Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design principles of food gels


Naturally sourced gels from food biopolymers have advanced in recent decades to compare favourably in performance and breadth of application to their synthetic counterparts. Here, we comprehensively review the constitutive nature, gelling mechanisms, design approaches, and structural and mechanical properties of food gels. We then consider how these food gel design principles alter rheological and tribological properties for food quality improvement, nutrient-modification of foods while preserving sensory perception, and targeted delivery of drugs and bioactives within the gastrointestinal tract. We propose that food gels may offer advantages over their synthetic counterparts owing to their source renewability, low cost, biocompatibility and biodegradability. We also identify emerging approaches and trends that may improve and expand the current scope, properties and functionalities of food gels and inspire new applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mechanisms of food gel formation and their typical structures.
Fig. 2: Gel particle preparations.
Fig. 3: The morphology of β-lactoglobulin amyloid fibril aerogels obtained from different drying techniques.
Fig. 4: Types of food polymer network.
Fig. 5: The linear elasticity and non-linear elasticity of semiflexible polymer networks.
Fig. 6: Food hydrogel–body interaction.
Fig. 7: Translation of general findings from other disciplines into food gels.


  1. 1.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Calo, E. & Khutoryanskiy, V. V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015).

    CAS  Google Scholar 

  3. 3.

    Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z. & Akil, H. M. Classification, processing and application of hydrogels: a review. Mater. Sci. Eng. C 57, 414–433 (2015).

    CAS  Google Scholar 

  4. 4.

    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev. 64, 18–23 (2012).

    Google Scholar 

  5. 5.

    Banerjee, S. & Bhattacharya, S. Food gels: gelling process and new applications. Crit. Rev. Food Sci. 52, 334–346 (2012).

    CAS  Google Scholar 

  6. 6.

    Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    ADS  CAS  PubMed  Google Scholar 

  7. 7.

    Zhao, S. Y., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M. & Nystrom, G. Biopolymer aerogels and foams: chemistry, properties, and applications. Angew. Chem. Int. Ed. 57, 7580–7608 (2018).

    CAS  Google Scholar 

  8. 8.

    Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    CAS  PubMed  Google Scholar 

  11. 11.

    Du, X. W., Zhou, J., Shi, J. F. & Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115, 13165–13307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Burey, P., Bhandari, B. R., Howes, T. & Gidley, M. J. Hydrocolloid gel particles: formation, characterization, and application. Crit. Rev. Food Sci. 48, 361–377 (2008).

    CAS  Google Scholar 

  13. 13.

    Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    Jorfi, M. & Foster, E. J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719 (2015).

    Google Scholar 

  15. 15.

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).

    CAS  Google Scholar 

  17. 17.

    Renard, D., van de Velde, F. & Visschers, R. W. The gap between food gel structure, texture and perception. Food Hydrocolloid. 20, 423–431 (2006).

    CAS  Google Scholar 

  18. 18.

    Tromp, R. H., van de Velde, F., van Riel, J. & Paques, M. Confocal scanning light microscopy (CSLM) on mixtures of gelatine and polysaccharides. Food Res. Int. 34, 931–938 (2001).

    CAS  Google Scholar 

  19. 19.

    Dickinson, E. Microgels—an alternative colloidal ingredient for stabilization of food emulsions. Trends Food Sci. Technol. 43, 178–188 (2015).

    CAS  Google Scholar 

  20. 20.

    de Lavergne, M. D., van de Velde, F. & Stieger, M. Bolus matters: the influence of food oral breakdown on dynamic texture perception. Food Funct. 8, 464–480 (2017).

    Google Scholar 

  21. 21.

    Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. 57, 3543–3564 (2017).

    CAS  Google Scholar 

  22. 22.

    Hoad, C. L. et al. In vivo imaging of intragastric gelation and its effect on satiety in humans. J. Nutr. 134, 2293–2300 (2004).

    CAS  PubMed  Google Scholar 

  23. 23.

    Krop, E. M., Hetherington, M. M., Miguel, S. & Sarkar, A. The influence of oral lubrication on food intake: a proof-of-concept study. Food Qual. Prefer. 74, 118–124 (2019).

    Google Scholar 

  24. 24.

    Godoi, F. C., Prakash, S. & Bhandari, B. R. 3D printing technologies applied for food design: status and prospects. J. Food Eng. 179, 44–54 (2016).

    Google Scholar 

  25. 25.

    McClements, D. J. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloid. 68, 238–245 (2017).

    CAS  Google Scholar 

  26. 26.

    McClements, D. J. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: physicochemical aspects. Adv. Colloid Interfac. 240, 31–59 (2017).

    CAS  Google Scholar 

  27. 27.

    McClements, D. J. Enhancing nutraceutical bioavailability through food matrix design. Curr. Opin. Food Sci. 4, 1–6 (2015).

    Google Scholar 

  28. 28.

    Mi, F. L., Tan, Y. C., Liang, H. F. & Sung, H. W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23, 181–191 (2002).

    CAS  PubMed  Google Scholar 

  29. 29.

    Gerrard, J. A. Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci. Technol. 13, 391–399 (2002).

    CAS  Google Scholar 

  30. 30.

    Nishinari, K. Some thoughts on the definition of a gel. Prog. Colloid Polym. Sci. 136, 87–94 (2009).

    MathSciNet  CAS  Google Scholar 

  31. 31.

    Djabourov, M., Nishinari, K. & Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers (Cambridge Univ. Press, 2013).

  32. 32.

    Morris, V. J. in Understanding and Controlling the Microstructure of Complex Foods (ed. McClements, D. J.) Ch. 3 (Woodhead, 2007).

  33. 33.

    Morris, E. R., Nishinari, K. & Rinaudo, M. Gelation of gellan: a review. Food Hydrocolloid. 28, 373–411 (2012).

    CAS  Google Scholar 

  34. 34.

    Fall, A. B., Lindstrom, S. B., Sprakel, J. & Wagberg, L. A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9, 1852–1863 (2013).

    ADS  CAS  Google Scholar 

  35. 35.

    Shen, X. P., Shamshina, J. L., Berton, P., Gurau, G. & Rogers, R. D. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 18, 53–75 (2016).

    Google Scholar 

  36. 36.

    Bertsch, P., Isabettini, S. & Fischer, P. Ion-induced hydrogel formation, and nematic ordering of nanocrystalline cellulose suspensions. Biomacromolecules 18, 4060–4066 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fang, Y. P. et al. Multiple steps and critical behaviors of the binding of calcium to alginate. J. Phys. Chem. B 111, 2456–2462 (2007).

    CAS  PubMed  Google Scholar 

  38. 38.

    Schefer, L., Adamcik, J. & Mezzenga, R. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy. Angew. Chem. Int. Ed. 53, 5376–5379 (2014).

    CAS  Google Scholar 

  39. 39.

    Schefer, L., Adamcik, J., Diener, M. & Mezzenga, R. Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale 7, 16182–16188 (2015).

    ADS  CAS  PubMed  Google Scholar 

  40. 40.

    Diener, M. et al. Primary, secondary, tertiary and quaternary structure levels in linear polysaccharides—from random coil, to single helix to supramolecular assembly. Biomacromolecules 20, 1731–1739 (2019).

    CAS  PubMed  Google Scholar 

  41. 41.

    Schefer, L., Usov, I. & Mezzenga, R. anomalous stiffening and ion-induced coil-helix transition of carrageenans under monovalent salt conditions. Biomacromolecules 16, 985–991 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Anderson, N. S., Campbell, J. W., Harding, M. M., Rees, D. A. & Samuel, J. W. B. X-ray diffraction studies of polysaccharide sulphates—double helix models for κ-and ι-carrageenans. J. Mol. Biol. 45, 85–88 (1969).

    CAS  PubMed  Google Scholar 

  43. 43.

    Reynaers, H. Light scattering study of polyelectrolyte polysaccharides—the carrageenans. Fibres Text. East Eur. 11, 88–96 (2003).

    Google Scholar 

  44. 44.

    Zhang, H. B., Zhang, F. & Wu, J. Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. React. Funct. Polym. 73, 923–928 (2013).

    CAS  Google Scholar 

  45. 45.

    Mezzenga, R. & Fischer, P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Rep. Prog. Phys. 76, 046601 (2013).

    ADS  PubMed  Google Scholar 

  46. 46.

    van der Linden, E. & Foegeding, E. A. in Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application (eds Kasapis, S. et al) Ch. 2 (Academic Press, 2009).

  47. 47.

    Clark, A. H., Kavanagh, G. M. & Ross-Murphy, S. B. Globular protein gelation—theory and experiment. Food Hydrocolloid. 15, 383–400 (2001).

    CAS  Google Scholar 

  48. 48.

    Foegeding, E. A., Davis, J. P., Doucet, D. & McGuffey, M. K. Advances in modifying and understanding whey protein functionality. Trends Food Sci. Technol. 13, 151–159 (2002).

    CAS  Google Scholar 

  49. 49.

    Foegeding, E. A. Food biophysics of protein gels: a challenge of nano and macroscopic proportions. Food Biophys. 1, 41–50 (2006).

    Google Scholar 

  50. 50.

    Adamcik, J. & Mezzenga, R. Proteins fibrils from a polymer physics perspective. Macromolecules 45, 1137–1150 (2012).

    ADS  CAS  Google Scholar 

  51. 51.

    Cao, Y. & Mezzenga, R. Food protein amyloid fibrils: origin, structure, formation, characterization, applications and health implications. Adv. Colloid Interfac. 269, 334–356 (2019).

    CAS  Google Scholar 

  52. 52.

    Bolisetty, S., Harnau, L., Jung, J. M. & Mezzenga, R. Gelation, phase behavior, and dynamics of beta-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths. Biomacromolecules 13, 3241–3252 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Le, X. T., Rioux, L. E. & Turgeon, S. L. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interfac. 239, 127–135 (2017).

    CAS  Google Scholar 

  54. 54.

    Schmitt, C. et al. Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25, 7899–7909 (2009).

    CAS  PubMed  Google Scholar 

  55. 55.

    Nicolai, T., Britten, M. & Schmitt, C. beta-lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloid. 25, 1945–1962 (2011).

    CAS  Google Scholar 

  56. 56.

    Patel, A. R. & Velikov, K. P. Zein as a source of functional colloidal nano- and microstructures. Curr. Opin. Colloid. Interfac. Sci. 19, 450–458 (2014).

    CAS  Google Scholar 

  57. 57.

    Masalova, O., Kulikouskaya, V., Shutava, T. & Agabekov, V. Alginate and chitosan gel nanoparticles for efficient protein entrapment. Phys. Proc. 40, 69–75 (2013).

    ADS  CAS  Google Scholar 

  58. 58.

    Yu, C. Y., Jia, L. H., Cheng, S. X., Zhang, X. Z. & Zhuo, R. X. Fabrication of microparticle protein delivery systems based on calcium alginate. J. Microencapsul. 27, 171–177 (2010).

    CAS  PubMed  Google Scholar 

  59. 59.

    Shewan, H. M. & Stokes, J. R. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Eng. 119, 781–792 (2013).

    CAS  Google Scholar 

  60. 60.

    Yu, Y. R. et al. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765 (2017).

    Google Scholar 

  61. 61.

    Kim, J. W., Utada, A. S., Fernandez-Nieves, A., Hu, Z. B. & Weitz, D. A. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 46, 1819–1822 (2007).

    CAS  Google Scholar 

  62. 62.

    Garcia, C. G. & Kiick, K. L. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater. 84, 34–48 (2019).

    Google Scholar 

  63. 63.

    McClements, D. J. Delivery by design (DbD): a standardized approach to the development of efficacious nanoparticle- and microparticle-based delivery systems. Compr. Rev. Food Sci. Food Safety 17, 200–219 (2018).

    CAS  Google Scholar 

  64. 64.

    McClements, D. J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv. Colloid Interfac. 253, 1–22 (2018).

    CAS  Google Scholar 

  65. 65.

    Garcia-Gonzalez, C. A., Alnaief, M. & Smirnova, I. Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohyd. Polym. 86, 1425–1438 (2011).

    CAS  Google Scholar 

  66. 66.

    Scherer, G. W. & Smith, D. M. Cavitation during drying of a gel. J. Non-Crystal. Solids 189, 197–211 (1995).

    ADS  CAS  Google Scholar 

  67. 67.

    Zhang, H. F. et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793 (2005).

    ADS  CAS  PubMed  Google Scholar 

  68. 68.

    Kohnke, T., Lin, A., Elder, T., Theliander, H. & Ragauskas, A. J. Nanoreinforced xylan-cellulose composite foams by freeze-casting. Green Chem. 14, 1864–1869 (2012).

    Google Scholar 

  69. 69.

    Mi, X. et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50, 4856–4864 (2012).

    CAS  Google Scholar 

  70. 70.

    Nystrom, G., Fernandez-Ronco, M. P., Bolisetty, S., Mazzotti, M. & Mezzenga, R. Amyloid templated gold aerogels. Adv. Mater. 28, 472–478 (2016).

    PubMed  Google Scholar 

  71. 71.

    Nystrom, G., Fong, W. K. & Mezzenga, R. Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules 18, 2858–2865 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Cao, Y. P., Bolisetty, S., Adamcik, J. & Mezzenga, R. Elasticity in physically cross-linked amyloid fibril networks. Phys. Rev. Lett. 120, 158103 (2018).

    ADS  CAS  PubMed  Google Scholar 

  73. 73.

    Burla, F., Mulla, Y., Vos, B. E., Aufderhorst-Roberts, A. & Koenderink, G. H. From mechanical resilience to active material properties in biopolymer networks. Nat. Rev. Phys. 1, 249–263 (2019).

    Google Scholar 

  74. 74.

    Ikeda, S., Nitta, Y., Temsiripong, T., Pongsawatmanit, R. & Nishinari, K. Atomic force microscopy studies on cation-induced network formation of gellan. Food Hydrocolloid. 18, 727–735 (2004).

    CAS  Google Scholar 

  75. 75.

    Ikeda, S. & Shishido, Y. Atomic force microscopy studies on heat-induced gelation of curdlan. J. Agr. Food Chem. 53, 786–791 (2005).

    CAS  Google Scholar 

  76. 76.

    Bertula, K. et al. Strain-stiffening of agarose gels. ACS Macro Lett. 8, 670–675 (2019).

    CAS  Google Scholar 

  77. 77.

    Gennes, P.-G. Scaling Concepts in Polymer Physics 4th edn (Cornell Univ., 1993).

  78. 78.

    Prince, E. & Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 4, 99–115 (2019).

    ADS  Google Scholar 

  79. 79.

    Mackintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    ADS  CAS  PubMed  Google Scholar 

  80. 80.

    Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    ADS  CAS  PubMed  Google Scholar 

  81. 81.

    Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995–1036 (2014).

    ADS  CAS  Google Scholar 

  82. 82.

    Naderi, A., Lindstrom, T. & Sundstrom, J. Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21, 1561–1571 (2014).

    CAS  Google Scholar 

  83. 83.

    Clark, A. H., Ross‐Murphy. The concentration dependence of biopolymer gel modulus. J. Br. Polymer J. 17, 164–168 (1985).

    CAS  Google Scholar 

  84. 84.

    Joly-Duhamel, C., Hellio, D., Ajdari, A. & Djabourov, M. All gelatin networks: 2. The master curve for elasticity. Langmuir 18, 7158–7166 (2002).

    CAS  Google Scholar 

  85. 85.

    Gilsenan, P. M. & Ross-Murphy, S. B. Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloid. 14, 191–195 (2000).

    CAS  Google Scholar 

  86. 86.

    Diba, M., Wang, H. N., Kodger, T. E., Parsa, S. & Leeuwenburgh, S. C. G. Highly elastic and self-healing composite colloidal gels. Adv. Mater. 29, 1604672 (2017).

    Google Scholar 

  87. 87.

    Cao, Y. P., Bolisetty, S., Wolfisberg, G., Adamcik, J. & Mezzenga, R. Amyloid fibril-directed synthesis of silica core-shell nanofilaments, gels, and aerogels. Proc. Natl Acad. Sci. USA 116, 4012–4017 (2019).

    ADS  CAS  PubMed  Google Scholar 

  88. 88.

    Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    ADS  CAS  PubMed  Google Scholar 

  89. 89.

    Lin, Y. C. et al. Origins of elasticity in intermediate filament networks. Phys. Rev. Lett. 104, 058101 (2010).

    ADS  PubMed  Google Scholar 

  90. 90.

    Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    ADS  CAS  PubMed  Google Scholar 

  91. 91.

    Romera, M. F. C. et al. Strain-stiffening in dynamic supramolecular fiber networks. J. Am. Chem. Soc. 140, 17547–17555 (2018).

    Google Scholar 

  92. 92.

    Nishinari, K. & Fang, Y. P. Sucrose release from polysaccharide gels. Food Funct. 7, 2130–2146 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Normand, V. et al. Effect of sucrose on agarose gels mechanical behaviour. Carbohyd. Polym. 54, 83–95 (2003).

    CAS  Google Scholar 

  94. 94.

    Stokes, J. R., Boehm, M. W. & Baier, S. K. Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr. Opin. Colloid. Interfac. Sci. 18, 349–359 (2013).

    CAS  Google Scholar 

  95. 95.

    Krop, E. M., Hetherington, M. M., Holmes, M., Miquel, S. & Sarkar, A. On relating rheology and oral tribology to sensory properties in hydrogels. Food Hydrocolloid. 88, 101–113 (2019).

    CAS  Google Scholar 

  96. 96.

    Chen, J. S. & Stokes, J. R. Rheology and tribology: two distinctive regimes of food texture sensation. Trends Food Sci. Technol. 25, 4–12 (2012).

    CAS  Google Scholar 

  97. 97.

    Sarkar, A., Andablo-Reyes, E., Bryant, M., Dowson, D. & Neville, A. Lubrication of soft oral surfaces. Curr. Opin. Colloid. Interfac. Sci. 39, 61–75 (2019).

    CAS  Google Scholar 

  98. 98.

    Koc, H., Vinyard, C. J., Essick, G. K. & Foegeding, E. A. Food oral processing: conversion of food structure to textural perception. Annu. Rev. Food Sci. Technol. 4, 237–266 (2013).

    CAS  PubMed  Google Scholar 

  99. 99.

    Pascua, Y., Koc, H. & Foegeding, E. A. Food structure: roles of mechanical properties and oral processing in determining sensory texture of soft materials. Curr. Opin. Colloid Interfac. Sci. 18, 324–333 (2013).

    CAS  Google Scholar 

  100. 100.

    Liu, K., Tian, Y. J., Stieger, M., van der Linden, E. & van de Velde, F. Evidence for ball-bearing mechanism of microparticulated whey protein as fat replacer in liquid and semi-solid multi-component model foods. Food Hydrocolloid. 52, 403–414 (2016).

    CAS  Google Scholar 

  101. 101.

    Sarkar, A., Kanti, F., Gulotta, A., Murray, B. S. & Zhang, S. Y. Aqueous lubrication, structure and rheological properties of whey protein microgel particles. Langmuir 33, 14699–14708 (2017).

    CAS  PubMed  Google Scholar 

  102. 102.

    Torres, O., Andablo-Reyes, E., Murray, B. S. & Sarkar, A. Emulsion microgel particles as high-performance bio-lubricants. ACS Appl. Mater. Interfac. 10, 26893–26905 (2018).

    CAS  Google Scholar 

  103. 103.

    Hayakawa, F. et al. Characterization of eating difficulty by sensory evaluation of hydrocolloid gels. Food Hydrocolloid. 38, 95–103 (2014).

    CAS  Google Scholar 

  104. 104.

    Sala, G., Stieger, M. & van de Velde, F. Serum release boosts sweetness intensity in gels. Food Hydrocolloid. 24, 494–501 (2010).

    CAS  Google Scholar 

  105. 105.

    Stieger, M. & van de Velde, F. Microstructure, texture and oral processing: new ways to reduce sugar and salt in foods. Curr. Opin. Colloid Interfac. Sci. 18, 334–348 (2013).

    CAS  Google Scholar 

  106. 106.

    Baynes, J. W. & Dominiczak, M. H. Medical Biochemistry 4th edn (Saunders Elsevier, 2014).

  107. 107.

    Tungland, B. & Meyer, D. Nondigestible oligo‐and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr. Rev. Food Sci. Food Safety 1, 90–109 (2002).

    Google Scholar 

  108. 108.

    Barbe, F. et al. The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chem. 136, 1203–1212 (2013).

    CAS  PubMed  Google Scholar 

  109. 109.

    Dupont, D., Le Feunteun, S., Marze, S. & Souchon, I. Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innov. Food Sci. Emerg. 46, 83–90 (2018).

    CAS  Google Scholar 

  110. 110.

    Barbe, F. et al. Tracking the in vivo release of bioactive peptides in the gut during digestion: mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Res. Int. 63, 147–156 (2014).

    CAS  Google Scholar 

  111. 111.

    Mudgil, D. & Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int. J. Biol. Macromol. 61, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  112. 112.

    Sarkar, A. et al. Impact of protein gel porosity on the digestion of lipid emulsions. J. Agr. Food Chem. 63, 8829–8837 (2015).

    CAS  Google Scholar 

  113. 113.

    Norton, A. B., Cox, P. W. & Spyropoulos, F. Acid gelation of low acyl gellan gum relevant to self-structuring in the human stomach. Food Hydrocolloid. 25, 1105–1111 (2011).

    CAS  Google Scholar 

  114. 114.

    Zhang, S. & Vardhanabhuti, B. Intragastric gelation of whey protein-pectin alters the digestibility of whey protein during in vitro pepsin digestion. Food Funct. 5, 102–110 (2014).

    CAS  PubMed  Google Scholar 

  115. 115.

    Zhang, Z. P., Zhang, R. J., Zou, L. Q. & McClements, D. J. Protein encapsulation in alginate hydrogel beads: effect of pH on microgel stability, protein retention and protein release. Food Hydrocolloid. 58, 308–315 (2016).

    CAS  Google Scholar 

  116. 116.

    Sinha, V. R. & Kumria, R. Polysaccharides in colon-specific drug delivery. Int. J. Pharm. 224, 19–38 (2001).

    CAS  PubMed  Google Scholar 

  117. 117.

    Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    CAS  PubMed  Google Scholar 

  118. 118.

    Roman, M. J. I. B. Toxicity of cellulose nanocrystals: a review. Ind. Biotechnol. 11, 25–33 (2015).

    CAS  Google Scholar 

  119. 119.

    Johansson, M. E. V., Sjovall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    des Rieux, A., Fievez, V., Garinot, M., Schneider, Y. J. & Preat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116, 1–27 (2006).

    CAS  PubMed  Google Scholar 

  121. 121.

    Yun, Y., Cho, Y. W. & Park, K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 65, 822–832 (2013).

    CAS  PubMed  Google Scholar 

  122. 122.

    Morishita, M. & Peppas, N. A. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 11, 905–910 (2006).

    CAS  PubMed  Google Scholar 

  123. 123.

    Chaturvedi, K., Ganguly, K., Nadagouda, M. N. & Aminabhavi, T. M. Polymeric hydrogels for oral insulin delivery. J. Control. Release 165, 129–138 (2013).

    CAS  PubMed  Google Scholar 

  124. 124.

    Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001).

    CAS  PubMed  Google Scholar 

  125. 125.

    Helenius, G. et al. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 76A, 431–438 (2006).

    CAS  Google Scholar 

  126. 126.

    Miguel, S. P., Ribeiro, M. P., Brancal, H., Coutinho, P. & Correia, I. J. Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohyd. Polym. 111, 366–373 (2014).

    CAS  Google Scholar 

  127. 127.

    Gorgieva, S. & Kokol, V. in Biomaterials: Applications for Nanomedicine (ed. Pignatello, R.) Ch. 2 (InTech, 2011)

  128. 128.

    Reynolds, N. P., Charnley, M., Mezzenga, R. & Hartley, P. G. Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules 15, 599–608 (2014).

    CAS  PubMed  Google Scholar 

  129. 129.

    Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007).

    CAS  Google Scholar 

  130. 130.

    McClements, D. J. & Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Sci. Food 1, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Miller, E. R. et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142, 37–46 (2005).

    CAS  PubMed  Google Scholar 

  132. 132.

    Mezzenga, R., Schurtenberger, P., Burbidge, A. & Michel, M. Understanding foods as soft materials. Nat. Mater. 4, 729–740 (2005).

    ADS  CAS  PubMed  Google Scholar 

  133. 133.

    Ubbink, J., Burbidge, A. & Mezzenga, R. Food structure and functionality: a soft matter perspective. Soft Matter 4, 1569–1581 (2008).

    ADS  CAS  Google Scholar 

  134. 134.

    Zhao, X. H. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS  Google Scholar 

  136. 136.

    Xia, L. W. et al. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4, 2226 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Xu, D. D. et al. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 28, 5944–5849 (2016).

    Google Scholar 

  138. 138.

    Nakayama, A. et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14, 1124–1128 (2004).

    CAS  Google Scholar 

  139. 139.

    Koetting, M. C., Peters, J. T., Steichen, S. D. & Peppas, N. A. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 93, 1–49 (2015).

    Google Scholar 

  140. 140.

    Wei, M. L., Gao, Y. F., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2017).

    CAS  Google Scholar 

  141. 141.

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    ADS  PubMed  Google Scholar 

  142. 142.

    Stephen, A. M., Phillips, G. O. & Williams, P. A. Food Polysaccharides and their Applications 2nd edn (CRC, 2006).

  143. 143.

    Hettiarachchy, N. S., Sato, K., Marshall, M. R. & Hettiarachchy, N. S. Food Proteins and Peptides: Chemistry, Functionality, Interactions, and Commercialization (CRC, 2012).

  144. 144.

    Liu, F. G., Ma, C. C., Gao, Y. X. & McClements, D. J. Food-grade covalent complexes and their application as nutraceutical delivery systems: a review. Compr. Rev. Food Sci. Food Safety 16, 76–95 (2017).

    CAS  Google Scholar 

  145. 145.

    Manzocco, L. et al. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloid. 71, 68–75 (2017).

    CAS  Google Scholar 

  146. 146.

    Mikkonen, K. S., Parikka, K., Ghafar, A. & Tenkanen, M. Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci. Technol. 34, 124–136 (2013).

    CAS  Google Scholar 

  147. 147.

    Patel, A. R. & Dewettinck, K. Edible oil structuring: an overview and recent updates. Food Funct. 7, 20–29 (2016).

    CAS  PubMed  Google Scholar 

  148. 148.

    Singh, A., Auzanneau, F. I. & Rogers, M. A. Advances in edible oleogel technologies—a decade in review. Food Res. Int. 97, 307–317 (2017).

    CAS  PubMed  Google Scholar 

  149. 149.

    Marangoni, A. G. Edible Oleogels: Structure and Health Implications 2nd edn (Elsevier, 2018).

  150. 150.

    de Vries, A., Hendriks, J., van der Linden, E. & Scholten, E. Protein oleogels from protein hydrogels via a stepwise solvent exchange route. Langmuir 31, 13850–13859 (2015).

    PubMed  Google Scholar 

  151. 151.

    Mezzenga, R. & Ulrich, S. Spray-dried oil powder with ultrahigh oil content. Langmuir 26, 16658–16661 (2010).

    CAS  PubMed  Google Scholar 

  152. 152.

    Romoscanu, A. I. & Mezzenga, R. Emulsion-templated fully reversible protein-in-oil gels. Langmuir 22, 7812–7818 (2006).

    CAS  PubMed  Google Scholar 

  153. 153.

    Dickinson, E. Emulsion gels: the structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloid. 28, 224–241 (2012).

    CAS  Google Scholar 

  154. 154.

    Torres, O., Murray, B. & Sarkar, A. Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci. Technol. 55, 98–108 (2016).

    CAS  Google Scholar 

Download references


Y. C. acknowledges financial support from ETH Zurich and the China Scholarship Council.

Author information



Corresponding author

Correspondence to Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Mezzenga, R. Design principles of food gels. Nat Food 1, 106–118 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing