Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impacts of rising temperatures and farm management practices on global yields of 18 crops

Abstract

Understanding the impact of changes in temperature and precipitation on crop yields is a vital step in developing policy and management options to feed the world. As most existing studies are limited to a few staple crops, we implemented global statistical models to examine the influence of weather and management practices on the yields of 18 crops, accounting for 70% of crop production by area and 65% by calorific intake. Focusing on the impact of temperature, we found considerable heterogeneity in the responses of yields across crops and countries. Irrigation was found to alleviate negative implications from temperature increases. Countries where increasing temperature causes the most negative impacts are typically the most food insecure, with the lowest calorific food supply and average crop yield. International action must be coordinated to raise yields in these countries through improvement and modernization of agricultural practices to counteract future adverse impacts of climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional relationship between temperature and crop yield of cassava.
Fig. 2: Impacts of rising temperatures on crop yield and food safety globally for barley, cassava, cotton and groundnuts.
Fig. 3: Impacts of rising temperatures on crop yields and food safety globally for maize, millet, oats and potatoes.
Fig. 4: Impacts of rising temperatures on crop yields and food safety globally for pulses, rapeseed, rice and rye.
Fig. 5: Impacts of rising temperatures on crop yields and food safety globally for sorghum, soybeans, sugar beet and sunflowers.
Fig. 6: Impacts of rising temperatures on crop yields and food safety globally for sweet potatoes and wheat.

Similar content being viewed by others

Data availability

The data used in this study are available through the repository https://doi.org/10.5522/04/12768425.

Code availability

The scripts used in the estimation of the models and the production of the figures displayed in the main body of the paper are available through the repository https://doi.org/10.5522/04/12768425.

References

  1. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  2. Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    ADS  PubMed  Google Scholar 

  3. Alexander, P., Brown, C., Arneth, A., Finnigan, J. & Rounsevell, M. D. A. Human appropriation of land for food: the role of diet. Glob. Environ. Change 41, 88–98 (2016).

    Google Scholar 

  4. Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Google Scholar 

  5. Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

  6. Agnolucci, P. & De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Change https://doi.org/10.1007/s10584-019-02622-3 (2019).

  7. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    ADS  Google Scholar 

  8. Holland, R. A. et al. The influence of the global energy system on terrestrial biodiversity. Proc. Natl Acad. Sci. USA 116, 26078–26084 (2019).

    CAS  PubMed  Google Scholar 

  9. Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001 (2017).

    ADS  Google Scholar 

  10. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS  CAS  Google Scholar 

  11. Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moore, F. C. & Lobell, D. B. The fingerprint of climate trends on European crop yields. Proc. Natl Acad. Sci. USA 112, 2670–2675 (2015).

    ADS  CAS  PubMed  Google Scholar 

  13. Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    ADS  Google Scholar 

  14. Moore, F. C., Baldos, U. L. C. & Hertel, T. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models. Environ. Res. Lett. 12, 065008 (2017).

    ADS  Google Scholar 

  15. Ciscar, J., Vanden, F. K. & Lobell, D. B. (2018) Synthesis and review: an inter-method comparison of climate change impacts on agriculture. Environ. Res. Lett. 13, 070401 (2018).

    ADS  Google Scholar 

  16. Lobell, D. B. & Field, C. F. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 011002 (2007).

    Google Scholar 

  17. Moore, F. C. & Lobell, D. B. The adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).

    ADS  Google Scholar 

  18. Monfreda, C., Ramankutty, N. & Foley, J. A. (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    ADS  Google Scholar 

  19. Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 299, 1032–1032 (2003).

    CAS  PubMed  Google Scholar 

  20. Lobell, D. B. & Burke, M. B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 3, 034007 (2008).

    ADS  Google Scholar 

  21. Lobell, D. B. & Tebaldi, C. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 9, 074003 (2014).

    ADS  Google Scholar 

  22. Pugh, T. A. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oladele et al, O. I., Bam, R. K., Buri, M. M. & Wakatsuki, T. Missing prerequisites for Green Revolution in Africa: lessons and challenges of Sawah rice eco-technology development and dissemination in Nigeria and Ghana. J. Food Agric. Environ. 8, 1014–1018 (2016).

    Google Scholar 

  24. Araji, H. A. et al. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agric. Water Manag. 205, 63–71 (2018).

    Google Scholar 

  25. Li, X. & Troy, T. J. Changes in rainfed and irrigated crop yield response to climate in the western US. Environ. Res. Lett. 13, 064031 (2018).

    ADS  Google Scholar 

  26. Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    ADS  Google Scholar 

  27. Siebert, S. et al. Impact of heat stress on crop yield – on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    ADS  Google Scholar 

  28. Fara, S. J., Delazari, F. T., Gomes, R. S., Araújo, W. L. & da Silva, D. J. H. Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Sci. Hortic. 255, 86–95 (2019).

    Google Scholar 

  29. Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519, 283–285 (2015).

    ADS  PubMed  Google Scholar 

  30. Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    ADS  Google Scholar 

  31. Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS  CAS  PubMed  Google Scholar 

  32. Evenson, R. E. & Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science. 300, 758–762 (2003).

    ADS  CAS  PubMed  Google Scholar 

  33. Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

    ADS  Google Scholar 

  34. Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

    ADS  CAS  PubMed  Google Scholar 

  35. Ko, J. et al. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim. Change 111, 445–472 (2012).

    ADS  CAS  Google Scholar 

  36. Carter, E. K., Riha, S. J., Melkonian, J. & Steinschneider, S. Yield response to climate, management, and genotype: a large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems. Environ. Res. Lett. 13, 114006 (2018).

    ADS  Google Scholar 

  37. Lizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity. Glob. Food Secur. 4, 46–50 (2015).

    Google Scholar 

  38. Kurukulasuriya, P. & Mendelsohn, R. Crop switching as a strategy for adapting to climate change. Afr. J. Agric. Resour. Econ. 2, 1–22 (2008).

    Google Scholar 

  39. Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environ. Manag. 43, 804–816 (2009).

    ADS  Google Scholar 

  40. Gorst, A., Dehlavi, A. & Groom, B. Crop productivity and adaptation to climate change in Pakistan. Environ. Dev. Econ. 23, 679–701 (2018).

    Google Scholar 

  41. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield simulation with rising CO2 concentration. Science 312, 1918–1921 (2006).

    ADS  CAS  PubMed  Google Scholar 

  42. Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/3/034011 (2014).

  43. Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS  PubMed  Google Scholar 

  44. Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).

    ADS  CAS  Google Scholar 

  45. Taub, D. et al. Effects of elevated CO2 on the protein concentration of food crops: a metaanalysis. Glob. Change Biol. 14, 565–575 (2008).

    ADS  Google Scholar 

  46. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS  CAS  PubMed  Google Scholar 

  47. Dalin, C., Wadas, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanchez, P. A. & Swaminathan, M. S. Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    PubMed  Google Scholar 

  49. Alexander, P. et al. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Change Biol. 24, 2791–2809 (2018).

    ADS  Google Scholar 

  50. Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  51. Campos, J., Ericsson, N. R. & Hendry D. F. General-to-Specific Modelling: An Overview and Selected Bibliography International Finance Discussion Papers 835 (Board of Governors of the Federal Reserve System, 2005).

  52. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  53. Tebaldi, C. & Lobell, D. B. Estimated impacts of emission reductions on wheat and maize crops. Clim. Change 146, 533–545 (2018).

    ADS  CAS  Google Scholar 

  54. Popp, J., Peto, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Devel. 33, 243–255 (2013).

    Google Scholar 

  55. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 014002 (2014).

    Google Scholar 

  56. Christensen, J. H. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 11 (Cambridge Univ. Press, 2007).

Download references

Acknowledgements

The authors of this work have been supported as follows—P. Agnolucci, C.R., V.D.L. and P.E.: the Grantham Foundation, the UK Energy Research Centre through its Resource and Vectors theme (award EP/L024756/1) and the Addressing the Value of Nature and Energy Together (ADVENT) programme (Award NE/M019799/1); P. Alexander: the Resilience of the UK food system to Global Shocks (RUGS, BB/N020707/1); F.E. and R.H.: the UK Energy Research Centre through its Resource and Vectors theme (Award EP/L024756/1), the Addressing the Value of Nature and Energy Together (ADVENT) programme (Award NE/M019713/1) and the ERC grant SCALEFORES (grant agreement ID: 680176).

Author information

Authors and Affiliations

Authors

Contributions

All authors developed the research methodology. P. Agnolucci, V.D.L. and C.R. collected the data and computed the variables used in the estimation. P. Agnolucci and C.R. implemented the estimation. All authors contributed to writing up results.

Corresponding author

Correspondence to Paolo Agnolucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Discussion on the historic variation in yields and model performance, discussion on the effect of weather, irrigation, pesticides and fertilizers on crop yields, Supplementary Figs. 1–4 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnolucci, P., Rapti, C., Alexander, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat Food 1, 562–571 (2020). https://doi.org/10.1038/s43016-020-00148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00148-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene