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AI perceives like a local: predicting citizen
deprivation perception using satellite
imagery
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Deprived urban areas, commonly referred to as ‘slums,’ are the consequence of unprecedented
urbanisation. Previous studies have highlighted the potential of Artificial Intelligence (AI) and Earth
Observation (EO) in capturing physical aspects of urban deprivation. However, little research has
explored AI’s ability to predict how locals perceive deprivation. This research aims to develop a
method to predict citizens’ perception of deprivation using satellite imagery, citizen science,
andAI. A deprivation perception scorewas computed from slum-citizens’ votes. Then, AI was used to
model this score, and results indicate that it can effectively predict perception, with deep learning
outperforming conventional machine learning. By leveraging AI and EO, policymakers can
comprehend the underlying patterns of urban deprivation, enabling targeted interventions based on
citizens’ needs. As over a quarter of the global urban population resides in slums, this tool can help
prioritise citizens’ requirements, providing evidence for implementing urban upgrading policies
aligned with SDG-11.

Urban inequality stands as a challenging social problem. Deprived
areas, commonly referred to as ‘slums’, have emerged as a tangible
consequence of unprecedented urbanisation in Low-and Medium-
Income Countries (LMICs) cities and manifest high levels of physical
deprivation. Moreover, lower-income residents, especially in institu-
tional and economically weak contexts, face additional deprivations
like energy poverty and environmental risks, such as heat waves1,2. This
emphasizes how physical deprivation is interconnected with other
domains of deprivation that affect sustainable urban life3. In recent
years, the application of Earth Observation (EO) methods, leveraging
labelled satellite imagery and Artificial Intelligence (AI), has made
considerable progress in capturing elements of urban appearance,
including mapping urban elements within slums. In response to the
“Leave No One Behind” principle (the central promise of the 2030
Agenda for Sustainable Development), a reliable understanding of the

physical deprivation levels in slums is urgently needed but not available
for some of the most vulnerable communities.

EO’s extensive spatial coverage, temporal frequency, and high reso-
lution provide cost-effectivemeans of obtaining a synoptic and gapless view
of urban areas4. Recently there has been a notable acceleration in the
development of processing methods with the adoption of AI by the EO
community, particularly machine learning (ML) algorithms, including
highly complex deep learning (DL) algorithms5,6. Furthermore, transfer
learning techniques have been employed to enhance the efficiency of DL
models, especially when training data is limited7. The combination of
advancement in AI methods with increased availability of big EO data has
led to the production of global open geospatial layers, including layers of
built-up areas, and urban extents8, and building footprints (e.g., Microsoft
and Google initiatives9,10. Nevertheless, due to (i) the variability of depri-
vation across cities11–14, (ii) the lack of reliable reference data15, and (iii) the
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limited representation of deprived areas in the training sets, the accuracy of
global geospatial layers remains lower in areas of high deprivation16.

Slums, which account for more than half of the population in most
African countries (Fig. 1), are often omitted in global EO-based datasets due
to limited in situ data, causing challenges to the stratification of the urban
sample (e.g., in health or demographic data collections). The availability of
reliable field data for annotating satellite images is crucial for training and
evaluating ML and DL-based methods designed for the automated inter-
pretation of EO data16. Given the rapid pace of urban growth, conventional
field data collection practices proved inadequate to meet demand17. This
limitation not only hinders the development of accurate EO-based models
but also exacerbates urban inequality, impeding progress towards the Sus-
tainable Development Goals (SDGs), particularly the goals “No Poverty,”
“Reducing Inequalities,” and “Eliminating Slums” (SDG 1, 10, and 11
respectively). To address this challenge, it is imperative to explore more
efficient approaches that integrate EO data, citizen science, and AI in data-
scarce environments, enabling comprehensive and equitable assessments of
urban areas.

Citizen science processes have played a crucial role in evaluating var-
ious aspects of urban appearance, including safety, cleanliness, liveability,
and wealth18–20. Such citizen science assessments of urban spaces have
predominantly relied on street-level photographs rather than EO imagery,
primarily focusing on high-income countries21,22. This disparity stems from
the limited availability of street-view coverage in LMICs, particularly in
deprived areas where narrow roads impede vehicle access (Fig.2). This
geodata gap underlines the persistent global challenge of unequal access to
data, in which EO can play an important role.

Notably, the integration of EO data into citizen science assessments
remains unexplored, presenting an opportunity to bridge the gap between
EO data (globally available) and urban perception analysis. Accordingly, AI
methods have not yet been able to replicate the nuanced perceptions of
citizens, particularly in relation to the varying levels of deprivation experi-
enced in slum areas. Therefore, this research aims to explore the integration
of EO data, citizen science, and AI to assess urban deprivation levels com-
prehensively and equitably. Our contribution seeks to answer the following
research questions:
(i) Can satellite imagery, rather than street-level imagery, serve as a

reliablemeans of capturing perceived physical deprivation by citizens?
(ii) Can AI, through satellite imagery, predict citizens’ deprivation

perception?
(iii) What are the features of the physical environment that most influence

citizens’ perception of deprivation?

We have structured this manuscript for clarity and ease of navigation.
Following this introduction, the results and discussion are presented syn-
thesising our findings and interpretations. The subsequent sections delve
intodata and study area, andmethods.Readers can refer to these sections for
detailed insights.

Results
Usage of EO imagery in citizen science assessments
The evaluation of urban spaces is generally based on the interpretation of
street-level images21,22. However, due to limited global data coverage and
greater scarcity of coverage in slum areas, we present satellite imagery as an

Fig. 1 | Urbanisation rate and percentage of the urban population living in slums (<40%not represented).The significant data gaps on slums inAfrica pose a challenge to
developing effective policies in the region where the issue is most pressing. Data source from United Nations Human Settlements Programme (UN-Habitat).

Fig. 2 | Differences in the street network characteristics of Nairobi’s slums are
visible in satellite images and street-level photos. The street-level photo coverage
varies depending on the accessibility by car, which is also an indicator of the level of
deprivation. a, b A deprived area with a planned street network and hence good

street-level photo coverage. (c, d) A deprived area characterised by an extremely
dense built-up fabric and narrow alleys, resulting in poor street-level photo coverage.
Street-level photos: Google Street View©2018GoogleMaps. Satellite image subsets:
WorldView-3 © 2019 Maxar Technologies.
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effective alternative for assessing urban spaces (Fig. 2). In addition, image
rating methods have been commonly used to identify differences in urban
appearance23–28. However, these methods can introduce uncertainties when
differences are subtle29. To overcome this issue, we employed a pairwise
comparisonmethod, which not only simplified the task for participants but
also ensured a high level of consistency in their judgements30, as can be seen
in Fig. 5.

We created a mobile website with a transactional database to enable
several participants to vote simultaneously. A dataset comprising 1998
satellite image subsets (100m× 100m) was randomly paired, with each
image compared to 15% of the total images in the set. As illustrated in Fig. 3,
the spatial location and environment of the image displayed were not

disclosed to the participants. In consultationwith slum leaders, we excluded
a tie option to prevent participants from intentionally casting ambiguous
votes. Over one million votes were recorded, with each vote representing a
comparison between a “winning” and a “losing” image.

Out of 1,089,302 pairwise comparisons, 629,027 were unique. Dupli-
cates were used to assess individual divergence by comparing participants’
individual choices with the group’s opinion. Considerable divergence may
indicate participants’ inattention during the workshop, as observed by the
researchers. When there was inconsistency in individual choice regarding
the same comparison (referred to as comparison consistency), a restrictive
metric was applied. The group agreement was then checked and, if this also
differed, individual divergence was not challenged. However, if the group
agreedand individual choice varied, the individualwas assumed tobe voting
inconsistently and the vote was penalised. In images with very subtle dif-
ferences (usually due to spatial proximity), inconsistencies were seen in
several of the individuals’ comparison consistency, as well as in the group
agreement. Nevertheless, as can be seen in Fig. 4, there is a high individual
consistency in each comparison, as well as a high consensus among citizens.
Figure 4 shows the frequencydistributionof the comparison consistency, and
the groupagreementmetrics,with0.5being the least consistent to1being the
most consistent. For a complete understanding of these metrics, see
“Assessing citizen science” in the Methods section.

Figure 5 shows the frequency distribution of individual divergence,
which follows an exponential pattern. Most participants showed low indi-
vidual divergence and only five participants showed inconsistencies in their
choices compared to the group’s opinion. Therefore, their votes were
excluded as they could bias the final ranking of deprivation scores.

From pairwise comparisons to a deprivation score
Due to limitations in time and resources, conducting pairwise comparisons
for all possible combinations of image subsets was not feasible, i.e., con-
sidering that for t objects and n judges, the required paired comparisons

Fig. 3 | Pairwise comparison of satellite image subsets by citizen scientists.Citizen
scientists used a web application on their smartphones to visualize randomly paired
satellite image subsets (100 m × 100 m) and vote, answering the question, ‘Which is
the best place to live?’. Satellite image subsets: WorldView-3 © 2019 Maxar
Technologies.

Fig. 4 | Consistency of the citizens’ votes. Consistency was assessed to determine if
correctivemeasures were necessary. The results showed a high level of consistency at
both the individual (a) and group levels (b). By merging bidirectional comparisons

(AB & BA) with unidirectional comparisons (AB), the x-axis represents the level of
each metric, from 0.5 to 1.
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would be n(t/2). Instead, we adopted a robust Bayesian rating system called
TrueSkill31. TrueSkill proved successful in previous studies for perception
ranking and accommodates various match rules21,32. In our study, we
implemented a free-for-all match rule, comparing all image subsets with
each other without subgrouping. The pairwise comparison process ensures
that each subset is shown an equal number of times to minimise bias and

maintain fairness in the assessment. Each subset was compared with about
315 others randomly selected. TrueSkill modelled the comparison as a
Ν (μ, 2) randomvariable, enabling both ranking andmeasuring the distance
between subsets in the set. A normalisation process was applied to the
ranking, transforming it into a standardised score ranging from 0 to 1. Each
subset was subsequently assigned a deprivation score, with the highest score
being identified as the “best place to live,” representing the least deprived
area. Consequently, a detailed map depicting the comprehensive depriva-
tion scores of slums was generated (Fig. 6).

AI to predict citizen deprivation perception
We developed AI models employing satellite images to predict the scores
derived from citizen votes. The results of the AI experiments confirm that
“AI perceives as a local”, thus supporting the validity of the second research
question. We compared the performance of DL and conventional ML
models. The interpretation of the results was only feasible for conventional
ML. Indeed, DL is generally recognised for its superior performance, but its
main drawback for our application is its lack of interpretability.

While the accuracyof conventionalMLmodels is comparable to that of
DL models trained from scratch, employing a DL model pre-trained on
ImageNet offered the advantage of automatic feature learning, which sig-
nificantly enhanced the performance. Considering the limited number of
observations, we took measures to prevent overfitting. We employed a 10-
fold cross-validation to mitigate data scarcity, with a 90%-10% training-
testing split. This ensured that all images were tested at least once while
providing sufficient training data and improving performance evaluation
while mitigating bias and overfitting. All experiments, both ML and DL,
were repeated ten times for each fold.We report the highest score alongwith
the mean, standard deviation, RMSE, and R² for each fold, ensuring com-
prehensive testing of all images and minimising bias from a limited test set.
AlthoughDLmethods are susceptible to overfittingwith small data sets, this
was not the case in our study. The loss plots of VGG trained from scratch
andDenseNet121fine-tunedwith RGB channels show convergence of both
curves and a flattened test trend indicating an absence of overfitting.

Table 1 presents the results of the DL models. The pre-trained
DenseNet121 model has a clear advantage over the models trained from

Fig. 6 | Deprivation score derived from citizens’ votes (spatial resolution: 100 m × 100m). The spatial variation reveals distinct geographic patterns of perceived
deprivation. Satellite image: WorldView-3 © 2019 Maxar Technologies.

Fig. 5 | Frequency distribution of individual divergence in the perception of
urban deprivation. i.e., disagreement between participants’ votes and the group’s
opinion.
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scratch, which notably show lower performance. The best result was
obtained with the RGB band combination, despite the assumed impor-
tance of the near-infrared band. This can be attributed to either the dif-
ficulty of adjusting weights from the pre-training on an RGB dataset or
citizens relying only on visible bands for assessing deprivation scores. It
should be noted that the pretrained DenseNet-121 model exhibited sig-
nificantly lower variance (R² standard deviation = 0.02) compared to the
models trained from scratch. This suggests that the consistent initial
weights from ImageNet and moderate modifications during training
contributed to the pretrained model’s stability, while the random weight
initialization of the VGG model made it more sensitive to partition-
specific characteristics and prone to different local minima.

Compared to DL models, conventional ML models offer advantages
such as lower computational requirements, the need for less training data,
and higher interpretability. However, they require feature engineering,
which is more time-consuming and may limit their transferability. Our
study intentionally focusedon a specific set of easily understandable features
that represent physical variables of urban appearance. Regularisation and
feature selection were conducted to reduce the number of features (168 in
the larger set), aiming to prevent model overfitting and improve the inter-
pretability of the results. Consistently, the results demonstrated that the
best-performing models across all experiments were either Random Forest
(RF) or Support Vector Machine with a radial kernel (SVM rad), as shown
in Table 2. This finding aligns with previous research that achieved the best
performancewith the radial kernel33.Although theMLmodels didnot reach
the high R² values achieved by the pre-trained DL model, they exhibited
significantly lower R² standard deviation, indicating reduced sensitivity to
data partitioning and iterations and enhanced performance robustness.

AI geographical patterns of deprivation score
In addition to the high accuracy in predicting the value of the deprivation
scores (Table 1), the best DL model adequately extracts the overall geo-
graphic patterns of deprivation (middle line Fig. 7). For the DL prediction
map,weused the validation set of eachk-fold, i.e., 200 imagesnot used in the
k-fold training, to avoid representation bias with only the best model.

Finally, we analysed the performance of the DL model through the
residuals. As shown in Fig. 7, the DL model predicts the citizen-based
deprivation scores accurately. Generally, differences are smaller than 0.1,
which is consistent across all deprived areas.We computedMorans’ I spatial
correlationmetrics and concluded that neither over- nor under-predictions
followa specific geographical pattern.However, somephysical environment
patterns are based on both under- and over-predictions. In the case of over-
prediction, the residual (actual minus predicted) is negative. For instance,T

ab
le

1
|A

cc
ur
ac

y
m
et
ri
cs

re
la
ti
ng

to
th
re
e
D
L
m
o
d
el
s:

V
G
G
9
tr
ai
ne

d
fr
o
m

sc
ra
tc
h,

D
en

se
N
et
-1
21

tr
ai
ne

d
fr
o
m

sc
ra
tc
h,

an
d
p
re
tr
ai
ne

d
D
en

se
N
et
-1
21

D
L
m
o
d
el

sc
ra
tc
h/
p
re
tr
ai
ne

d
(b
an

d
s)

T
m
ax

R
²

T
m
in

R
M
S
E

T
m
ea

n
R
²

T
m
ea

n
R
M
S
E

T
sd

R
²

T
sd

R
M
S
E

V
m
ax

R
²

V
m
in

R
M
S
E

V
m
ea

n
R
²

V
m
ea

n
R
M
S
E

V
sd

R
²

V
sd

R
M
S
E

V
G
G
9
sc

ra
tc
h
(R
G
B
)

0.
58

1
1.
11

4
0.
50

3
1.
21

6
0.
04

6
0.
05

6
0.
65

4
1.
05

6
0.
48

7
1.
22

8
0.
10

1
0.
11

5

V
G
G
9
sc

ra
tc
h
(R
G
N
ir)

0.
61

5
1.
06

7
0.
53

2
1.
17

9
0.
06

6
0.
08

3
0.
71

6
0.
95

8
0.
52

0
1.
18

5
0.
10

1
0.
11

0

D
en

se
N
et
-1
21

sc
ra
tc
h
(R
G
B
)

0.
71

7
0.
91

6
0.
65

9
1.
00

7
0.
04

5
0.
06

6
0.
65

5
0.
97

7
0.
57

7
1.
11

7
0.
07

7
0.
11

2

D
en

se
N
et
-1
21

sc
ra
tc
h
(R
G
N
ir)

0.
74

5
0.
86

9
0.
69

5
0.
95

2
0.
03

7
0.
05

9
0.
69

6
0.
95

8
0.
62

7
1.
04

9
0.
05

8
0.
06

3

D
en

se
N
et
-1
21

p
re
tr
ai
ne

d
(R
G
B
)

0.
92

5
0.
47

6
0.
90

3
0.
53

7
0.
01

6
0.
04

4
0.
84

1
0.
69

3
0.
80

1
0.
76

7
0.
02

1
0.
03

9

D
en

se
N
et
-1
21

p
re
tr
ai
ne

d
(R
G
N
ir)

0.
95

0
0.
38

3
0.
88

6
0.
57

6
0.
03

8
0.
10

1
0.
82

2
0.
73

4
0.
78

9
0.
79

0
0.
02

1
0.
02

7

Fo
re

ac
h
m
od

el
,t
w
o
ex

p
er
im

en
ts

w
er
e
co

nd
uc

te
d
w
ith

d
iff
er
en

tb
an

d
co

m
b
in
at
io
ns

(R
G
B
an

d
R
G
N
ir)
.T

he
m
et
ric

s
in
cl
ud

e
th
e
m
ax

im
um

,m
ea

n
an

d
st
an

d
ar
d
d
ev

ia
tio

n
of

R
²(
co

ef
fi
ci
en

to
fd

et
er
m
in
at
io
n)

an
d
R
M
S
E
(ro

ot
m
ea

n
sq

ua
re

er
ro
r),

ob
ta
in
ed

on
th
e
tr
ai
ni
ng

fo
ld
s

(re
p
re
se

nt
ed

w
ith

T)
an

d
on

th
e
va

lid
at
io
n
fo
ld

(V
).

Table 2 | Accuracy metrics for the best-performing ML model
in nine experiments (k-fold cross-validation)

ML experiments –

Best performing
(features)

max
R2

min
RMSE

mean
R2

mean
RMSE

sd R2 sd
RMSE

A – SVM rad (LOG) 0.577 1.158 0.468 1.262 0.063 0.067

B – SVM rad (LOG) 0.636 1.072 0.555 1.154 0.044 0.052

C – RF (STD) 0.636 1.089 0.559 1.150 0.043 0.056

D – SVM rad (LOG) 0.665 1.025 0.601 1.092 0.045 0.065

E – SVM rad (STD) 0.211 1.575 0.104 1.659 0.047 0.092

F – SVM rad (STD) 0.221 1.507 0.152 1.614 0.035 0.096

G – RF (LOG) 0.601 1.090 0.556 1.156 0.034 0.042

H – SVM rad (STD) 0.695 0.953 0.647 1.03 0.033 0.045

I – RF (LOG) 0.707 0.972 0.667 1.010 0.027 0.046

Each experiment (from A to I) involves a different set of input features, standardised (STD) or log-
transformed (LOG), and the use of three types of ML algorithms (SVM, RF, XGBoost). In every
experiment, the best-performing algorithm is either RF or SVM rad. Themaximum (max), mean, and
standard deviation (sd) of accuracy metrics (R2 and RMSE) are calculated on the validation fold.
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the over-predictions, represented at the left of Fig. 8, aremostly related to the
presence of elements that citizens perceive as negative, e.g., very small
buildings (ID 788 and ID 1591), the presence of a river (ID 889, ID 813 and
ID 798 and) or the small waste sites (ID 889). As shown by the analysis of
feature importance in the conventional ML experiments (Fig. 9), road
density has a very strong influence on the deprivation score and could

weaken the influence of other relevant features captured by the DL model,
such as building density, building size and roof colour (ID 862 and ID 315).

Identifying deprivation features
Feature importance was feasible only for conventional ML. It reveals the
most influential factors driving predictions, which may help decision-

Fig. 7 |Geographic patterns of the deprivation score.Top row: Score derived from citizen science.Middle row: Score predicted by the bestDLmodel. Bottom row:Residuals
(difference between citizen science-based and model-predicted scores). Satellite image subsets: WorldView-3 © 2019 Maxar Technologies.

Fig. 8 | Satellite image subsets with their deprivation perception score derived
from citizen science (CS) and deep learning (DL).Negative residuals indicate that
the deprivation score is higher according to citizens’ votes than to model prediction,

and conversely. The highest divergences are illustrated, together with random
samples from different slums. Satellite image subsets: WorldView-3 © 2019 Maxar
Technologies.
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makers and researchers identify areas in need of targeted interventions and
allocate resources to address the underlying causes of deprivation and
improve thewell-being of the affected communities. In Experiment I, which
used the full set of features and achieved the highest accuracy, we aimed to
identify features having the strongest influence on the deprivation score, as
illustrated in Fig. 9. Notably, relative road density emerges as the most
influential, followed by building proportion and ground surface. These
findings are in line with community opinion (collected via discussions) that
well-connected streets, lower building density, and open spaces are indi-
cators of lower deprivation. Additionally, the presence of rivers emerges as a
significant predictor, given their association with flooding, waste accumu-
lation, and potential insecurity. Remarkably, roof colour-related features are
also goodpredictors, emphasising the significance of characterising building
roofs in urban deprivation analysis. High visible greenness and blueness
reflect the prevalence of corrugated iron sheets, common in deprived areas,
while high visible redness indicates better-quality dwellings with tiled roofs.
Moreover, the proportion of water bodies (linked to rivers) and waste piles
stand out as strong predictors. These results validate the concerns raised by
slum dwellers regarding waste piles, which are significant environmental
and health threats to slum communities.

Discussion
Our research focuses on three key findings related to the connection
between citizens’ perceptions of urban deprivation throughEOdata and the
predictive capabilities of AI. First, we confirm that satellite imagery depicts
important aspects of perceived urban deprivation in slums, overcoming the
need for working with the incomplete coverage of street-level imagery.
Second, automated DL and conventional ML tools accurately predict citi-
zens’ deprivation scores. Finally, although the best-performing DL model
outperforms thebest-performingMLmodel,ML is essential for interpreting
influential urban characteristics that define deprivation, such as road den-
sity, the presence of rivers and building density. Thus, the physical envir-
onment significantly influences citizens’ perceptions of deprivation, which
canbe accurately predicted usingAI techniques. These insights indicate that
the perception of deprivation in slums can be mapped and quantified on a
global scale. Moreover, concerns also arise that are discussed in detail in the
following subsections.

EO and Citizen Science to address local needs
EO, including satellite imagery and ready-to-use available global/
continental geo-datasets, offers a consistent global coverage, opening
opportunities to better understand and analyse urban deprivation in

LMICs. While implementing data-driven EO-based approaches, it is
important to consider the digital divide in urban areas. Caragliu et al.34

in their study ‘Smart Cities and the Urban Digital Divide,’ argue that,
contrary to the common fear of smart cities increasing the urban digital
divide, urban smartness is negatively associated with internal digital
divides. This suggests that the use of advanced technologies in urban
settings, when thoughtfully implemented, may not exacerbate but
rather help bridge the digital divide, which is crucial for inclusive and
effective citizen science approaches. EO combined with ML and DL
techniques allows the characterisation of the physical environment, in
particular deprivation levels, and, therefore, provides stakeholders and
decision-makers with quantitative urban information. Nonetheless,
implementing data-driven EO-based approaches without acknowl-
edging the intrinsic needs of the citizens can hardly contribute to novel
interdisciplinary knowledge16. This study provides insights into the
importance of bridging the gap between EO state-of-the-art methods
and citizen science by capturing perceived deprivation. This is highly
relevant to EO research that involves socio-economic rather than
biophysical measures. Testing the connection between citizens’ per-
ceptions and the physical environment is a breakthrough for further
developments, including the scalability and transferability of the
proposed approach.

Citizen science guidedus inunderstandingboth the inputs andoutputs
of indicators, which can be challenging from only remote measurements.
Participatory processes provide an essential local perspective, even more
necessary in slums, whose residents are underrepresented in official data,
documents, and measurements. Optimally, for participatory processes, a
representative sample of the residents is needed. Our study worked with a
non-random sample, which resulted in a potentially biased deprivation
perception score. To mitigate this bias in future applications, it is recom-
mended to include a random sample of participants.

Moreover, pairwise comparisons in a systematic experiment is a con-
ceptually simple approach that allows for deriving a score with low levels of
uncertainty. Overall, the derived deprivation score exhibits high individual
consistency in comparisons (Fig. 4), although low levels of group agreement
warrant attention (Fig. 5). Disagreements often arise due to the proximity of
ranked images, posing challenges for participants to discern subtle differ-
ences equitably. Contextual factors, such as regional disparities and socio-
economic variations, may also contribute to divergent perceptions of
deprivation. Nevertheless, it is crucial to acknowledge that subjectivity and
contextual influences do not compromise the objectivity and fairness of the
deprivation assessment, as validated through objective AI predictions.

Fig. 9 | Feature importance in the conventional ML experiment that provided the
best accuracy. This experiment involved a Random Forest (RF) model using the full
set of log-transformed features. The colour indicates the dataset from which the
features were derived. The features that have the strongest influence on the predicted

deprivation score were also identified by citizen scientists as having a strong influ-
ence on their perception of deprivation (e.g., street network quality, built-up fabric
density, presence of open spaces, etc.).
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The user-friendliness of online platforms makes participatory
processes very efficient and inclusive, with a broader geographic scope of
participation and coverage than traditional methods (e.g., paper-based
participatory mapping using satellite imagery). Indeed, there is high
access to smartphones among the slum population, and consequently,
the necessity to have access to a smartphone is currently not a barrier to
participation. On the other hand, internet access can be an impediment
as there is no free Wi-Fi access within the slums. This should be con-
sidered in online platform processes so that it does not prejudice certain
participants.

Decoding deprivation perception: from subjectivity to tangible
metrics
The notion of urban deprivation has evolved over time, with different
definitions influenced by historical periods and geographical contexts.
Deprivation indices and frameworks first emerged in high-income coun-
tries, such as the UK and the US, before deprived areas proliferated in
LMICs. Activists and researchers, such as Jane Jacobs or Alkire and Foster35

have presented their visions of an ideal city, calling for equitable distribution
and emphasising urban factors as characterising urban deprivation, such as
narrow streets, lack of green space or lack of urban vitality. Objective
metrics, such as green space per capita or population density, now inform
urban planning decisions and strive to address urban deprivation.However,
a global consensus on the validity of these metrics has yet to be reached,
highlighting the highly subjective nature of deprivation shaped by cultural
context and individual circumstances.

Intending to increase urban liveability, including access to essential
services, safety, security, and environmental sustainability, it is essential to
understand what factors define desirable urban places. The term urban
deprivationmeans a state of lacking some of the urban factors, the opposite
of liveable. To ensure clarity and avoid any potential negative connotations,
the term “deprivation”was not explicitly used when working with the slum
citizens. Instead, the question “Which is the best place to live?” was asked.
However, through the research narrative, we are inclined towards the term
deprivation, as it can support the development of citizen-centred policies
and underlines our claim to fight urban inequalities.

Ourwork demonstrates that there is a consensus on the perceived ‘best
places to live’ in slums among citizens. Only about 3% were “outliers”, i.e.,
participants whose opinion greatly diverged from the group’s opinion.
These participants did not belong to a specific socio-economic group,which
suggests that a lack of attention and/or commitment to the project was the
cause of the divergences (which was observed by the research team during
the workshops organised in Nairobi). Nevertheless, our findings of con-
sensus contrast with Lenzi and Perucca’s36 observation that city size influ-
ences individual discontent due to varying urban economies and
diseconomies. This highlights the scaling of discontent across different
urban scales and domains of urban life, adding complexity to our under-
standing of urban experiences.

ML indicates the relative importance of each feature in making a
prediction of deprivation, relating to the quantification of citizens’ percep-
tions.Ourfindingsopenupnewavenuesof researchonphysical deprivation
in a data-scarce context. DL lacks interpretability compared to ML tech-
niques, nevertheless, we expect that this limitationwill be transcended in the
near future, considering the amount of attention it receives in current
research37. Furthermore, the recent developments of explainable AI models
that are meaningful and transparent for local users will be essential to
optimize the usability of modelling results to guide urban policy develop-
ment and monitoring of living qualities.

AIpredictedvaryingdeprivationscores: limitationsandstrengths
Attempting to model urban deprivation, which is related to liveability,
wealth, or even health outcomes, is vastly different frommeasuring concrete
physical phenomena such as building footprints or land cover38. But, as
citizens rely on tangible and measurable factors to vote for deprivation, it
also implies a reliable and unbiased basis for AI modelling. Harnessing the

power of citizen science can be a rigorous approach to providing robust
training data and overcoming AI data limitations. However, citizen science
projects face the challenge of operating with limited resources, including
low-cost and efficiency constraints.

Therefore, to overcome overfitting39, additional strategies, such as
transfer learning, are necessary. We demonstrated that our pre-trained DL
model largely overperformed the ML approaches with only 1998 labelled
samples. Future research could explore the contributionof other pre-trained
DLmodels and conduct specific benchmarking for this kind of task, which
should account for complexity and parsimony along with predictive
accuracy.

Towards global scale mapping: replicability and transferability
Our research contributes to the study of slums in the city of Nairobi, and its
coverage is limited to a single city. Future research will aim to apply our
methods to other cities to assess their replicability and transferability and to
produce additional datasets on urban deprivation, with the ultimate
objective of achieving global coverage.While fieldwork should take place in
a local context, EOmodels canbe applied in areaswith limited tono training
data using domain adaptation and transfer learning methods. Nonetheless,
attempting to transfer deprivationmodels from city to city is expected to be
very challenging as urban deprivation can manifest very differently across
spaces and cultures. However, many of the most important features are
common factors that contribute to deprivation, e.g., lack of open space, high
built-up density, or the presence of waste piles. To address the potential
biases of AI systems for new cities, it is paramount to collect data that
authentically reflects the diverse views of local residents. Therefore, when
transferring this approach to other urban contexts, it will be important to
ensure that participants represent the diversity of inhabitants, in terms of
gender, age, socio-economic groups, and from diverse locations and urban
contexts.

Moreover, the main bottleneck regarding EO data is the acquisition
cost ofVHR satellite imagery for covering large spatial areaswith a relatively
high temporal frequency (for frequent updates, considering the dynamic
character of slums). Nonetheless, openly available datasets such as aerial
maps40; and building footprints10,41 can narrow the gap, as they can be
combinedwith cost-free images (e.g., Sentinel 1 and 2), tomap aspects of the
urban morphology with remarkable accuracy. Moreover, although not
publicly available, the potential of PlanetScope images for studying of urban
deprivation is worth investigating, considering their spatial resolution and
free access for research purposes. Satellite images can be processed with
sophisticated models. Still, they can also be visually interpreted, even by
non-experts with very little prior experience with satellite imagery, such as
slum dwellers, as demonstrated in this study.

Tool for policy and practical implications
Urban policies should embrace and encompass citizens’ knowledge to
maximize their impact and benefits towards the most vulnerable commu-
nities. The developed AI tool, trained to predict citizens’ perceptions, has
substantial relevance for policy and practice implications, as it offers the
potential to highlight and understand urban inequalities. In this context, the
insights from Caggiano et al.42, who emphasize the importance of measur-
able equity indicators in Climate Action Plans, resonate with our approach.
Their findings align with our call for comprehensive tools that not only
predict but also measure and address urban inequalities effectively. More
concretely, the tool could facilitate a deeper understanding of residents’
needs, preferences, and concerns, thus encouraging greater citizen
engagement and participation in urban development initiatives. This aspect
reinforces the political discourse on citizen-centred approaches to urban
planning andpolicymaking. Furthermore, the tool’s ability to analyse citizen
perceptions enables urban planners to identify areas for improvement,
allocate resources efficiently and design more liveable, accessible, and sus-
tainable cities. Furthermore, the tool’s identification of citizens’ dis-
satisfaction or specific needs enables authorities to optimise the delivery of
public services, allocate resources efficiently and improve the quality of
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services.Moreover, by exploiting the predictions generated by theAImodel,
decision-makers gain valuable information on the potential impact of
proposed urban development policies or projects. Finally, a possible con-
tinuous analysis of citizens’ perceptions through the tool enables the
monitoring and evaluation of urban policies and projects over time.

Methods
Data and study area
Since its early days,Nairobi has exhibited spatial patterns that reflect divisions
based on social class, particularly as a result of urban colonial planning and
“racial zoning”43. These divisions have led to strong and regulated segregation
between the Central Business District (CBD) and residential areas for Eur-
opeans, Asians, and Africans. Presently, this urban segregation is evident in
terms of spatial and economic deprivation44. Slums, where 60% of urban
residents reside, are concentrated in amere 4% of the total built-up area. The
western part of Nairobi is characterised by greener areas and low building
density and is home to the wealthier population45, as well as certainminority
groups experiencing high levels of deprivation, such as the recognised slums
of Waruku. In contrast, the central localities, where most of the slums are
situated, are predominantly occupied by low- and middle-income groups.

Our study focuses on the complete coverage of slum areas within
Nairobi, covering a total area of approximately 20 square kilometres. We
adopted a grid-based strategy, dividing the slumareas into1998 square grids
of 1 ha each.

Five geospatial datasets were used: (1) A very-high resolution
WorldView-3 (WV3) image (Table 3), (2) a land-cover classification

derived from this WV3 image38, (3) OpenStreetMap (OSM) roads and (4)
OSM rivers46, and (5) Google Open Buildings10. Every dataset was used to
derive features for the conventional ML models, while the DL models
employed only WV3 image bands. A WV3 natural colour composite was
clippedusing the 100m× 100mgrid toproduce the image subsets shown in
pairs to slum citizens.

General workflow
The research follows the workflow outlined in Fig. 10. Firstly, we demon-
strate the feasibility of relying on citizen science and satellite data to assess
physical deprivation levels and generate a deprivation score. Secondly, we
assess the potential of AI to predict the deprivation score from EO features
derivedordirectly fromthe satellite image.Todo so,webuild a setofDLand
conventional ML models and compare their respective performances.
Finally, we examine the relative importance of the features provided by the
best ML model to identify the most relevant urban characteristics for
defining deprivation levels.

Engagement of slum dwellers in citizen science
Due to the challenges associated with on-site data collection, slum citizens
are often overlooked or under-sampled. This leads to incomplete census
data in slums and hence a lack of reliability of global population datasets
modelled from censuses47,48. The slum population is considered a hard-to-
reach group for several reasons: (i) difficulty in reaching the participants, as
working hours are often atypical and changing; (ii) complex urban mor-
phology making data collection and general orientation in settlements

Table 3 | World View-3 images specifications

Bands Spatial resolution Geometric processing level Radiometric processing level Date

Panchromatic 0.30 m Orthorectified Calibrated Mosaic of 2 images (13/01/2019 and 01/02/2019)

8 multispectral bands 1.20 m Orthorectified Calibrated Mosaic of 2 images (13/01/2019 and01/02/2019)

The table provides specifications for the WorldView-3 images, including details about the bands, spatial resolution, acquisition date, and levels of geometric and radiometric processing. The geometric
processing level of the images is described as “Orthorectified,” indicating that geometric distortions caused by sensor position and terrain variations have been corrected, to ensure accurate spatial
representation. The radiometric processing level is mentioned as “Calibrated,” indicating that the images have undergone atmospheric corrections to provide accurate and consistent pixel values.

Fig. 10 | General workflow of the study. In Phase 1,
termed ‘Citizen Science,’ the deprivation-score
database was generated through pairwise compar-
ison of satellite images by slum residents. In Phase 2,
‘EO-based Deep Learning Approach,’ various deep
learning models were developed, trained, and vali-
dated using the citizen science data alongside satel-
lite imagery. Finally, in Phase 3, ‘EO-based Machine
Learning Approach,’ different machine learning
models were employed, trained, and validated with
the citizen science data and additional geo datasets.
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challenging; (iii) difficulty to engage local communities as there is a lack of
trust that the survey will produce any local benefit; (iv) potential security
issues due to the presence of local street gangs49.

To enhance the reliability and validity of the citizen science protocol,
proactive measures in the experimental design proved successful in
addressing the challenges associated with reaching and engaging the slum
population. These measures included early engagement with local com-
munity leaders, providing comprehensive project information, and over-
coming educational and technological barriers.Over threemonths,wehad a
minimal drop-off in participation, with 186 participants actively engaged in
the project. While our study included participants with diverse socio-
economicprofiles, considering genderdiversity and ensuring representation
from different areas within the slums, it is important to note that they were
not randomly sampled. As a result, the findings do not provide a statistical
representation of the entire slum population (Fig. 11).

Citizen science assessment
Individual divergence metric helps understand how much a participant’s
opinion varies from the group’s opinion (group agreement) andwhether the
individual choices within the same comparison are consistent (comparison
consistency).We calculate it by averaging the value of the absolute difference
between group agreement and comparison consistency for the same com-
parison and individual:

Individual divergence ¼ 1
n

Xn

i¼1

jðgroup agreementÞi � jðcomparison consistencyÞij

ð1Þ
where i varies from 1 to n, and n stands for the comparisons done by an
individual.

Comparison consistency examines whether each individual is con-
sistent in their own choices. Participants are shown the same comparison

several times, and their consistency in upvoting the same image within a
comparison is evaluated. This is defined as, comparison consistency
= x / (x+ y), where x and y stand for the number of votes for each of the two
images involved in a comparison, and x is the image with the larger share of
votes in the comparison (avoiding double-counting, i.e., x+ y = 1, and
making the range from 0.5 to 1). Only the comparisons repeatedmore than
twice by an individual are used for the analysis.

Group agreement measures the agreement between participants in
upvoting the same image in a comparison. The only difference between
group agreement and comparison consistency is that the former is not
calculated per individual. It is given by, group agreement = X / (X+Y),
where X and Y stand for the number of votes for each of the two images
involved in a comparison, andX is the imagewith the larger share of votes in
the comparison (which, similarly as before, allows for the measure to avoid
double counting andmakes it range from0.5 to 1). Only comparisons voted
for more than twice are considered for the analysis.

Deep learning
To model deprivation scores with DL models, we employed two different
Convolutional Neural Networks (CNN) in our experiments: VGG and
DenseNet-121. The first approach involved training a VGG-like model
from scratch on the WV3 images. VGG is an architecture proposed by
Simonyan et Zisserman50, based on a series of convolution blocks separated
bymax-pooling layers, and ending with flattened and dense layers.While it
is considered a deep network, it has the advantage of being easily trainable
without facing the vanishing gradient problem. For our experiments, we
designed a small VGG-like model with a depth of nine layers: three con-
volution blocks (composed of two convolutions with 32 filters in the first
block, two convolutionswith 64filters in the second, and three convolutions
with 128filters in the last block). This architecturewas designed after several
trial-and-error attempts.WeusedReLUactivation and batch normalisation
after each convolution and amax-pooling layer at the end of eachblock. The

Fig. 11 | Participants’ socio-economic profiles for each of the seven studied slums. The pie charts illustrate key socio-economic indicators that define the participants’
profiles, namely their gender, age, education level, employment, access to tap water, and access to toilets. Each slum is represented in a separate column.
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Fig. 12 | Original image subset (100 m × 100m) and its augmented versions.Onlymoderate augmentations were used (vertical flip, 20% random rotation and 5% random
translation, with missing values filled using the reflection mode) so that the augmented versions do not differ greatly from the original version. Satellite image subsets:
WorldView-3 © 2019 Maxar Technologies.

Fig. 13 |Workflow designed to produce the features used in the conventionalML experiments. Feature selection is essential to preventmodel overfitting and improve the
interpretability of the results. Satellite image subset: WorldView-3 © 2019 Maxar Technologies.
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convolution blocks are followed by two dense layers with 256 neurons each.
For the regression task, the output layer consists of a dense layer with one
neuron and a linear activation function. Themodel is trained for 400 epochs
with a learning rate of 0.01 using the Adam optimizer. The mean squared
error is used as the loss function, and the batch size is set to 128.

The other approach uses the DenseNet architecture, proposed by
Huang et al. (2018), which is deeper and more complex than VGG. This
architecture is composed of several dense blocks separated by transition
layers. Each dense block is made of consecutive convolution layers whose
output feature maps are concatenated to all the subsequent convolution
layers in the block. The advantage of this approach is that it increases the
depth (and thus, has the potential to improve the accuracy) of CNNmodels
without facing the vanishing gradient problem. We used the implementa-
tion ofDenseNet-121 available in theKeras Python librarywhich provides a
version of the model pre-trained on ImageNet. We added a dense layer of
1024 neurons to themain architecture, followed by a regression head with a
single node and linear activation. The mean squared error was used as the
loss function, and the batch size was set to 128. For our experiment, where
the model was trained from scratch, the model was trained with a learning
rate of 0.001 for 200 epochs, using the Adam optimizer. In the transfer
learning approach, fine-tuning of our dataset was performed in two stages
using theAdamoptimizer:first, thepre-trainedweightswere frozen, and the
regressionheadwas trained for 15 epochswith a learning rate of 0.001. In the
second stage, pre-trained weights were unfrozen and trained for 200 epochs
with a smaller learning rate (0.0001) to avoid losing the information con-
tained in the pre-trained weights.

Furthermore, on DenseNet121 architecture, we applied a transfer
learning approach using a pre-trained model on ImageNet that was fine-
tuned on our dataset. The initial input of 333×333 pixels (image patches of
1 ha, spatial resolution of 30 cm) was resampled to 224×224 pixels tomatch
the patch size of the DenseNet121 model pre-trained on ImageNet. Input
data were standardised, with zeromean and unit variance. Since our dataset
is small and we must avoid overfitting, we used data augmentation, which
replaces the original training set with a randomised version at each epoch
(Fig. 12). We conducted experiments using two combinations of three
image bands, namely RGB and RGNir. The RGB combination is spectrally
similar to imagery that can be obtained fromGoogle Earth, while the RGNir
combination includes a near-infrared band known to be useful for dis-
criminating active vegetation.

Machine learning
ML experiments involve several stages: data processing, feature extraction,
feature selection,ML regressionmodelling, and feature importance analysis
(Fig. 10). Features were extracted from five geospatial datasets in
100m × 100m grid cells, as shown in Fig. 13. The datasets derived from
very-high resolution satellite imagery and publicly available building foot-
prints were created and outlined in earlier studies11,38,46,51.

NineMLexperimentsweredesigned inwhichdifferent combinations of
features were used. In each experiment, feature selectionwas implemented as
a two-stepprocess toprevent overfittingand to improve the interpretabilityof
the regression results. First, we regularised the models with the least absolute
shrinkage and selection operator (Lasso)52 using the glmnet R package for
regularisation. Lasso is a type of linear regression that penalises the sum of
coefficients’ absolute values. A penalty hyperparameter, whose optimal value
is foundusingcross-validation, determines the extentof coefficient shrinkage.
Using Lasso, the coefficients of useless features were set to zero. In the second
step, we performed feature selection on the features with a non-zero coeffi-
cient by computing Pearson’s correlation matrix to identify feature pairs
having a correlation coefficient greater than0.8 in absolute value. In eachpair,
we discarded the feature having the lowest coefficient. As an additional
selection criterion, we prioritised the mean over the median, as it better
captures variability and is, therefore, more suitable for ML methods.

We created two sets of transformed features, the first through stan-
dardisation and the second through log-transformation, and we used both
sets in the ML experiments. We compared three widely used conventional

ML regressors in each experiment: (i) Support Vector Machines (SVMs)
with different kernels: Radial Basis Function (RBF), Linear Kernel and
Polynomial Kernel53; (ii) Random Forest (RF)54; and (iii) eXtreme Gradient
Boosting (XGBoost)55. We used the R caret package and optimised the
hyperparameters of themodels using the tuneLength parameter of the train
function. Each ML regressor was run in each experiment, using, in turn,
each transformed feature set.

We analysed the significance of urban characteristics defining urban
deprivation through the ML experiment that provided the best accuracy.
This involved employing the RF algorithm’s capacity to assess the influence
of each feature on the predictive outcomes.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated during the study are available in the Zenodo repo-
sitory (https://doi.org/10.5281/zenodo.10881208). This includes the depri-
vation perception scores derived from Citizen Science data and the best
predictors (interpretable features) from the best conventional ML model.

Code availability
The codes generated during the study are available in the Zenodo repository
(https://doi.org/10.5281/zenodo.10881208). This includes the code of the
Citizen Science web interface, the Citizen Science assessment, and the best
DL and conventional ML models.
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