health: Applications of Choice Experiment Approach and Urban Air Pollution Control Strategy. PhD thesis, Peking Univ. (2011).

  79. Nielsen, C. P. & Ho, M. S. Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals (MIT Press, 2013).

  80. Chinese National Development and Reform Commission Information Summary on the Production Costs and Revenues of National Agricultural Products [in Chinese] (China Statistics Press, 2016).

  81. Ying, H., Ye, Y., Cui, Z. & Chen, X. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 162, 1308–1316 (2017).

    CAS  Google Scholar 

  82. Schiermeier, Q. Prices plummet on carbon market. Nature 457, 365 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.G. thanks the Princeton School of Public and International Affairs and the Graduate School at Princeton University for providing a five-year graduate fellowship and a Dean’s Completion Fellowship, respectively. L.Z. and L.M. acknowledge support from the National Key Research and Development Program of China (2017YFC0210102, 2018YFC0213304 and 2018YFC0213305) and the National Natural Science Foundation of China (41922037). W.Z. acknowledges support from the National Key Technologies Research and Development Program (grant 2016YFD0201303). We appreciate observations shared by S. Lai, Q. Yuan, J. Chen, Y. He, S. Wu and J. X. Warner, programming code for visualization shared by Y. Huang, and constructive suggestions from D. Kanter.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., L.Z., T.D.S. and D.L.M. designed the study. Y.G., Y.C., M.Z., D.P. and J.Y. performed the research. L.W., Z.C., W.Z., F.Z., L.M., Y.S. and M.A.Z. contributed data and analytical tools. Y.G., T.D.S., L.Z. and D.L.M. analysed the results and wrote the manuscript.

Corresponding authors

Correspondence to Lin Zhang or Denise L. Mauzerall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, Tables 1–21, Figs. 1–17 and references.

Reporting Summary

Source data

Source Data Fig. 2

Numerical data

Source Data Fig. 3

Numerical data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Chen, Y., Searchinger, T.D. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat Food 1, 648–658 (2020). https://doi.org/10.1038/s43016-020-00162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00162-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene