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Behavior-encoded models reveal
differentiated access to public cooling
environment by race and income
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Extreme heat events caused by continuous anthropogenic climate change have been increasing.
Establishing public cooling environments (PCEs) is imperative for protecting public health and
enhancing productivity. Yet, disparities in access to PCEs based on race, travel behavior, and income
status can undermine their role in helping communities cope with extreme heat. This study
investigates the varied access to three types of PCEs across 40U.S. counties. Our findings reveal that
White people enjoy greater access to PCEs than other groups, especially to tree-covered green
spaces (TCGSs), outperforming Black people approximately three times. Driving can
disproportionately narrow the racial/ethnic inequality gap compared to walking. Non-expense-
required public environments (NERPEs) and expense-required public environments (ERPEs) are less
accessible to high-income groups. Our research underscores the ongoing challenges in achieving
environmental justice through equitable PCE access and stresses the importance of further studies
and policy actions to eliminate disparities.

Extreme heat diminishes work productivity and economic performance,
and increases morbidity andmortality1–4. Studies have shown that in the
United States, extreme heat is responsible for over 1300 deaths
annually5,6, with non-Hispanic Black Americans experiencing higher
mortality rates2. The issue of extreme heat is exacerbated by anthro-
pogenic climate change, predicting a future where it becomes more
ubiquitous and intense7–10.

Despite the immediate need to address these heat-related issues, cli-
mate change policies have predominantly focused on long-term solutions,
such as inducing new, low-carbon energy technologies and transforming
energy production patterns. These strategies face decades-long challenges
across technical, economic, and social barriers11,12. On the other hand, short-
term and direct options in climate adaptation, such as cooling environ-
ments, including indoor and outdoor cooling environments, serve as an
effective infrastructure to reduce the impacts of extreme heat13. Recent
studies have shown that spending even a few hours in a cool environment
effectively reduces the risk of heat exposure, and are less likely to suffer from
heat-relatedmortality14–17. Given this, there is a growing acknowledgment of
the importance of access to cooling environments against extreme heat such
as indoor cooling, housing quality, energy accessibility/affordability, ther-
mal safety and school/workplace thermal comfort.

As society faces the need of providing cooling environments, the
deployment of cooling centers operated by public health departments and
their partners, like libraries, schools, and community and religious centers, is
increasing18–20. However, these centers are not yet widespread20–22, and
studies indicated that low-risk individuals use cooling centers more fre-
quently than high-risk individuals23. Similarly, the disparate access across
population groups is prevalent in existing research related to other public
open space (POS), especially among different racial/ethnic groups and
income groups24–31. For instance, restricted access to healthcare facilities
significantly contributes to higher cancer mortality rates among Black
people32,33.

Here, we define public cooling environments (PCEs) as a POS that
provides cooling environments, including those previously identified as
cooling centers, and we thoroughly explore the spatial distribution of PCEs
and the differentiated accessibility to different groups. Specifically, based on
different entry thresholds, PCEs can be divided into tree-covered green
space (TCGS), non-expense-required public environment (NERPE), and
expense-required public environment (ERPE). TCGS has no entry thresh-
old andoffers aproductive cooling environment. Several studieshave shown
that a green space exposed to sunlight is not effective in lowering the
ambient temperature34–36, while TCGS can be 4–7 °C cooler than the
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exposed surroundings35,37,38 with 30w/m2 more radiant energy reduction39.
NERPEhas a low entry threshold and requires no cost to stay, such as places
of worship, libraries and malls, and so on. ERPE, where the entry requires
some expenses, is more accepted by the group with better financial status.
ERPE includes restaurants, cafes and cinemas, and so on.

We adopted themodified two-stepfloating catchment area (M2SFCA)
method40, a behavior-encoded approach, to measure PCE accessibility. We
first computed the shortest travel time fromaPCE-demanded location (e.g.,
a census block group) to a PCE-supplied location (e.g., a mall), considering
travel patterns, speeds, and road networks. We then evaluated PCE acces-
sibility of the PCE-demanded location using factors such as time buffer,
demand capacities, and supply capacities. The detailed computationprocess
is shown in the method section.

Our study focused on 40 U.S. counties severely affected by extreme
heat, located in diverse geographical regions (Fig. 1b). We assessed PCE
accessibility by analyzing travel behaviors for walking and driving, factoring
in different travel speeds and road networks41–43 (Fig. 1a). A probability
matrix, which comprised the minimum travel time from each census block
group (CBG) to the PCE, theM2SFCAmethodwas calibrated to determine
the accessibility of the residents living in aCBG(Fig. 1c).The results revealed
significant racial/ethnic disparities in accessing PCEs in counties. Effective
estimation of people’s accessibility does not only require capturing where
they live but also the actual travel behaviors of the people living in these
neighborhoods. Hence, our model encoded the travel behaviors and capa-
city, derived fromvehicle ownership, in computing the PCE accessibility for
people in each CBG. Vehicle ownership is, to a great extent, driven by
household income.Todig into the inequity of access,we further investigated
whether there is differentiated PCE accessibility within race/ethnic groups
based on income.

Results
Differentiated access by race and ethnicity
Experiments began in each county, taking Harris County in Texas as an
example. This county is among the most populous and hottest in the U.S.
For ease of exposition, we presented a comparative analysis betweenWhite
and Black people, highlighting behavioral patterns in walking and driving
scenarios (refer to Figs. 2 and 3). In Fig.2a,White people show an increase in
walking accessibility from the county’s center to its outskirts, with lower
access in the center and southeast, andhigher in the north. In contrast, Black
peoplehave generally loweraccessibility in the south, improving towards the
north. In terms of walking access to NERPE, White people face lower
accessibility in the north and northwest, but better access in the center and
southeast. Black people, however, experience generally lower accessibility,
with some central areas showing better access. White people’s access to
ERPE ishigh, improving from theoutskirts to the center,withnotable access
in the northwest and southeast. Black people see lower access in the north
and south but better in the center, also improving from the outskirts to the
center, especially in the southeast. We also provided the detailed PCE
accessibility distribution of overrepresented CBGs in the walking scenario
for Hispanic or Latino, American Indian, and Asian groups in Supple-
mentary Fig. 1A.

Figure 2b reveals that across all PCE categories, White people have
higher maximum probability density values for PCE access than Black
people. Specifically, White people’s maximum density (0.50) for accessing
TCGS is less than Black people’s (0.61), but their access to PCE (0.42) and
average accessibility (0.50) are higher than those of Black people (0.29 and
0.47, respectively). For NERPE and ERPE, White people also show higher
maximum densities and mean accessibility values than Black people. The
detailed probability density curves of PCE accessibility distribution in the

Fig. 1 | Schematic overview of the study. a The results are to be developed in this
study. Icons represent the three categories of PCE, the map represents the spatial
distribution of icons, and the results to be developed focus on the inequality of PCE
accessibility between races/ethnicities from two behavioral patterns, i.e., driving
and walking, we then encoded behavior patterns by vehicle ownership and compare
the results, and finally examine the inequality within race/ethnicity based on
income. b The distribution of the 40 Counties we selected. We chose at least two
counties in each type of region division and air temperature division, and these
counties overall comprise 44,539 CBGs and a total population of 65,031,016. The
base map for region division uses the United States Census Bureau (USCB)

definition of nine divisions, which are widely used for census data collection and
analysis. The basemap of the air temperature division uses the climate divisionmap
from National Oceanic and Atmospheric Administration (NOAA), and the tem-
perature data is the average air temperature of June-August between 2014–2023.
c The sources of study data and the processes of assessing. PCE data was extracted
from tree canopy cover data and public facilities data from OpenStreetMap, CBG-
level socio-economic data was extracted from the decennial census of the United
States, and the CBG-level PCE accessibility distribution was calculated by matrix
operations and the M2SFCA method.
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walking scenario of overrepresented CBGs for five race/ethnic groups are
shown in Supplementary Fig. 1B.

Summarizing results from the 40 counties, we observed a consistent
advantage in PCE accessibility forWhite people over other races/ethnicities
(Supplementary Fig. 3). Figure 2c illustrates the comparative analysis for
White and Black people, the overall means of PCE accessibility for White
people are 95.81 for TCGS, 3.81 for NERPE, and 0.17 for ERPE. For Black
people, they are 26.64, 2.95, and 0.10, for TCGS, NERPE and ERPE,
respectively. In general, White people have 259.7% (TCGS), 64.6%
(NERPE), and 28.8% (ERPE) more accessibility than Black people. This
significant disparity in accessibility by race is widespread and statistically
significant in counties experiencing extreme heat, exacerbating the local
populations’ vulnerability to extreme heat effects.

In the driving scenario, we adhered to a similar research approach.
Figure 3a, compared to Fig. 2a, exhibits more CBGs with PCE accessibility
and more clustering effects. Specifically, for driving access to TCGS, White
people have greater accessibility in the northeast, but less in the central and
southeast areas, whereas Black people experience higher accessibility in the
north-central region, diminishing southward. Regarding NERPE driving
access, White people find better accessibility in the central and southeast,
indicating a clustering effect, and less in the northeast and west, while Black
people see higher accessibility centrally, tapering off in all directions. For
ERPE driving access, White people enjoy greater accessibility in the central
and western regions, but not in the northeast, with Black people also
showing higher central accessibility, decreasing outward. The detailed PCE

accessibility distribution of overrepresented CBGs in the driving scenario
for Hispanic or Latino, American Indian, and Asian people are demon-
strated in Supplementary Fig. 2A.

Figure 3b, compared to Fig. 2b, exhibits overall smaller differences in
PCE accessibility probability density, yet with more irregular distribution
curves featuring additional peaks, suggesting a more precise division of the
PCE-access populationbydriving. Thedetailedprobability density curves of
PCE accessibility distribution in the driving scenario of overrepresented
CBGs for five race/ethnic groups are illustrated in Supplementary Fig. 2B.

Figure 3c, compared to Fig. 2c, reflects less inequality in PCE accessi-
bility. Specifically, the average PCE accessibility for White people were
139.08 (TCGS), 4.15 (NERPE), and 0.18 (ERPE), compared to 110.54
(TCGS), 4.62 (NERPE), and 0.16 (ERPE) for Black people. Thus, White
people’s accessibility is 25.8% and 8.6% higher than that of Black people for
TCGS and ERPE, respectively, but 10.3% lower for NERPE.

We also calculated the overall population-weighted PCE accessibility
for each racial/ethnic group (Supplementary Fig. 4). For walking, White
people experienced 8.5%, 21.1%, and 75.5% more population-weighted
accessibility than Black people for TCGS, NERPE, and ERPE accessibility,
respectively. For driving, White people had 5.7% and 11.3% more
population-weighted accessibility than Black people for TCGS and ERPE
accessibility, respectively, but 10.2% less accessibility for NERPE.

These findings indicate that White people generally benefit from
greater accessibility than Black people in TCGS and ERPE, particularly
when walking. However, accessibility disparities between walking and

Fig. 2 | Differentiated access to PCE for White and Black people in the walking
scenario.We first investigated the differentiated access between the two races to the
three categories of PCE taking Harris County as an example, a Visualization of the
distribution of PCE accessibility for the overrepresented CBGs of White and Black
people. We used White people fraction of the CBG population to compute the
average White population fraction (aWf) across all CBGs (approximately 42%).
Similarly, we computed the average Black population fraction (aBf) (approximately
17%). PCE accessibility in CBGs with aWhite fraction of greater than aWf (left), and
in CBGs with a Black population fraction of greater than aBf (right). b Probability
density curves for the two races for the three categories of PCE accessibility, a kernel
smoothed density curve was adopted because the data do not obey a Gaussian

distribution, in order to put the probability density curves of the three PCEs together,
we took the PCE accessibility as a logarithmwith a base of ten.We then examined the
overall potential inequities of the selected counties. c Overall PCE accessibility in
overrepresented CBGs. There are 22026 overrepresented CBGs for White people
and 11628 overrepresented CBGs for Black people, the height of the bar chart
represents the mean PCE accessibility of the selected CBGs, the error bars show the
95% confidence interval of the statistical data, and the error bars are equivalent
throughout the figure. The statistical data do not obey a normal distribution, so the
Mann-Whitney U test in the nonparametric t-test was used to test whether the
difference between the two groups of data was significant, * denotes the degree of
significance, i.e., the P value, ***P < 0.001, **P < 0.01, *P < 0. 05, ns means P ≥ 0. 05.
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driving are evident in NERPE. The smaller accessible area for walkingmore
mirrors the unequal spatial distribution of the original PCE44, highlighting a
significant bias in PCE spatial distribution favoring White people.

Differentiated access by travel behaviors
Figure 4 illustrates the significant impact of behavioral patterns on the access
to the three categories of PCE across the selected counties. The analysis
reveals that in these counties, access metrics such as the maximum, upper
quartile, median, lower quartile, and minimum of the accessibility of the
three categories of PCEs were consistently higher for driving than walking
scenarios (Fig. 4a–c).

Results also suggest that PCE accessibility via driving is significantly
(P < 0.001) and positively (Slope>0) correlated with PCE accessibility via
walking. Notably, Fig. 4d demonstrates that an increase in TCGS accessi-
bility bywalking (log10) by one-unit results in a 0.743unit increase inTCGS
accessibility by driving (log10), signifying a 0.553 unit increase in driving
accessibility for every unit increase in walking accessibility. Similarly, Fig. 4e
highlights that a one-unit increase in NERPE accessibility by walking
translates to a 0.709 unit increase by driving. Despite a relatively low
R-square value of 0.356, it indicates a significant positive correlation.
Figure 4f reveals that for ERPE accessibility, a one-unit increase by walking
leads to a 1.078 unit increase by driving, showcasing the highest regression
accuracy with an R-squared value of 0.810.

Despite the general trend of driving significantly enhancing PCE
accessibility in most counties, some exceptions were noted where walking
proved more advantageous, such as Fresno County in California and
Worcester County in Massachusetts for TCGS, Lancaster County in
Nebraska, and Monroe County in New York for NERPE, Bexar County in
Texas and Fresno County in California for ERPE. There are still some
countieswherewalking is a better option to accessPCEcompared todriving,

such as Orange County in California for TCGS, Alameda County in Cali-
fornia for NERPE, and Tarrant County in Texas for ERPE (Fig. 4d–f).

By incorporating vehicle ownership data to calculate behavior-
weighted PCE accessibility (Supplementary Fig. 5), we observed a reduc-
tion in racial/ethnic disparities in PCE access. Specifically, White people
exhibited a 3.6% and 19.4% higher mean PCE accessibility and a 3.3% and
26.5%higher population-weighted accessibility thanBlack people for TCGS
and ERPE, respectively, with no significant difference for NERPE.

Combining the results, we found that the effects of driving on miti-
gating the racial/ethnic disparities in PCE accessibility varies among the
three PCE categories. Driving reduces the race/ethnicity-based disparities in
TCGS accessibility more that for ERPE and NERPE. Taking Black and
White people as an example, the disparity reduction in TCGS, ERPE and
NERPE was 233.9%, 56%, and 39.1%, respectively.

Differentiated access by income within racial/ethnic groups
Table 1 reveals that White and Asian people’s income levels were sig-
nificantly and positively correlated with TCGS accessibility, whereas the
income levels of the other three groups showedno significant correlation. In
the case of NERPE accessibility, all races/ethnicities’ income levels were
significantly and negatively correlated, with American Indian groups
experiencing the largest NERPE accessibility gap and Asian groups the
smallest NERPE accessibility gap for the same income gap. For ERPE
accessibility, the incomes of all races/ethnicities, except Black people, were
significantly negatively correlated. Black people’s income showed no sig-
nificant correlation with ERPE accessibility. Moreover, American Indian
people faced the largest ERPE accessibility gap, whileWhite people had the
smallest for the same income gap.

To delve deeper into the PCE accessibility trends across different races/
ethnicities, we performed statistical analyses for five racial/ethnic groups

Fig. 3 | Differentiated access to PCE for White and Black people in the driving
scenario.The selectionmethod of overrepresentedCBGs, the calculationmethod of
accessibility and probability density, and the visualization method of the three
graphs are similar as Fig.2. a Visualization of the distribution of PCE accessibility
for the overrepresented CBGs of White and Black people. b Probability density
curves for the two races for the three categories of PCE accessibility. cOverall PCE

accessibility in overrepresented CBGs. The error bars show the 95% confidence
interval of the statistical data, and the error bars are equivalent throughout the
figure. The Mann–Whitney U test in the nonparametric t-test was used to test
whether the difference between the two groups of data was significant, * denotes the
degree of significance, i.e., the P value, ***P < 0.001, **P < 0.01, *P < 0. 05, nsmeans
P ≥ 0. 05.
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based on income deciles. This involved categorizing individual counties by
racial income deciles, then calculating both the population-weighted PCE
accessibility and the average population-weighted PCE accessibility for 40
counties within each decile. The findings mirror the linear regression out-
comes, revealing a general trend where PCE accessibility for the five racial/
ethnic groups tends to decrease and then increase with rising income
(Supplementary Fig. 6), indicating that the highest income groups often
have moderate PCE accessibility.

Discussion
The frequency and severity of extreme heat pose a significant threat to
people globally. PCE plays a crucial role in reducing heat exposure and
improving living comfort. However, the disparity in PCE access among
people of varying demographics remains poorly understood due to incon-
sistent distribution. Addressing this critical issue, we utilized behavior-
encoded models to investigate the distribution and accessibility dis-
crepancies of PCEs among various groups.

Theanalysis reveals awidespreaddisparity inPCEaccess among racial/
ethnic groups, with White people having the highest accessibility and the
largest advantages in TCGS accessibility. The results of the raw PCE
accessibility and the behavior-weighted PCE accessibility show a strong
correlation between behavioral patterns and PCE accessibility, with a dis-
proportionate reduction of driving on racial/ethnic disparities in the
accessibility of different categories of PCE. The linear regression results
indicate a near absence of income-based PCE access disparities within the
selected racial/ethnic groups, suggesting that higher-income people, due to
their greater easeof access to cooling solutions like air conditioning45, are less
affected by the associated costs46,47, thus likely to maintain a cooler home
environment.

This research points out the stark differences in PCE accessibility
reduction among racial/ethnic groups due to driving, particularly noticeable
inTCGS.Thisdiscrepancymay stemfromthebroaderdistributionofTCGS
in suburban areas, as opposed to ERPE andNERPE, which aremore urban-
centric. Driving allows for covering larger distances in suburbs compared to
urban settings. Vehicle ownership rates also play a role, with White people
having higher ownership rates. For example, in the U.S. in 2019, 18% of
Black households were without a vehicle, yet only 6% ofWhite households.
It exacerbates the accessibility gap for people of color who rely more on
walking or public transport48.

Our study highlights the persistent advantage of White people on
access to PCE across theUnited States. Themain contributions are twofold.
First, our findings can inform national policy and emerging state and local
environmental justice laws to identify unequal PCE access to racial/ethnic
groups and develop heat-reduction plans for vulnerable racial/ethnic
groups. Deriving policies specifically to targeted areas is helpful to address
racial/ethnic inequities in PCE accessibility, which alsomakes the approach
transferrable to other cities in the county. Second, an uneven distribution of
PCE at a very fine spatial scale, CBG levels, is observed. Such detailed
insights for individual CBGs could inform the planning and design of PCEs

Fig. 4 |Comparative analysis of PCE accessibility for twobehavioral patterns.We
first took a statistical analysis and plotted mean PCE accessibility in 40 counties by
categories of PCE, include (a) TCGS, (b) NERPE, (c) ERPE. The distribution of the
mean PCE accessibility in 40 counties were plotted using a box plot, with the five
horizontal lines from top to bottom indicating themaximum, upper quartile,median,
lower quartile, andminimum of the data, respectively, themethod of significance test
and themeaning of * are consistentwith Figs. 2 and 3.We also adopted a simple linear
regression analysis and plotted the regression results in 40 counties by categories of

PCE, include (d) TCGS, (e)NERPE, (f) ERPE, the accessibility gaps between accessing
PCEbywalking anddriving is large, and tomake the regressionplots clearer andmore
readable, we have taken a logarithm with a base of 10 for all the data used in (d). The
distribution of the mean PCE accessibility in 40 counties were plotted using a scatter
plot, the solid black line indicates the fitted straight line, the gray area indicates the
95% confidence interval, and the dashed black line indicates the marginal of equal
PCE accessibility in bothmodels, with greater PCE accessibility for driving above this
line indicates and greater PCE accessibility for walking below this line.

Table 1 | Regression results for the relationship between PCE
accessibility and income within racial/ethnic groups

Race/
ethnicity

TCGS NERPE ERPE

Slope P > |t| Slope P > |t| Slope P > |t|

Hispanic or
Latino

−0.0025 0.897 −0.0563 0.000*** −0.0495 0.000***

White 0.0751 0.000*** −0.0684 0.000*** −0.0280 0.000***

Black −0.0155 0.443 −0.0505 0.000*** −0.0098 0.100

American
Indian

0.0313 0.719 −0.0842 0.000*** −0.0673 0.000***

Asian 0.1071 0.000*** −0.0439 0.000*** −0.0332 0.000***

*P < 0.05, **P < 0.01, ***P < 0.001.
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in cities to improve the infrastructure for reducing public heat exposure.
PCE planning policies could be tailored to local conditions can be adopted.
Our study supports the longstanding request from environmental justice
areas and local organizations for location-specific solutions that center
CBGs with less PCE distributed and more accessibility disparities.

A limitation of this study is that we used air temperature data without
considering the effect of air humidity. Researchers have indicated that urban
heat islands may differ when considering humidity49,50, potentially affecting
our county selection. Additionally, no public datasets capture varying
behaviors in accessing PCE at the CBG level. While census data detail
commutingmethods like driving, public transport, and walking at the CBG
level, it wasn’t used to infer PCE access. This decision was based on two
reasons. First, accessing PCE differs significantly from commuting, often
involving leisure activities post-work that are not captured by commuting
data. Secondly, commuting to work is only a subset of people’s PCE-related
activities, primarily concentrated among people aged 20–60, while PCE
encompasses people of all age groups. The reliability of road network data
from OpenStreetMap, particularly for pedestrian paths, also poses a lim-
itation. Despite its widespread academic use51–53 and validations confirming
its over 90% reliability for U.S. roads54, accurately mapping all pedestrian
routes remains challenging. People often take shortcuts through parking
lots, parks, and trails, not always reflected in the data, introducing some
uncertainty to our findings. In addition, our findings clearly demonstrate
that driving reduces the accessibility gap to PCE compared to walking. The
accessibility gap revealed by modes that represent a moderate economic
burden theoretically would be smaller than those brought by walking but
greater than those brought by driving. Therefore, we selected only driving
(highest economic burden) and walking (lowest economic burden) as the
modes of transportation, while excluding public transportation and cycling,
which have relatively lower economic burdens. We also acknowledge that
such considerations may negatively impact the comprehensiveness and
generalizability of the results.

The primary purpose of this study is to examine inequalities in PCE
accessibility based on race/ethnicity, behavioral patterns and incomewithin
racial/ethnic groups, so we did not consider the differences in lifestyle and
inherent features of different people.We suggest amore refined analysis for
a specific group of heat-exposed vulnerable people, such as the over-65s55,
pregnant women, and the homeless, and after considering the above mul-
tiple scenarios and effect simulations, so that the conclusions drawn can
characterize the distribution of more vulnerable groups.

Methods
County selection
This study spotlights PCE inequality of access based on race/eth-
nicity, income, and travel behavior in the United States. As urban
areas concentrate large populations and are often site of socio-
spatial inequity56,57, urban PCE accessibility inequalities are urgent
and need to be uncovered. Therefore, our counties were selected
from metropolitan counties, which refers to counties located in
metropolitan statistical areas (MSAs), according to the 2013 NCHS
Urban-Rural Classification Scheme for Counties (the most recent
version to date) from Centers for Disease Control and Preven-
tion (CDC)58.

