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As a hot area of population inflow in the process of urbanization, the urban expansion area faces rapid
growth of surface urban heat island (SUHI). However, the multi-dimensional evolutionary
characteristics of SUHI in urban expansion areas are still unclear. Through analyzing the evolution of
SUHI range ratio,mean intensity andmaximum intensity, in this studywe identified the comprehensive
evolutionary pattern of summer SUHI in urban expansion areas of 31 major cities in China during
2000–2018, and further investigated the corresponding dominant influencing factors. The results
showed that the SUHI range and intensity in urban expansion areas exhibited a significant increasing
trend in 81% and 71% of the cities respectively during the summer daytime. The cities with declining
SUHI range and intensitywere distributed in northwestern high-altitude areaswith low economic level,
while the cities with dominant increases in the SUHI range were distributed in eastern low-altitude
areas with high economic level. Climate conditions and population distribution were the dominant
influencing factors of intensity-dominated increasingandbalanced increasing types, respectively. The
intensity and range two-dimensional increasing type had experienced the most severe SUHI growth,
with large proportion of secondary industry as the main influencing factor. This study highlighted the
importance of multi-dimensional characteristics of SUHI evolution, which provided a new insight to
understand SUHI change in urban expansion areas and associated mitigation measures.

The world is urbanizing at an unprecedented rate, with nearly 68% of the
global population expected to live in urban areas by 20501. Rapid urbani-
zation is accompanied by the continuous expansion of urban landscape and
dramatically transforms natural and semi-natural surfaces into artificial
surfaces, which intensifies the urban heat island (UHI) effect2,3. With the
development of remote sensing technology, satellite-derived surface urban
heat island (SUHI) has received more attentions4–6. A better understanding
and monitoring of the SUHI is critically important for developing urban
heat mitigation strategies.

As a concentrated area for the transformation of non-urban
landscape into urban landscape during urbanization, urban expansion
area faces rapid growth of SUHI7,8. It has been proven that the SUHI
growth trend of urban expansion areas is more prominent than that of
old urban areas9. Over time, the urban high-temperature center has
gradually dispersed from the old urban area to the new expansion
area10. Thus, it is necessary to carry out the long-term monitoring and

corresponding driving force research of SUHI in urban expan-
sion areas.

The spatiotemporal dynamic evolution of SUHI is the key content of
urban thermal environment monitoring. Many scholars have reported that
the SUHI is increasing with the continuous improvement of
urbanization11–13. In general, it can be concluded that the increase in SUHI is
mainly manifested in two aspects: intensity14,15 and range/footprint16,17.
However, these two situations do not always occur simultaneously. For
instance, the SUHI intensity of summer daytime in Fuzhou, China,
increased from2000 to2015,while its footprint decreased slightly from2003
to 2016; On the contrary, the SUHI footprint in Shanghai showed a sig-
nificant increasing trend, while its intensity decreased12,18. The specific
growthdirectionof SUHI is vital for urban thermal environmentmitigation,
which is rarely explored in previous studies. Therefore, it is necessary to pay
attention to the multi-dimensional characteristics of SUHI evolution and
thus identify comprehensive evolutionary patterns.
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It is known that the spatiotemporal evolutionary characteristics of
SUHI are affected by lots of social or ecological factors, mainly including
climate conditions19,20, geographical location21,22, socioeconomic
condition23,24, landscape type21,25, and urban morphology26,27. Generally, the
influencing factors involved in previous studies are relatively comprehen-
sive, but most of them only discussed the dominant influencing factors of
the temporal trend of a certain dimension, rather than integrating the
attribution analysis of the multi-dimensional SUHI evolutionary char-
acteristics. This study aims to explore the comprehensive evolution char-
acteristics of SUHI in urban expansion areas in the process of rapid
urbanization, and the focus on its dominant influencing factors will help to
develop urban thermal environment mitigation strategies.

Since the beginning of the 21st century, China has accelerated urban
expansion under the context of rapid globalization and socioeconomic
development. From 2000 to 2018, the urbanization rate increased from
36.22% to 59.58%, and the urban land expanded from 42600 km2 to
74800 km2 28,29. Rapid urban expansion has significantly exacerbated the
SUHI effect23. Therefore, in this study, we conducted a comprehensive and
detailed analysis of the SUHI evolutionary pattern and driving factors in
urban expansion areas of 31 Chinese cities. In detail, the main purposes of
the study were: (1) to identify and quantify the SUHI in urban expansion
areas during 2000–2018; (2) to explore the evolutionary characteristics of
SUHI from three aspects, i.e., range, mean intensity, and maximum
intensity; and (3) to determine the comprehensive evolutionary pattern of
SUHI as well as their dominant factors.

Results
SUHI change trends in urban expansion areas
Three representative indicators, including the SUHI range ratio (SUHI_Ra),
mean intensity (SUHII_Mean), and maximum intensity (SUHII_Max),
were applied tomonitor the characteristics of SUHI inmultiple dimensions.
In detail, SUHI_Ra is defined as the ratio of the SUHI range in the urban

expansion area to the SUHI range in the whole urban area. SUHII_Mean
and SUHII_Max are themean andmaximumSUHI intensity of all pixels in
the urban expansion area, respectively. Figure 1 shows the multi-year
average of SUHI_Ra, SUHII_Mean, and SUHII_Max in urban expansion
areas of 31Chinese cities in the summerof 2000–2018. It couldbe found that
the SUHI_Ra varied greatly in different cities, with a higher value in
southeastern cities during the daytime and in central cities during the
nighttime. Moreover, the SUHI_Ra in the urban expansion area of Hang-
zhou was the highest whenever it was daytime or nighttime, with value of
60% and 43%, respectively. The SUHII_Mean and SUHII_Max of 31 cities
indicated a similar spatial distribution. Specifically, during the daytime, the
eastern cities showed higher SUHI intensity, and Urumqi in the northwest
also showed extremely high value. During the nighttime, the difference
between cities became smaller, and the central and northwestern cities
showed relatively higher SUHI intensity. Generally, the values of SUHI_Ra,
SUHII_Mean, andSUHII_Maxduring thedaytimewere all higher than that
during the nighttime.

The SUHI change trend and corresponding significance in urban
expansion areas based on linear regression analysis were presented in Fig. 2.
As for SUHI_Ra, there were 25 cities (81% of the cities) demonstrating a
significant increasing trend during the daytime, and Wuhan showed the
highest change rate of 2.69%·yr−1. During the nighttime, a significant
increasing trendwasobserved in20 cities (65%of the cities),with thehighest
value of 1.09%·yr−1 in Beijing. As for SUHII_Mean, 22 and 16 cities (71%
and 52% of the cities) showed a significant increasing trend during the
daytime and nighttime respectively, while the change rate during the
nighttime only varied between 0 and 0.05 °C yr−1. As for SUHII_Max, 22
cities (71% of the cities) showed a significant increasing trend during the
daytime, and the higher change rate was found in the southeastern cities.
However, only 14 cities (45% of the cities) showed a significant increasing
trend during the nighttime, with the change rate below 0.1 °C yr−1. In
conclusion, the evolutionary trend during the nighttime was not as

Fig. 1 | Spatial distribution of multi-year average SUHI characteristics in urban
expansion areas across 31Chinese cities from2000 to 2018. a SUHI_Ra during the
daytime. b SUHII_Mean during the daytime. c SUHII_Max during the daytime.

d SUHI_Ra during the nighttime. e SUHII_Mean during the nighttime.
f SUHII_Max during the nighttime.
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significant as that during the daytime in any dimension, and it exhibited
inconspicuous diversity among 31 cities during the nighttime. Therefore,
more attentions were further paid to the evolutionary pattern of SUHI in
urban expansion areas during the summer daytime.

SUHI evolutionary pattern in urban expansion areas
Based on the multi-dimensional evolutionary rates of SUHI in urban
expansion areas during summer daytime, these cities were divided into 5
types using the K-means clustering method (Fig. 3). Lanzhou was not
included in the classification scheme because the change trends of all three

SUHI characteristics were not significant. The five types can be character-
ized as follows:

Cluster L-L: Declining type, distributed in northwestern China. The
change of SUHI_Ra in urban expansion areas was insignificant, significant
decrease, or significantly low increase, while the SUHII_Mean and
SUHII_Maxwere declining. In other words, the evolutionary rates of SUHI
range and intensity were both at low levels.

Cluster M-M: Balanced increasing type, mostly located in the north of
China, togetherwithHaikou.These cities experienced a balanced increase in
the SUHI_Ra, SUHII_Mean, and SUHII_Max in urban expansion areas.

Fig. 2 | Change trend and significance of SUHI characteristic in urban expansion
areas across 31 Chinese cities during 2000–2018. a SUHI_Ra during the daytime.
b SUHII_Mean during the daytime. c SUHII_Max during the daytime. d SUHI_Ra

during the nighttime. e SUHII_Mean during the nighttime. f SUHII_Max during the
nighttime. The color of the points represents change rate, and the cross markers on
the points indicate significance at the 0.05 level.

Fig. 3 | SUHI evolutionary patterns of the new expansion areas. a City classification based on the SUHI change trend. b Radar diagram of normalized eigenvalues of each
cluster center.

https://doi.org/10.1038/s42949-024-00152-1 Article

npj Urban Sustainability |            (2024) 4:14 3



The evolutionary rates of SUHI range and intensity were both at medium
levels.

Cluster H-L: Range-dominated increasing type, mostly distributed in
the east of China. Compared with SUHII_Mean and SUHII_Max, the
SUHI_Ra has experienced an increase at higher rate. The evolutionary rate
of SUHI range was at high level, while the evolutionary rate of SUHI
intensity was at lower level.

Cluster L-H: Intensity-dominated increasing type, mainly located in
the southofChina. The evolutionary rate of SUHI intensitywas athigh level,
while the evolutionary rate of SUHI range was at relatively low level, which
was the opposite of range-dominated increasing type.

Cluster H-H: Two-dimensional increasing type, mostly distributed in
the central part. They experienced a significant increase in the SUHI_Ra,

SUHII_Mean, and SUHII_Max. The evolutionary rates of SUHI range and
intensity were both at high levels.

It could be concluded that the urban expansion areas of declining type
cities and two-dimensional increasing type cities have experienced the
gentlest and most dramatic SUHI growth, respectively, while the growth of
balanced increasing type cities was between the two types. For the range-
dominated/intensity-dominated increasing type cities, it is necessary to
focus on the prominent single-dimensional SUHI growth trend.

Dominant driving factors of SUHI evolution patterns
20 indicators involved environmental background (elevation, precipitation,
temperature, latitude, and longitude), urban landscape (area proportion of
gray/green/blue space, as well as their change rate), and socio-economic
factors (GDP, population density, and nighttime light intensity, as well as
their change rate; and proportion of primary, secondary, and tertiary
industrial output),were selected to explore the important influencing factors
of SUHI evolutionary patterns in urban expansion areas. By applying the
principal component analysis method to eliminate the multicollinearity
among 20 indicators, 7 principal components were acquired, with the
cumulative variance contribution rate ofmore than 80% (Table 1). It should
also be noted that only two indicators were not included, i.e., average area
proportionof green space inurbanexpansion area in2000and2018, and the
change rate of area proportion of blue space in urban expansion areas from
2000 to 2018, both of which could be represented by the other space related
indicators.

As shown in Fig. 4, for the declining type, FAC1 (GDP_M, DEM, Lon,
and GDP_R) showed the highest importance score, suggesting that it was
the dominant factor influencing this evolutionary pattern. The economy of
these northwest high-altitude cities was at a low level but had grown rapidly.
The economic development might be concentrated in old urban areas,
which contributed to the decline of UHI in urban expansion areas. The
dominant factor affecting the balanced increasing type was FAC4 (PD_M,
Light_M, and Grey_M), which implied that the synergy of population
growth and landscape urbanization in new expansion areas could tend to
the formation of the balanced increasing type SUHI. For the range-
dominated increasing type, the dominant factor was the same as the
declining type. But on the contrary, such cities were generally closer to
coastal areas with lower altitudes. Their economywas at a high level but had

Table 1 | Principal component factors and corresponding
representative indicators

Factor Definition Representative Indicators

FAC 1 Economy-dominated GDP_ M (−0.86*), DEM (0.84*), Lon
(−0.81*), GDP_R (0.71*)

FAC 2 Climate-dominated Prep (0.91*), Lat (−0.87*), Tem (0.86*)

FAC 3 Industry-dominated PSI (0.91*), PTI (−0.89*),
Light_R (0.82*)

FAC 4 Population-dominated PD_M (0.79*), Light_M (0.79*),
Grey_M (0.73*)

FAC 5 Population-industry-
dominated

PD_R (0.88*), PPI (−0.86*)

FAC 6 Landscape-dominated Green_R (−0.77*), Grey_R (0.75*)

FAC 7 Water-dominated Blue_M (0.82*)
*represents the significance at 0.01 level (two-tailed). DEM, average DEM of urban expansion area;
Prep, multi-year average precipitation of urban expansion area; Tem, multi-year average tem-
perature of urban expansion area; Lat, latitude of the city center; Lon, longitude of the city center;
Grey_M and Blue_M, average area proportion of gray/blue space in urban expansion area in 2000
and 2018, respectively; Grey_R andGreen_R, change rate of area proportion of gray/green space in
urban expansion area from 2000 to 2018, respectively; PD_M, Light_M, and GDP_M, average
population density, nighttime light intensity and GDP in urban expansion area in 2000 and 2018,
respectively; PD_R, Light_R, and GDP_R, the change rate of population density, nighttime light
intensity and GDP in urban expansion area from 2000 to 2018, respectively; and PPI, PSI, and PTI,
the proportion of primary, secondary and tertiary industrial output of the city in 2018, respectively.

Fig. 4 | Boxplot of variable importance scores forfiveUHI evolution patterns based on 5-fold cross-validation of RFmodel. aDeclining type. bBalanced increasing type.
c Range-dominated increasing type. d Intensity-dominated type. e Two-dimensional increasing type.
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grown less, which might occur in urban expansion areas, leading to the
continuous increase of SUHI range. FAC2 (Prep, Lat, and Tem) was the
dominant factor affecting the intensity-dominated increasing type. The
lower latitude, as well as the climate characteristics of warm and humid,
contributed to the formation of this evolutionary pattern. For the two-
dimensional increasing type, FAC3 (PSI, PTI, and Light_R) was the
dominant influencing factor, indicating that a high proportion of the sec-
ondary industry was the key to the formation of this evolutionary pattern.

In order to explore key driving factors that can potentially change the
SUHI evolutionary pattern of the urban expansion area, the multinomial
logistic regression model was further applied with each pattern as the
baseline respectively (Fig. 5). Taking the balanced increasing type (Cluster
M-M) as the baseline as an example, the SUHI evolutionary pattern was
inclined to develop into the declining type (Cluster L-L) when the change
rate of area proportion of gray space was higher. In other words, the
declining type cities might have a higher change rate of area proportion of
gray space, but their SUHI showed a declining trend. As a result, the spatial

configuration of gray space deserve further attentions. When the latitude
was lower and the nighttime light intensity representing the socioeconomic
development level was higher, the balanced increasing type tended to
develop into the intensity-dominated increasing type (Cluster L-H),
meaning a significant increase in SUHI intensity. Moreover, when the area
proportion of gray space and both change rates of nighttime light intensity
and GDP in urban expansion areas were higher, and the urban industrial
structure was more inclined to secondary industry, this pattern tended to
develop into the two-dimensional increasing type (Cluster H-H).

Discussion
As the first choice to relieve human pressure on the old urban area, the new
urban expansion area is a crucial approach in the urbanization process,
which guides urban growth and provides alternative solution for urban
development7. Previous studies have demonstrated that the warming was
moreprominent inurban expansion areas than inoldurbanareas9,30,31. If the
study on the evolutionary trend of SUHI is only carried out from the

Fig. 5 | Regression coefficients and their significance of the multinomial logistic
regression with different cluster as the baseline. a Declining type (Cluster L-L) as
the baseline. b Balanced increasing type (Cluster M-M) as the baseline. c Range-
dominated increasing type (Cluster H-L) as the baseline. d Intensity-dominated

increasing type (Cluster L-H) as the baseline. e Two-dimensional increasing type
(Cluster H-H) as the baseline. The color and size of points represent the regression
coefficient and the corresponding significance, respectively.
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perspective of the whole urban area, its increasing trend may be under-
estimated. Taking the study of Zhou et al.32 as an example, the significant
increasing trend of summer daytime SUHI intensity was observed in about
one-third of the 32major Chinese cities32. However, this trend was found in
urban expansion areas of about 71% of cities in our study. To verify the
necessity of focusing on the long-term evolutionary pattern of SUHI in
urban expansion areas, we further compared the evolutionary character-
istics of summer daytime SUHI in old urban areas and urban
expansion areas.

As shown in Fig. 6, the averagemulti-year change rate of SUHI_Ra in
old urban areas was negative, much lower than that in urban expansion
areas. Specifically, the significant decreasing trend was found in old urban
areas of 16 cities, but none in new expansion areas. This result suggested
that the SUHI inmost cities might gradually shift from the old urban area

to the new expansion area. In terms of the SUHI intensity, the average
multi-year change rates of SUHII_Mean and SUHII_Max in urban
expansion areaswere both higher than that in old urban areas, and only 14
and 12 cities showed a significant increasing trend of SUHII_Mean and
SUHII_Max in old urban areas respectively. It could be seen that no
matter in which dimension, the increasing trend of SUHI in urban
expansion areas was dramatically higher than that in old urban areas.
Similar to our results, Yao et al.33 found that the increasing trend of SUHI
intensity in the area converted from other land use types to urban con-
struction land during 2001–2015 was significantly higher than that of the
area with stable urban construction land33. Therefore, studies on the
evolutionary characteristics of SUHI in urban expansion areas are crucial
for sustainableurbandevelopment in viewofmitigating SUHI stress in the
context of global warming.

Fig. 6 | Comparison of the multi-year change rate of SUHI in the old urban area
and urban expansion area. a SUHI_Ra. b SUHII_Mean. c SUHII_Max. Cities that
passed the significance test are shown (b, c only show cities with significant

increases), the error bar represents the standard error of the change rate, and hor-
izontal lines represent the average values.
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In the process of rapid urbanization, most Chinese cities have
experienced suburban urbanization between 2000 and 2018, resulting in
widespread urban expansion areas29. Through analyzing the dominant
influencing factors of the summer daytime SUHI evolutionary pattern and
the critical transition drivers between various patterns in urban expansion
areas, different evolution mechanisms among various patterns were found
(Fig. 7). In the process of urbanization from 2000 to 2018, the SUHI growth
and urban construction have developed in the same direction in urban
expansion areas ofmost cities,with the oppositedirectiononly in three cities
in this study, namely the declining type cities. The increasing SUHI makes
urban expansion areas face more and more thermal risk, especially in two-
dimensional increasing type cities and range-dominated or intensity-
dominated increasing type cities.

For the control of SUHI in new urban areas, on the one hand, an early
warning for the future is important. For instance, declining type cities
currently exhibit a low SUHI growth trend, but with the rise of temperature
under climate change, they may change to range-dominated or intensity-
dominated increasing type. In the face of this possibility in the future, we
should pay attention to the optimization of scale and arrangement of gray
space in future urban construction34. On the other hand, it is urgent to take
measures to alleviate the current SUHI trend. The evolution of SUHI in
urban expansion areas of two-dimensional increasing type cities dominated
by industrial structure is the most severe, and the transformation and
upgrading to the service industry as the leading industry are the keys to
change them to the pattern with a lower SUHI growth.Meanwhile, it is also
necessary to adopt other SUHI mitigation methods, such as the cooling
effect of green space or water body35,36. The urban expansion areas with
intensity-dominated increasing of SUHI is confronted with more severe
extreme SUHI. Although the environmental background is the dominant
factor to form this pattern, controlling the gray landscape area and opti-
mizing the spatial distribution of economic activity areas are meaningful
ways to transform it into a pattern with a lower SUHI growth.

This study analyzed the evolutionary characteristics and patterns of
SUHI in urban expansion areas of 31 major cities in China from 2000 to
2018 and explored the dominant influencing factors of various evolution
patterns and the key drivers of transformation between different evolution
patterns. However, there are also some limitations in this study. Firstly,
SUHI was identified based onMODIS data. However, there may be bias in
the identified SUHI because of the thermal anisotropy, which poses a
challenge for precisely calculating the intensity and range of SUHI37,38.

Secondly, due to seasonal differences in the SUHI39, the SUHI evolutionary
patterns in urban expansion areas should be explored throughout one year,
not just for a single season. Lastly, only the influences of environmental
background, urban landscape and socio-economic factors were considered.
In the future,more influencing factors can be included, such as urban spatial
configuration and urban form, in order to provide amore detailed guidance
in urban planning40.

Methods
Study area and data sources
31 major cities in China, including 4 municipalities and 27 provincial
capitals, were selected as study areas (Fig. 8). As the political centers of
various regions, these cities have continuously expanded their built-up areas
during the rapid urbanization process in recent decades. According to the
ChinaCity Statistical Yearbook, the largest expansion area of urbanbuilt-up
area is 1349 km2 in Shanghai, and the smallest is 34 km2 in Xining. Thus,
these cities are ideal study areas for exploring the SUHI effect of urban
expansion areas.

Themain datasets used in this study were as follows: (1) Global Urban
Boundaries (GUB), developed by Li et al.41. We applied this data to extract
urban expansion areas of 31 cities and regarded the urban areas before 2000
as old urban areas, and the growth areas of urban areas from2000 to 2018 as
urban expansion areas8; (2) 8-day land surface temperature (LST) product
MOD11A2, provided by the United States Geological Survey (https://
earthexplorer.usgs.gov/). We acquired 502 images covering the study areas
with a spatial resolutionof 1 km from2000 to 2018 in summer (from June to
August). After cloud removal and quality control, the images in July were
used to calculate themean LST of daytime and nighttime, and the images in
June and August were used to supplement missing values; (3) land use data
during 2000–2018, provided by the Resource and Environment Science and
Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/),
with a spatial resolution of 1 km. The land use includes 6 categories: crop-
land, forest land, grassland, water area, construction land, and unused land;
(4) VIIRS/NPP nighttime light data and DMSP/OLS nighttime light data,
acquired from the National Oceanic and Atmospheric Administration
(https://ngdc.noaa.gov/eog/). Since the DMSP/OLS nighttime light data
were not available subsequent to February 2014, in this studywe applied the
conversion method proposed by Li et al.42 to intercalibrate the DMSP/OLS
nighttime light data and VIIRS/NPP data42; (5) meteorological data,
including the national average annual precipitation and average

Fig. 7 | Changing mechanism of SUHI evolu-
tionary pattern in the urban expansion area. The
figure summarizes the dominant influencing factors
of various SUHI evolution patterns (marked in gray
boxes) and the key drivers of transformation
between different patterns (shown on arrows).
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temperatureduring2000–2018, providedby theResourceandEnvironment
Science andData Center of the Chinese Academy of Sciences (https://www.
resdc.cn/), with a spatial resolution of 1 km; (6) socioeconomic data,
including the 1 km grid population density data acquired from the
WorldPOP (https://www.worldpop.org/) and industrial structure and
Gross Domestic Product (GDP) collected from the China statistical year-
book; and (7)Digital ElevationModel (DEM), downloaded from the Shuttle
Radar Topographic Mission (SRTM) database published by the National
Aeronautics and Space Administration (NASA) (https://eospso.gsfc.nasa.
gov), with a spatial resolution of 30m.

SUHI quantification
The intensity of SUHI was usually calculated as the difference in land
surface temperature between the urban and rural or suburban areas15,43.
To monitor multi-year SUHI in urban expansion areas, it is necessary to
consider the dynamic changes in the extent of suburban areas. There-
fore, in this study we identified the suburban areas according to the
following rules: (1) areas outside the old urban area and the urban
expansion area in a city; (2) flat fields close to the altitude of urban areas;
(3) the land use type was stable as forest land or grassland during
2000–2018; and (4) areas where the DN value of nighttime light was less
than or equal to 15 during 2000–201844. The intensity of SUHI can be
calculated using Eq. (1).

SUHIIi ¼ LSTi � LSTSub ð1Þ

In Eq. (1), SUHIIi refers to the surface heat island intensity of pixel i,
LSTi is the LST of pixel i, and LSTSub is the mean of suburban LST.

Then, the percentile-based thermal threshold method proposed
by Shreevastava et al.45 was used to identify the range of SUHI in
urban expansion areas. Specifically, for each city, the value of the top
5% percentile of SUHI intensity in urban areas every year was used as
the threshold for identifying the SUHI range. Compared with

selecting a certain fixed value as the threshold for all the cities, this
method is beneficial to compare the variation of SUHI in different
cities, and to identify multi-year SUHI evolutionary characteristics of
the same city.

SUHI evolution analysis
To analyze the temporal evolutionary trend of SUHI in urban expansion
areas, the linear regression model based on ordinary least squares was
applied to determine the slopes of three indicators over time for each city,
whichwere regarded as the evolutionary rates. In addition, t-test was used to
examine the significance of evolutionary rates.

The evolutionary rates of SUHI_Ra, SUHII_Mean, and SUHII_Max
in urban expansion areas were normalized by their respective max
absolute value,whichwere further introduced into theK-means clustering
as three features of sample points to classify the types of SUHI evolu-
tionary patterns. K-means clustering can partition n observations into K
clusters so that the similarity among samples in the same cluster is higher
than that in different clusters. K points in the samples were randomly
selected as centroids of K clusters, and all sample points were classified
into the nearest cluster according to their distance to each centroid. Then,
the centroid of each cluster was recalculated. If the distance between new
centroids and original centroids was less than a set threshold, the data has
converged, otherwise, the classification schemes would be adjusted by the
distance from the centroids until convergence.

Due to the difficulty of determining the cluster number K artifi-
cially, in this study we used the elbow method to test the optimal clus-
tering results by observing the variation trend of the sum of squared
errors (SSE) with the cluster number K46. The SSE can be calculated as
shown in Eq. (2).

SSE ¼
Xk

i¼1

X

p2Ci

p�mi

�� ��2 ð2Þ

Fig. 8 | Location of 31 major cities in China. The
center and name of the cities are marked in
the figure.
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In Eq. (2), Ci is the i
th cluster, p represents the samples in Ci, and mi

represents the cluster center of Ci.

Influencing factors identification for SUHI evolutionary pattern
In this studywe comprehensively considered the impact of environmental
background, urban landscape, and socio-economic factors on the evolu-
tionary pattern of SUHI in urban expansion areas. Generally, environ-
mental background consists of DEM, temperature, and precipitation, as
well as longitude and latitude19. In particular, when cities are located at
different longitudes and latitudes, there are diversities in the received solar
radiation and the change of solar altitude angle, whichmay affect theUHI
effect22. Thus, they were included in the environmental background fac-
tors. Urban landscape considers the area proportions of gray, green, and
blue space47. Among them, the gray space is construction land, the green
space consists of forest land andgrassland, and theblue space iswater area.
Socio-economic factors include population density, nighttime light
intensity, industrial structure, and GDP. To make data closer to a normal
distribution, the population density and GDP were log-transformed48.
Finally, all the factors were standardized with Z-Score to ensure uniform
magnitude.

To explore the important driving forces affecting the SUHI evolu-
tionary pattern in urban expansion areas, the principal component analysis
wasfirstly applied to reduce the dimensionality of 20 influencing factors and
thus to eliminate the multicollinearity among them. Then, taking rotated
principal components as explanatory variables, and types of evolutionary
pattern as response variable, the random forest (RF) model was used to
investigate the relative importance of the impact of each explanatory vari-
able on the SUHI evolutionary pattern. RFmodel is an algorithmbased on a
classification tree, in which mean decrease accuracy (MDA) is a key indi-
cator characterizing the relative importance of variables49. It quantifies the
decrease in prediction accuracy when changing the values of an explanatory
variable into random numbers. The larger of MDA is, the more important
the variable is. In this study, we used the package ‘randomForest’ in R to
implement the RF model. In addition, a 5-fold cross-validation was con-
ducted on the RF model to improve the robustness of the results50. Cross-
validation randomly divided the training and testing sets to generate dif-
ferent models, and the importance of variables based on the average MDA
run by these models.

The multinomial logistic regression model is available when the
dependent variable is an unordered categorical variable, which pairs each
category with the baseline/reference category, and the mathematical
expression is shown in Eq. (3). When the number of categories of the
dependent variable is 2, themodel is equivalent to binary logistic regression.
In this study, with various SUHI evolutionary types as the baseline in turn,
the multinomial logistic regression was established to identify the drivers of
mutual conversion between different evolutionary patterns in the urban
expansion area.

gjðxÞ ¼ ln
yj
y0

¼ αj þ βjx ð3Þ

In Eq. (3), y0 is the baseline category, gj(x) represents the regression
equation for the remaining category yi paired with the baseline, and αj and βj
represent the corresponding intercept andregressioncoefficients respectively.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used in this study, including global urban boundaries, LST, land
use, night light intensity, meteorological variables, socioeconomic variables
and DEM were obtained from publicly available data with free access.

Code availability
The code used to produce the results of this study is available from the
authors upon reasonable request.
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