Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathways for advancing pesticide policies

Abstract

Numerous pesticide policies have been introduced to mitigate the risks of pesticide use, but most have not been successful in reaching usage reduction goals. Here, we name key challenges for the reduction of environmental and health risks from agricultural pesticide use and develop a framework for improving current policies. We demonstrate the need for policies to encompass all actors in the food value chain. By adopting a multi-disciplinary approach, we suggest ten key steps to achieve a reduction in pesticide risks. We highlight how new technologies and regulatory frameworks can be implemented and aligned with all actors in food value chains. Finally, we discuss major trade-offs and areas of tension with other agricultural policy goals and propose a holistic approach to advancing pesticide policies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interactions between food value chain actors and pesticide policies.
Fig. 2: A holistic approach to pesticide policies.

References

  1. 1.

    Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    PubMed  Google Scholar 

  2. 2.

    Larsen, A. E., Gaines, S. D. & Deschênes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Niggli, U. et al. Pflanzenschutz und Biodiversität in Agrarökosystemen (Wissenschaftlicher Beirats des Nationalen Aktionsplans Pflanzenschutz beim Bundesministerium für Ernährung und Landwirtschaft, 2019).

  4. 4.

    Stehle, S. & Schulz, R. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl Acad. Sci. USA 112, 5750–5755 (2015).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Lai, W. Pesticide use and health outcomes: Evidence from agricultural water pollution in China. J. Environ. Econ. Manag. 86, 93–120 (2017).

    Google Scholar 

  6. 6.

    Lefebvre, M., Langrell, S. R. H. & Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: a review. Agron. Sustain. Dev. 35, 27–45 (2014).

    Google Scholar 

  7. 7.

    Osteen, C. D. & Fernandez-Cornejo, J. Economic and policy issues of U.S. agricultural pesticide use trends. Pest Manag. Sci. 69, 1001–1025 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Swinnen, J. Economics and politics of food standards, trade, and development. Agric. Econ. 47, 7–19 (2016).

    Google Scholar 

  9. 9.

    Nimenya, N., Ndimira, P. F. & de Frahan, B. H. Tariff equivalents of nontariff measures: The case of European horticultural and fish imports from African countries. Agric. Econ. 43, 635–653 (2012).

    Google Scholar 

  10. 10.

    Handford, C. E., Elliott, C. T. & Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 11, 525–536 (2015).

    PubMed  Google Scholar 

  11. 11.

    Topping, C., Aldrich, A. & Berny, P. Overhaul environmental risk assessment for pesticides. Science 367, 360–363 (2020).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Kudsk, P. & Mathiassen, S. K. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 68, 214–222 (2020).

    Google Scholar 

  13. 13.

    Special Report 05/2020: Sustainable Use of Plant Protection Products: Limited Progress in Measuring and Reducing Risks (European Court of Auditors, 2020).

  14. 14.

    Pesticide Sales (European Environmental Agency, 2019); https://go.nature.com/31pffJF

  15. 15.

    Hossard, L., Guichard, L., Pelosi, C. & Makowski, D. Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 575, 152–161 (2017).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Spycher, S. et al. Pesticide risks in small streams—how to get as close as possible to the stress imposed on aquatic organisms. Environ. Sci. Technol. 52, 4526–4535 (2018).

    ADS  CAS  PubMed  Google Scholar 

  17. 17.

    Special Eurobarometer 440: Europeans, Agriculture and the CAP (European Commission, 2016).

  18. 18.

    Huber, R. & Finger, R. Popular initiatives increasingly stimulate agricultural policy in Switzerland. EuroChoices 18, 38–39 (2019).

    Google Scholar 

  19. 19.

    Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    DG Health and Food Safety Overview Report: Sustainable Use of Pesticides (European Union, 2017).

  21. 21.

    Möhring, N., Gaba, S. & Finger, R. Quantity based indicators fail to identify extreme pesticide risks. Sci. Total Environ. 646, 503–523 (2019).

    ADS  PubMed  Google Scholar 

  22. 22.

    Saini, R. K., Bagri, L. P. & Bajpai, A. K. in New Pesticides and Soil Sensors 519–559 (Elsevier, 2017).

  23. 23.

    Rösch, A., Beck, B., Hollender, J. & Singer, H. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 411, 3151–3164 (2019).

    PubMed  Google Scholar 

  24. 24.

    Kudsk, P., Jørgensen, L. N. & Ørum, J. E. Pesticide load—A new Danish pesticide risk indicator with multiple applications. Land Use Policy 70, 384–393 (2018).

    Google Scholar 

  25. 25.

    Butler, D. EU expected to vote on pesticide ban after major scientific review. Nature 555, 150–151 (2018).

    ADS  CAS  PubMed  Google Scholar 

  26. 26.

    Böcker, T., Möhring, N. & Finger, R. Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agric. Syst. 173, 378–392 (2019).

    Google Scholar 

  27. 27.

    Möhring, N., Dalhaus, T., Enjolras, G. & Finger, R. Crop insurance and pesticide use in European agriculture. Agric. Syst. 184, 102902 (2020).

    Google Scholar 

  28. 28.

    Pe’er, G. et al. A greener path for the EU Common Agricultural Policy. Science 365, 449–451 (2019).

    ADS  PubMed  Google Scholar 

  29. 29.

    Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).

    ADS  PubMed  Google Scholar 

  30. 30.

    Schomers, S. & Matzdorf, B. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 6, 16–30 (2013).

    Google Scholar 

  31. 31.

    Finger, R. Take a holistic view when making pesticide policies stricter. Nature 556, 174–174 (2018).

    ADS  CAS  PubMed  Google Scholar 

  32. 32.

    Waterfield, G. & Zilberman, D. Pest management in food systems: An economic perspective. Annu. Rev. Env. Resour. 37, 223–245 (2012).

    Google Scholar 

  33. 33.

    Horowitz, J. K. & Lichtenberg, E. Risk-reducing and risk-increasing effects of pesticides. J. Agric. Econ. 45, 82–89 (1994).

    Google Scholar 

  34. 34.

    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).

    Google Scholar 

  35. 35.

    Dessart, F. J., Barreiro-Hurlé, J. & van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).

    Google Scholar 

  36. 36.

    Perry, E. D., Hennessy, D. A. & Moschini, G. Product concentration and usage: Behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 158, 543–559 (2019).

    Google Scholar 

  37. 37.

    Iyer, P., Bozzola, M., Hirsch, S., Meraner, M. & Finger, R. Measuring farmer risk preferences in Europe: A systematic review. J. Agric. Econ. 71, 3–26 (2019).

    Google Scholar 

  38. 38.

    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: The role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).

    PubMed  Google Scholar 

  39. 39.

    Finger, R., Möhring, N., Dalhaus, T. & Böcker, T. Revisiting pesticide taxation schemes. Ecol. Econ. 134, 263–266 (2017).

    Google Scholar 

  40. 40.

    Siegrist, M. & Bearth, A. Chemophobia in Europe and reasons for biased risk perceptions. Nat. Chem. 11, 1071–1072 (2019).

    CAS  PubMed  Google Scholar 

  41. 41.

    Saleh, R., Bearth, A. & Siegrist, M. “Chemophobia” today: Consumers’ knowledge and perceptions of chemicals. Risk Anal. 39, 2668–2682 (2019).

    PubMed  Google Scholar 

  42. 42.

    Bearth, A., Saleh, R. & Siegrist, M. Lay-people’s knowledge about toxicology and its principles in eight European countries. Food Chem. Toxicol. 131, 110560 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Kraus, N., Malmfors, T. & Slovic, P. Intuitive toxicology: Expert and lay judgments of chemical risks. Risk Anal. 12, 215–232 (1992).

    Google Scholar 

  44. 44.

    Bazoche, P. et al. Willingness to pay for pesticide reduction in the EU: nothing but organic? Eur. Rev. Agric. Econ. 41, 87–109 (2013).

    Google Scholar 

  45. 45.

    Hartmann, C., Hieke, S., Taper, C. & Siegrist, M. European consumer healthiness evaluation of ‘Free-from’ labelled food products. Food Qual. Prefer. 68, 377–388 (2018).

    Google Scholar 

  46. 46.

    List of Candidates for Substitution (European Commission, 2015); https://ec.europa.eu/food/plant/pesticides/approval_active_substances_en.

  47. 47.

    Kraehmer, H. et al. Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiol. 166, 1132–1148 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033 (2017).

    ADS  CAS  PubMed  Google Scholar 

  49. 49.

    Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 (2017).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Rosenbom, A. E. et al. The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999–June 2009 (Geological Survey of Denmark and Greenland, 2010).