Specifically, our county selection layer is a hybrid layer consisting of
nine divisions delineated by the United States Census Bureau (USCB) and
344 climate regions delineated by the National Oceanic and Atmospheric
Administration (NOAA).Wemapped the average summer June-August air
temperature data for all counties between 2014–2023 onto the layer. We
segmented the air temperature into five equal intervals, i.e., from
56.0–91.7 °F, each interval 7.1 °F. Finally, we ensured that no fewer than two
Metropolitan counties were taken from each part of the intersection of the 9
major regions from the USCB and the 5 regions of air temperature.

Overall, we selected 40 representative counties from different demo-
graphic, geographic, and air temperature regions, and the Supplementary
Table 1 shows the full list of the 40 counties selected for this study.

Accessibility assessment
This study employed a special form of a gravity-based model, a modified
two-step floating catchment area (M2SFCA) method, to measure PCE
accessibility at the CBG level of 40 U.S. counties, respectively. Compared
with the traditional accessibility calculation method (based on cumulative
opportunity59,60, gravity61,62, and 2SFCA63–65), the M2SFCA method can
better consider the demand and supply of the realities to be used to describe
the overall “efficiency” of spatial accessibility51. Specifically, we used the total
population to represent the demand capacity of each CBG; for TCGS, we
used the tree canopy cover area of eachCBG to represent its supply capacity,
forERPEandNERPE,weused thefloor area to represent its supply capacity.
PCE accessibilities were calculated in two steps based on Eqs. (1, 3):

Step 1: For every CBG i, we find PCE jwhose centroid is within half an
hour’s distance buffer (by walking or driving) from the centroid of CBG i
and calculate the PCE supply-to-demand ratio Sijwithin the buffer from the
centroid of CBG i:

Sij ¼
cj � wijP
i2piwij � pi ð1Þ

where Sij is the supply-to-demand ratio for PCE j to CBG i, cj is the supply
capacity of the PCE j; pi represents the demand situation of the CBG i; wij

represents the weight between the CBG i and the PCE j. In this study, wij is
calculated by the Gaussian function, shown as follows:

wij ¼ e
� dij�μð Þ2

2σ2

� �

ð2Þ

where dij is the shortest travel time between the CBG i and the PCE j, which
is calculated by Origin-Destination Matrix (O.D. Matrix) using the
QNEAT3 library for QGIS 3.8. We consider travel modes involving
walking and driving, the vehicle speed is set according to theAmerican road
speed limit standard, and the walking speed is set at 5 km/h, we also deleted
travel time pairs which values are more than 30min; μ is the expectation
value of Gaussian distribution and set to 0 here, thatmeans, the accessibility
gradually decreases from the first minute; σ2 is the variance, which is
obtained according to the desired distance decay effect, In this paper, the
weight of catchment boundary set at 30min is reduced to 0.2, and σ2 is
calculated as 125.

Step 2: For each CBG i, search all CBGs with PCE whose centroids are
within half an hour’s distance buffer (by walking or driving) from the
centroid of CBG i and weighted sum up the supply-to-demand ratios for
PCE j to CBG i calculated from step 1, Sij, at these CBGs:

Ai ¼
X

j2cj
Sij �wij ð3Þ

where Ai is the PCE accessibility for CBG i.

Differentiated access investigation
Initially, we applied statistical analysis to explore the variance in PCE access
across different racial/ethnic groups.We identified CBGs in which the race/
ethnicity is overrepresented for each group (Hispanic or Latino, non-
Hispanic White, Black, American Indian, Asian) for our analysis. For
instance, in the case of non-Hispanic Whites, we calculated the proportion
ofWhite people (dividing the population ofWhite people by the total CBG
population) across CBGs in 40 U.S. counties. We then established a
threshold using the average proportion (approximately 42%) and included
only thoseCBGswhere theWhite people exceeded this threshold for further
analysis. This process allowed us to calculate the average PCE accessibility
for CBGs with an overrepresentation of each racial/ethnic group. The same
methodology was applied to determine the margins for other racial/ethnic
groups.
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In order to validate the robustness of the racial PCE accessibility
inequality results, we computed the above statistical methods alongside the
population-weighted PCE accessibility for the 5 racial/ ethnic groups,
respectively. Specifically, the calculation was conducted based on Eq. (4).

Ag ¼
P

i2picounted pg � Ai
P

i2picounted pg
ð4Þ

where Ag is the population-weight PCE accessibility for the specific race/
ethnicity g; pg is the population for the specific race/ethnicity g of counted
CBGs; Ai is the PCE accessibility for CBG i.

Moreover, we also took into account how behavioral patterns affect
PCE accessibility. Using Census data on vehicle availability, we treated the
population with More than or equal to one vehicle as accessing PCE by
driving and computed the proportion of such people in each CBG’s overall
population. For the population without a vehicle, we treated PCE as
accessible by walking and computed the proportion in a manner similar to
that described above. Then, the behavior-weighted PCE accessibility was
calculated based on Eq. (5).

Abw ¼
X

i2pi
Aiwalk � f iwalk þ Aidrive � f idrive ð5Þ

where Abw is the behavior-weighted PCE accessibility for selected counties;
Aiwalk is the PCE accessibility of CBG i by means of walking; fiwalk is the
proportion of the population in CBG i by means of walking; Aidrive is the
PCE accessibility of CBG i bymeans of driving; fiwalk is the proportion of the
population in CBG i by means of driving. We conducted statistical analysis
using the same post-processing as the PCE accessibility obtained by the
previous two travel modes after computing the behavior-weighted PCE
accessibility.

Finally, we conducted a simple linear regression model based on
ordinary least squares (OLS) to examine income-based disparities in PCE
accessibility within each race/ethnicity. Specifically, the horizontal coordi-
nate is the incomewithin a specific race/ethnicity and the vertical coordinate
is the value of PCE accessibility, and the above data are taken as logarithms
with a base of 10 to reduce the effect of extreme values.

To validate and demonstrate detailed intra-racial income-based PCE
accessibility inequality results,we also conducteda statisticalmethod forfive
race/ethnic groups based on income deciles. Specifically, the horizontal
coordinate is the income decile within a specific race/ethnicity and the
vertical coordinate is the value of PCEaccessibility, and thePCEaccessibility
data are taken as logarithms with a base of 10.

All of the above data analyses were done utilizing python 3.9 with
libraries such as pandas, numpy, matplotlib, sklearn, and statsmodels,
except as noted above of O.D. Matrix.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data aggregated or analyzed in the current study are available from the
corresponding author on reasonable request. In this study, all the data
utilized was obtained from public datasets. There are fourmain sources of
datasets: First, datasets from the United States Census Bureau, including
1) geodatabases of 2020 TIGER/Line shapefiles for US Geographical
boundaries at CBG level (https://www.census.gov/geographies/mapping-
files/2020/geo), which were used to determine the exact location and
boundaries of CBG in 40 US Counties, 2) Demographic information
dataset from the decennial census for 2020 (https://data.census.gov),
containing CBG-level population, racial/ethnic percentage, income and
vehicle availability information, which were used to preliminary linear
regression and statistical analysis; second, the air temperature data of
contiguous U.S. from the National Oceanic and Atmospheric Adminis-
tration (NOAA), which contains air temperature data of 344 climate

divisions since 1895 (https://www.ncei.noaa.gov/access/monitoring/
climate-at-a-glance), and we collected the average summer June-August
air temperature data between 2014–2023; third, the Multi-Resolution
Land Characteristics (MRLC) Consortium U.S. Forest Service (USFS)
Enterprise Data Warehouse CONUSS TCC 2016 NLCD dataset (https://
www.mrlc.gov/), which contains 30 m*30m accuracy tree canopy cover
data, we used these data to represent TCGS supplement and aggerated
them at the CBG-level in our study area; fourth, datasets from Open-
StreetMap (https://www.openstreetmap.org), which is widely used for
academic purposes51, including 1) public facilities dataset, which contains
NERPE and ERPE information, including location and area, 2) road
networks dataset, which contains road networks both in the walking and
driving scenarios, they were all used to calculate the shortest travel time
and accessibility between each pair of CBG and PCE.

Code availability
Codes to replicate all analyses in the paper are available at https://github.
com/CLi-hub1/Behavior-encoded-Models-reveal-inequity.
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