  51. 51.

    Décret no 2016–1595 (La République Français, 2016); https://www.legifrance.gouv.fr/eli/decret/2016/11/24/AGRG1517899D/jo/texte.

  52. 52.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tschumi, M., Albrecht, M., Entling, M. H. & Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. Roy. Soc. B: Biol. Sci. 282, 20151369 (2015).

    Google Scholar 

  54. 54.

    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).

    PubMed  Google Scholar 

  55. 55.

    Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).

    Google Scholar 

  57. 57.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS  CAS  PubMed  Google Scholar 

  58. 58.

    Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    CAS  PubMed  Google Scholar 

  59. 59.

    Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Google Scholar 

  60. 60.

    Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Metz, F. & Ingold, K. Politics of the precautionary principle: assessing actors’ preferences in water protection policy. Policy Sci. 50, 721–743 (2017).

    Google Scholar 

  62. 62.

    Ramessar, K., Capell, T., Twyman, R. M. & Christou, P. Going to ridiculous lengths—European coexistence regulations for GM crops. Nature Biotechnol. 28, 133–136 (2010).

    CAS  Google Scholar 

  63. 63.

    Qaim, M. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 1, 665–694 (2009).

    Google Scholar 

  64. 64.

    Smyth, S. J. The human health benefits from GM crops. Plant Biotechnol. J. 18, 887–888 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Towards a Scientifically Justified, Differentiated Regulation of Genome Edited Plants in the EU (Nationale Akademie der Wissenschaften Leopoldina, 2019).

  67. 67.

    Ledford, H. CRISPR conundrum: Strict European court ruling leaves food-testing labs without a plan. Nature 572, 15 (2019).

    ADS  CAS  PubMed  Google Scholar 

  68. 68.

    Walter, A., Finger, R., Huber, R. & Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl Acad. Sci. USA 114, 6148–6150 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Mahlein, A. K., Kuska, M. T., Behmann, J., Polder, G. & Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annu. Rev. Phytopathol. 56, 535–558 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Google Scholar 

  71. 71.

    Metz, F. & Ingold, K. Sustainable wastewater management: Is it possible to regulate micropollution in the future by learning from the past? A policy analysis. Sustainability 6, 1992–2012 (2014).

    Google Scholar 

  72. 72.

    Schaffrin, A., Sewerin, S. & Seubert, S. Toward a comparative measure of climate policy output. Policy Stud. J. 43, 257–282 (2015).

    Google Scholar 

  73. 73.

    Peters, B. G. & Hoornbeek, J. A. in Designing Government: From Instruments to Governance (eds Eliadis, P. et al.) 77–105 (McGill-Queen’s University Press, 2005).

  74. 74.

    Ingold, K., Driessen, P. P. J., Runhaar, H. A. C. & Widmer, A. On the necessity of connectivity: linking key characteristics of environmental problems with governance modes. J. Environ. Plan. Manag. 62, 1821–1844 (2018).

    Google Scholar 

  75. 75.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

    Google Scholar 

  77. 77.

    De Schutter, O., Jacobs, N. & Clément, C. A ‘Common Food Policy’ for Europe: How governance reforms can spark a shift to healthy diets and sustainable food systems. Food Policy https://doi.org/10.1016/j.foodpol.2020.101849 (2020).

  78. 78.

    Lee, R., den Uyl, R. & Runhaar, H. Assessment of policy instruments for pesticide use reduction in Europe; Learning from a systematic literature review. Crop Prot. 126, 104929 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the research team of the Sinergia project CRSII5_193762 Evidence-based Transformation of Pesticide Governance, funded by the Swiss National Science Foundation, for conceptual support and intellectual inspiration. F.M.-L. was supported by the ANR project DECISIVE — Tracking degradation of soil pollutants with multi-elemental compound-specific isotope analysis (grant no. ANR-18-CE04-0004-02).

Author information

Affiliations

Authors

Contributions

N.M. and R.F. conceived of and led the manuscript writing and editing. The final manuscript was based on written input from all authors. All authors carefully revised the manuscript and approved the submission.

Corresponding authors

Correspondence to Niklas Möhring or Robert Finger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Möhring, N., Ingold, K., Kudsk, P. et al. Pathways for advancing pesticide policies. Nat Food 1, 535–540 (2020). https://doi.org/10.1038/s43016-020-00141-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing