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The emergence of urban heat traps and human mobility in 20
US cities
Xinke Huang1, Yuqin Jiang 1✉ and Ali Mostafavi1

Understanding the relationship between spatial structures of cities and environmental hazard exposures is essential for urban
health and sustainability planning. However, a critical knowledge gap exists in terms of the extent to which socio-spatial networks
shaped by human mobility exacerbate or alleviate urban heat exposures of populations in cities. In this study, we utilize location-
based data to construct human mobility networks in twenty metropolitan areas in the U.S. The human mobility networks are
analyzed in conjunction with the urban heat characteristics of spatial areas. We identify areas with high and low urban heat
exposure and evaluate visitation patterns of populations residing in high and low urban heat areas to other spatial areas with
similar and dissimilar urban heat exposure. The results reveal the presence of urban heat traps in the majority of the studied
metropolitan areas, wherein populations residing in high-heat exposure areas primarily visited other high-heat exposure zones.
Specifically, cities such as Los Angeles, Boston, and Chicago were particularly pronounced as urban heat traps. The results also show
a small percentage of human mobility to produce urban heat escalation and heat escapes. The findings from this study provide a
better understanding of urban heat exposure in cities based on patterns of human mobility. These findings contribute to a broader
understanding of the intersection of human network dynamics and environmental hazard exposures in cities to inform more
integrated urban design and planning to promote health and sustainability.
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INTRODUCTION
The characterization of the spatial environmental hazards in cities
is essential for urban sustainability and health plans and
policies1–3. Among all the environmental hazards, heat is one of
the major hazards4–6. Damages of heat include increased mortality
and morbidity due to extremely high air temperatures7, stronger
heat-related health threats in urban areas8, and increased energy
consumption9. However, comparing to other environmental
hazards, such as air pollution, urban heat did not draw enough
attention in the existing literature10–12. Within the studies of urban
heat, limited attentions were paid to human network dynamics
that could expand the reach of environmental hazard expo-
sures4,13. Current heat-related studies mostly focused on index-
based, which is an isolated measurement of individual loca-
tions14–16. Research gap exists in terms of how to understand the
spatial distribution of urban heat and people’s response to the
heat from a network-based perspective. In particular, human
mobility shapes the spatial structures of cities and could extend
the reach of environmental hazards beyond hazard hotspots. In a
recent study, Fan et al. examined the intersection of human
mobility and air pollution exposure and found that human
mobility expands the reach of air pollution exposure17. This study
highlights the significance of characterizing environmental hazard
exposures based on considering human mobility networks in
cities17. In the context of urban heat exposure, Yin et al. proposed
a dynamic urban thermal exposure index to account for human
mobility in specifying urban heat exposure18. While the index-
based approach proposed by Yin et al. captures mobility-based
heat exposure, it does not capture fundamental properties arising
at the intersection of human mobility and spatial heat exposure
that extend or alleviate heat exposure18. Recognizing this gap, in
this paper, we define and examine three properties at the
intersection of urban heat and human mobility (Fig. 1): (1) heat

traps: in which populations residing in high-heat areas visit other
high-heat areas; (2) heat escapes: in which populations residing in
high heat areas visit low heat areas; and (3) heat escalates: in
which populations residing in low heat areas visit high heat areas.
In fact, these properties are emergent properties arising from the
intersection of human mobility networks and the spatial distribu-
tion of heat hazards in cities. Accordingly, the study aims to
address the following research questions: to what extent human
mobility would exacerbate urban heat exposure (prominence of
heat traps), alleviate heat exposure (heat escapes), or expand the
reach of heat exposure (heat escalates)? To address these
questions, we utilize aggregated and anonymized location-based
data to construct the human mobility network (origin-destination
network in which origin is the home census tracts of trips and
destination is the visitation census tract of trips) for twenty
metropolitan areas in the U.S. to examine the proportion of trips
from high heat areas to other high heat areas and low heat areas.
Accordingly, we analyze the prominence of heat traps, escapes,
and escalates across different cities to evaluate cross-city
similarities and differences.
Urban heat (UH), or the urban heat island effect, refers to the

phenomenon where urban areas have higher temperatures than
surrounding rural areas due to the heat generated by human
activity and the lack of vegetation to absorb that heat. UH has
been recognized as a global problem, which has drawn attention
from multiple countries19–22. To understand and mitigate UH
effect, researchers have identified multiple factors. For example,
some studies found that tree density is correlated with UH23–25,
that high tree density potentially decreases urban heat phenom-
enon. Transportation is another factor, less movement of
transportation can reduce the extent of changes in temperatures
in urban areas26–28. Moreover, population density also contributes
to the urban heat effect; population loss can have a mitigating
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effect on the UH effect29–31. However, those studies focused on
examining a single factor with UH, and they ignored the ability of
humans to adjust to the living environment by moving to different
locations.
Human mobility datasets have been widely used in multiple

hazards, including hurricane32–35, flooding36–41, and infectious
diseases42–45. These studies have found human mobility data was
useful in understanding people’s reaction to hazards46,47. During
the COVID-19 pandemic, the confirmed cases were found to be
highly correlated with human mobility places with higher
activities had more COVID-19 cases48,49. These studies have
recognized that people can successfully change the level of
hazard exposure by moving to a different location.
The majority of human mobility and hazard studies have

focused on the relationship between human mobility patterns and
the likelihood of exposure to natural hazards, infectious diseases,
and environmental pollutants. However, the current literature
does not adequately investigate the relationship between human
mobility and urban heat50,51. In this context, mobility can play a
significant role in determining the likelihood of exposure to urban
heat. Therefore, understanding the relationship between human
mobility and UH can be useful in developing strategies to reduce
the impact of urban heat on individuals and communities, which is
the focus of this study.
In our analysis, we utilized the Surface Urban Heat Island (SUHI)

values, which are derived from the difference between urban Land
Surface Temperature (LST) and a common rural reference. While
SUHI is indicative of the radiative surface temperature and offers
valuable insights into the spatial patterns of urban heat, it is
important to understand its limitations. Specifically, SUHI and LST
are measures of surface warmth and do not always correlate
directly with ambient air temperature, which has a more
immediate impact on human comfort and health. Particularly
during the daytime, the relationship between air temperature and
surface temperature can be weak due to the influence of various
atmospheric conditions, such as wind and humidity, as well as the
thermal characteristics of the surface materials. Thus, caution
should be exercised when using LST or SUHI to quantitatively
estimate actual heat exposure for individuals. It’s important to

note that while the spatial patterns observed in terms of heat
traps, escalates, and escapes are based on SUHI, a direct analysis
using LST might yield consistent patterns due to the inherent
relationship between LST and SUHI. LST offers a direct measure of
urban temperature, whereas SUHI provides a relative measure by
contrasting urban temperatures with a rural baseline. Both metrics
can offer valuable insights into urban heat dynamics52,53. For the
scope of this study, we specifically used the annual mean SUHI
values for the entire urbanized area. This ensures a comprehensive
representation of the urban heat dynamics across the region,
allowing us to investigate its relationship with human mobility
patterns effectively.

RESULTS
Patterns across cities
Table 1 presents the list of metropolitan areas and the percentage
of trips in each category (i.e., high to high, low to high, and high to
low). The high UH and low UH percentages are calculated by
dividing the number of census tracts in high UH and low UH areas,
respectively, by the total number of census tracts. It was observed
that the total number of census tracts with trips originating from
high UH areas and traveling to either low UH areas or other high
UH areas were numerically equivalent. This consistency arises
because both types of trips—those going from high UH to low UH
and those traveling between high UH tract—originate from the
same set of high UH census tracts. What differentiates these trips
is their destination: one set travels to low UH tracts, while the
other remains within high UH tracts. It’s important to understand
that while the origins are the same, the nature of the outbound
trips varies based on the urban heat conditions of the destination
tracts. (Eqs. (2) and (3)). The metropolitan classifications are based
on the percentage of low-to-high trips, high-to-low trips, and
high-to-high trips, as stated in the Methods section.
For visual clarity and differentiation in our figures, we employed

the quantile breaks method to categorize the colors representing
various levels of Urban Heat (UH). All of the results maps are
created using Python library Matplotlib.

Fig. 1 Heat level for the area. Conceptual representation of urban heat traps, escalates, and escapes arising from the intersection of human
mobility and heat exposure.
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Cities with high urban heat traps
The Los Angeles metropolitan area shows significant urban heat
traps. Fig. 2A maps the UH in Los Angeles. Three orange shades
represent three levels of UH. The darker the shade is, the more
severe UH was observed. The metropolitan area has 13 percent of
the tracts in low UH areas, mainly located on the north and east,
while 52 percent of the metropolitan area is in high UH areas (dark
orange). Figs. 2B–D shows the ratio of trips between low UH tracts
and high UH tracts, which are broken into four categories for
better visualization. Light blue shows a low ratio of trips, and dark
blue shows a high ratio of trips. All the following figures are
presented in the same plot format as Figs. 2A, B–D.
Figure 2B shows the ratio of trips visiting from low UH tracts to

high UH tracts. A high ratio of low-to-high trips from 0.22 to 0.35
occurs in the north, which means that a significant number of
people living in low UH areas are visiting high UH areas in the
north. Fig. 2D shows the ratio of trips from high UH tracts to low
UH tracts with a higher ratio of trips, 0.05 to 0.11, occurring in the
northwest and southwest. This means that a relatively high
number of people living in high UH areas are visiting low UH areas
in the northwest and southwest. Fig. 2C shows the ratio of trips
visiting from high UH tracts to high UH tracts. 81 percent of all the
tracts in high UH areas have trips trapped inside high UH areas
with the ratio of trips from 0.30 to 0.92, meaning lots of people
suffering UH did not move to relieve their UH exposure. These
urban heat traps are in the northwest and central of Los Angeles,
with an especially high ratio from 0.76 to 0.92 in the central.
Fig. 2D shows the ratio of trips visiting from high UH areas to low
UH areas with a ratio of trips from 0 to 0.11.
Similarly, the Chicago metropolitan area shows strong urban

heat traps as well. Fig. 3A maps the UH in Chicago. Chicago has 16
percent of its tracts in low UH areas, while 49 percent of its tracts
are in high UH areas. Fig. 3B shows the ratio of trips visiting from
low UH tracts to high UH tracts. A higher ratio of trips 0.17 to 0.24
occurs on the coast of Lake Michigan, meaning that a significant
number of people living in low UH areas are visiting high UH areas
on the coast of Lake Michigan. Fig. 3D shows trips from high UH
tracts to low UH tracts with a ratio as high as 0.08 to 0.13 occurring

in the east. Fig. 3C shows the ratio of trips visiting from high UH
tracts to high UH tracts, with the ratio of trips from 0.44 to 0.91,
which means that a large number of people living in high UH
areas are visiting other high UH areas within the Chicago
metropolitan area. About 78 percent of Chicago tracts in high
UH areas have trips trapped inside high UH areas. Most of the UH
traps are in the west of Chicago. At the same time, central Chicago
presents an exceptionally high heat trap ratio, ranging from 0.79
to 0.91. Fig. 3D. shows the ratio of trips visiting from high UH tracts
to low UH tracts, with the ratio of trips from 0 to 0.13. This means
that a relatively low number of people living in high UH areas are
visiting low UH areas within the Chicago metropolitan area.
Comparing the UH traps between Chicago and Los Angeles, we

can see that the traps in Chicago are clustered in one place, while
in Los Angeles are distributed into multiple clusters.
Figures 2 and 3 show that the Los Angeles and Chicago

metropolitan areas both have significant urban heat traps. In Los
Angeles, 52 percent of all the tracts are in high UH areas, while in
Chicago, 49 percent are in high UH areas. The figures also show
that trips from low UH areas to high UH areas are more frequent in
the north of both cities, while trips from high UH areas to low UH
areas are more common in the northwest and southwest of Los
Angeles, and the east of Chicago. Additionally, the figures show
that both cities present high heat trap trips, with around 80
percent of tracts having heat trap trips. This indicates that people
in the high UH areas are likely not visiting the low UH areas to
escape the heat, but instead are staying in other high UH areas.

Cities with low urban heat traps
Boston Metropolitan shows low urban heat traps. Fig. 4A maps the
UH in Boston. About 28 percent of tracts in Boston are in low UH
areas, while 36 percent of tracts have high UH. Most of these high
UH tracts are clustered in central Boston. Fig. 4B shows the ratio of
trips visiting from low UH tracts to high UH tracts. The ratio of such
trips is from 0.04 to 0.19 and only occurs in 4 percent of all the
tracts with low UH. Fig. 4C shows the ratio of trips visiting from
high UH tracts to high UH tracts. This ratio ranges from 0.30 to
0.90. About 37 percent of tracts with high UH have trips trapped
inside high UH areas. This percentage is relatively small when
compared to Los Angeles (81 percent) and Chicago (78 percent).
Fig. 4D shows the trips from high UH areas to low UH areas with a
ratio from 0 to 0.02. These results indicate that people living in low
UH areas in the Boston metropolitan area are not frequently
visiting high UH areas, which could be an indication of a fewer
heat traps.
Similarly, the Atlanta Metropolitan also shows low UH traps.

Fig. 5A maps the UH in Atlanta. Atlanta has 32 percent of the tracts
in low UH areas, while 21 percent are in high UH areas. Fig. 5B
shows the ratio of trips visiting from low UH tracts to high UH
tracts. The ratio of such trips is from 0.01 to 0.16 and only occurred
in 13 percent of all the low UH tracts. Fig. 5C shows the ratio of
trips visiting from high UH tracts to high UH tracts with ratios from
0.37 to 0.87. About 40 percent of high UH tracts have heat trap
trips. This number is similar to Boston and is relatively small
compared to Los Angeles and Chicago. Fig. 5D shows the trips
from high UH areas to low UH areas, ranging from 0.01 to 0.12. This
ratio is small but more significant than that of Boston, which means
that comparing to Boston, more heat escape trips exist in Atlanta.
Figures 4 and 5 show that both Boston and Atlanta have

relatively low UH comparing to Los Angeles and Chicago. In
Boston, only 36 percent of tracts are in high UH, while in Atlanta,
only 21 percent of the tracts are in high UH. The figures also show
that trips from low UH areas to high UH areas are relatively rare in
both cities, only 4 percent and 13 percent in low UH tracts in
Boston and Atlanta, respectively. In both cities, the percentages of
tracts with trips trapped inside high UH areas are lower than in Los
Angeles and Chicago.

Table 1. Metropolitan areas.

Metropolitan areas State

1 Phoenix Arizona

2 Los Angeles California

3 Denver Colorado

4 Washington DC District of Columbia

5 Orlando Florida

6 Miami Florida

7 Atlanta Georgia

8 Chicago Illinois

9 Boston Massachusetts

10 Detroit Michigan

11 Minneapolis Minnesota

12 Rochester New York

13 Columbus Ohio

14 Portland Oregon

15 Pittsburgh Pennsylvania

16 Philadelphia Pennsylvania

17 Memphis Tennessee

18 Houston Texas

19 Dallas Texas

20 Seattle Washington
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Cities with high urban heat escapes
The Minneapolis Metropolitan Area shows high UH escapes.
Fig. 6A maps the UH in Minneapolis. The metropolitan area has 18
percent of its tracts in low UH areas, while 45 percent are in high
UH areas. Fig. 6B shows the ratio of trips from low UH tracts to
high UH tracts. This ratio ranges from 0.03 to 0.34, occurring in 26
percent of low UH tracts. Fig. 6C shows the ratio of trips from high
UH tracts to high UH tracts with ratios from 0.41 to 0.86. Fig. 6D
shows the ratio of trips from high UH tracts to low UH tracts. This
ratio is between 0.01 and 0.13, occurring in 56 percent of high UH
tracts. Comparing this high UH to low UH ratio with other cities,
Minneapolis shows strong UH escape, indicating that a significant
number of people living in high UH areas are visiting low UH areas
in the Minneapolis metropolitan area.
Similarly, the Dallas Metropolitan Area also shows high heat

escapes. Fig. 7A maps the UH in Dallas. Dallas has 10 percent of its
tracts in low UH areas, while 50 percent of its tracts are in high UH
areas. Fig. 7A shows that the high UH tracts form multiple clusters
across the city. Fig. 7B shows the ratio of trips from low UH tracts
to high UH tracts. This ratio is between 0.07 and 0.28, occurring in
38 percent of the low UH tracts. Fig. 7C shows the ratio of trips
from high UH tracts to high UH tracts with ratios from 0.39 to 0.82.
Fig. 7D shows the ratio of trips from high UH tracts to low UH
tracts. The ratio of trips from high UH tracts to low UH tracts is
notable, ranging from 0.00 to 0.16, in 49 percent of high UH tracts.
This indicates that Dallas has strong urban heat escapes trips.
Figures 6 and 7 show that both Minneapolis and Dallas have

significant urban heat escapes, with a higher ratio of trips from

high UH tracts to low UH tracts when compared to other
metropolitan areas, such as Boston (37 percent) and Atlanta (24
percent). This indicates that people in the high UH areas travel to
the low UH areas to escape the heat.
Additionally, this study offered important insights by examining

the factors of distinctive characteristics underlining spatial
structures54, facility distribution55, income, and racial segregation,
as in Supplementary Tables. However, no statistical significance
was found between heat traps and attributes of demographic
segregation. This interpolates that an urban heat trap is an
emergent property56 that cannot be attributed to the centrality of
city facilities and demographics. Therefore, we observe that
human mobility leads to the creation of traps, not escapes or
escalates. Maybe people are more likely to go to places where
they are more familiar.

DISCUSSION
This study utilized large-scale, high-resolution location intelligence
data to identify and quantify urban heat (UH) exposure and
people’s responses based on human mobility networks in urban
areas. This study analyzed the intersection of UH and human
mobility by examining the UH dataset and trips between tracts in
February 2020 in twenty metropolitan areas. Our primary findings
indicate that while cities such as Minneapolis exhibited heat
escape patterns, cities like Los Angeles showed heat-escalating
trends. This differential pattern suggests that urban heat dynamics
are influenced by a combination of inherent city characteristics

Fig. 2 Urban heat traps and trips in Los Angeles metropolitan area. A Distribution of SUHI shows that 52 percent of tracts are in high UH
areas across Los Angeles. B The ratio of trips from low UH to high UH. C The ratio of trips from high UH to high UH shows that 81 percent of
tracts in high UH areas have trips to other high UH tracts, representing that Los Angeles is a metropolitan area with urban heat traps. D The
ratio of trips from high UH to low UH. (The left-side squared bracket means the value is included, while the right-side rounded bracket means
the value is not included).
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Fig. 3 Urban heat traps and trips in the Chicago metropolitan area. A Distribution of SUHI shows that 16 percent of tracts are in low UH
areas and 49 percent of tracts are in high UH areas across Chicago. B The ratio of trips from low UH to high UH. C The ratio of trips from high
UH to high UH shows that 78 percent of tracts in high UH areas have trips to high UH tracts, representing that Chicago is a metropolitan area
with urban heat traps. D The ratio of trips from high UH to low UH. (The left-side squared bracket means the value is included, while the right-
side rounded bracket means the value is not included).
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and human mobility patterns. The study identified and analyzed
three properties: heat traps, heat escapes, and heat escalate by
quantifying the trips between tracts in high UH areas and low UH
areas. This study uniquely bridges the gap between human
mobility data and urban heat exposure, offering a novel
perspective on how people’s movement patterns influence their
heat exposure. The introduction of terms such as heat traps, heat
escalates, and heat escapes not only enriches the urban heat
literature but also provides city planners with tangible metrics to
assess and address urban heat challenges. While heat traps and

heat escapes have been frequently discussed, the heat-escalated
areas, characterized by low UH exposure populations visiting high
UH areas, emerged as a significant pattern. This group represents
areas where populations, despite originating from cooler regions,
escalate their heat exposure by visiting hotter zones. This suggests
that even residents from cooler areas might face escalated heat
risks due to their mobility patterns. Such insights are important for
targeted interventions, especially in cities with pronounced
mobility-induced heat risks. A detailed breakdown of the trips
between tracts in high UH areas and low UH areas reveals unique

Fig. 4 Urban heat traps and trips in Boston metropolitan area. A Distribution of SUHI shows that 28 percent of tracts are low UH areas, and
38 percent are in high UH areas across Boston. B The ratio of trips from low UH to high UH. C The ratio of trips from high UH to high UH shows
that 37 percent of tracts in high UH areas have trips to high UH tracts, representing that Boston is a metropolitan area with low urban heat
traps. D The ratio of trips from high UH to low UH. (The left-side squared bracket means the value is included, while the right-side rounded
bracket means the value is not included).
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patterns and implications for each group. This study found that
not many cities have heat escapes or heat escalates trips. Heat
escapes were found in Minneapolis, and heat escalates were
found in Los Angeles. A potential reason might be that people are
more likely to stay in their resident areas.
Researchers and professionals are well aware of the diverse

effects that UH can have heat-related diseases, such as respiratory
difficulties among urban populations57. However, there is little
knowledge about the extent to which human mobility exacer-
bates UH. This study offers an innovative, data-driven method and
metrics for using large-scale location intelligence data to assess
UH exposure. This study evaluates the intersection of human
mobility and the spatial distribution of urban heat. In addition, this
study defines three important characteristics of people’s potential
response to UH based on trip destinations. Specifically, heat traps
refer to the population residing in high UH areas visiting other

high UH areas; heat escalates refer to population residing in low
UH areas visiting high UH areas and thus escalate their heat
exposure; and heat escapes refer to the population residing in
high UH areas visit low UH areas and thus escape from their local
heat. Defining these three different responses to UH can help
researchers understand the different characteristics of the
urban areas.
There are several limitations of this study. First, this study is

based on smartphone data. Smartphone users who allowed such
location data collection is a biased sample. Visitors who do not
own smartphones, such as children, teenagers, the elderly, and
those with lower income, were less likely to be included in the
data, which may create biases58,59. Additionally, efforts could be
made to ensure that the sample of smartphone users is
representative of the population as a whole, such as by using
stratified sampling or weighting the data to account for any

Fig. 5 Urban heat traps and trips in Atlanta metropolitan area. A Distribution of SUHI shows that 32 percent of tracts are low UH and 21
percent are high UH across Atlanta. B The ratio of trips from low UH to high UH. C The ratio of trips from high UH to high UH shows that 40
percent of tracts in high UH areas have trips to high UH tracts, representing that Atlanta is a metropolitan area with low UH traps. D The ratio
of trips from high UH to low UH. (The left-side squared bracket means the value is included, while the right-side rounded bracket means the
value is not included).
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biases. We partially address this limitation by utilizing Spectus
data, which has been demonstrated to contain a representative
sample of users35. Second, the mobility data does not include the
visiting time for the destinations, which may cause mis-labeling of
trip purposes. Future researchers could leverage other sources of
data, such as surveys or observational studies, to validate traveling
information further.
While this study advances the understanding of urban heat

disparities by considering mobility patterns, it’s important to
recognize a potential limitation related to indoor conditions. The
transition of residents from one census tract to another does not
necessarily equate to direct outdoor exposure. Many individuals
might move from cooler to hotter census tracts but reside or work
within air-conditioned buildings. The availability and penetration

rate of air conditioning can vary significantly across census tracts,
as highlighted by Romitti et al.60.
It’s pertinent to consider the potential nuances of interpreting

SUHI during winter days in our findings. Cities like Chicago might
view higher temperatures as preferable during winter months.
While our primary focus was on mean SUHI values across the
urbanized area, given our mobility data is from February, an in-
depth analysis of winter daytime values wasn’t within this study’s
scope. Nonetheless, understanding the significance of winter
daytime SUHI values, especially in colder cities, adds depth to the
broader discourse on urban heat dynamics.
Another limitation is related to the scope of the mobility data.

As mentioned earlier, our dataset does not include cross-country
trips, which might influence the comprehensive understanding

Fig. 6 Urban heat traps and trips in Minneapolis metropolitan area. A Distribution of SUHI shows that 18% of tracts are low UH areas, and
45 percent are in high UH areas across Minneapolis. B The ratio of trips from low UH to high UH. C The ratio of trips from high UH to high UH.
D The ratio of trips from high UH to low UH shows that 56% of tracts in high UH areas have trips to low UH tracts, representing that
Minneapolis has high heat escape trips. (The left-side squared bracket means the value is included, while the right-side rounded bracket
means the value is not included).
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of human mobility in relation to urban heat exposure. While our
study offers insights into intra-county mobility patterns and
their intersection with urban heat, future studies could consider
datasets that encompass broader mobility trends across
counties.
This study offers important insights to city designers and city

planners. The three important characteristics of traps, escalates,
and escapes are likely related to how heat exposure can affect
people in different parts of a city. Each classification not only
reflects the prevailing heat conditions but also the behavioral
responses of city dwellers. These patterns, when understood in
conjunction, offer city designers and planners a comprehensive
roadmap to tackle urban heat challenges. The main message
from our research is the intertwined nature of urban heat
exposure and human mobility. Recognizing these patterns and
understanding their implications is paramount for designing
future urban spaces that are both comfortable and adaptive to

changing climatic conditions. Specifically, the heat-escalated
areas present unique challenges and opportunities. Given that
these areas experience increased heat exposure primarily due to
mobility patterns, interventions might include improving public
transportation in cooler zones or enhancing urban greenery in
frequently visited hotspots. Recognizing the unique character-
istics of heat-escalated regions can guide targeted strategies to
mitigate heat exposure risks. These characteristics may include
factors such as the availability of shade and other forms of shelter,
the accessibility of air conditioning and other cooling mechan-
isms, and the presence of social networks and support systems
that can help people cope with heat waves and other extreme
weather events. By understanding these characteristics, it may be
possible to develop strategies and interventions that can help
reduce the risks associated with heat exposure in urban
environments.

Fig. 7 Urban heat traps and trips in the Dallas metropolitan area. A Distribution of SUHI shows that 10 percent of tracts are low UH areas,
and 51 percent are in high UH areas across Dallas. B The ratio of trips from low UH to high UH. C The ratio of trips from high UH to high UH.
D The ratio of trips from high UH to low UH shows that 49 percent of high UH tracts have trips to low UH tracts, representing that Dallas is a
metropolitan area with high urban heat escapes. (The left-side squared bracket means the value is included, while the right-side rounded
bracket means the value is not included).
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METHODS
Study context
We collected mobility data in February 2020 in 20 metropolitan
areas (Table 2) in the United States. to construct human mobility
networks. The rationale for selecting February 2020 is that it was
just before the start of the COVID-19 pandemic, and the patterns
of human mobility would represent the standard patterns of
mobility.

Data sources
The heat exposure data were obtained from the United States
Surface Urban Heat Island database61. For all census tracts in the
U.S. urbanized regions, this dataset includes yearly, summer, and
winter daytime and nighttime Land Surface Temperature (LST),
Digital Elevation Model (DEM), and Normalized Difference
Vegetation Index (NDVI) data, as well as the mean values for the
whole urbanized area61–63. The UHI dataset in the urbanized areas
was determined by remote sensing data, such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Global Multi-
Resolution Terrain Elevation Data (GMTED), including 55,871
census tracts organized into 497 urbanized areas, covering
roughly 78 percent of the population of the United States62. Our
study used the annual mean values for SUHI as the measurement
of UH for the chosen metropolitan areas. We used quantile breaks
to split the UHI data into three clusters and defined them as low
UHI area, median UHI area, and high UHI area, respectively. We
opted to utilize the surface UHI (SUHI) as a proxy for the perceived
heat experienced by individuals in their daily lives. Given that this
data is accessible from satellite observations at the census tract
level, SUHI became our chosen metric for heat-related analysis.
The location-based data is provided by Spectus (formerly

known as Cuebiq), a platform for mobility data. Spectus provides
privacy-protected and anonymized location datasets by collecting
data from smart devices whose owners have authorized location

data collection. Spectus constructs its geo-location dataset by
collaborating with application developers to collect high-
resolution datasets using Bluetooth, GPS, WiFi, and IoT signals.
Each day, more than one hundred data points are gathered for
each anonymous user, allowing a more accurate understanding of
human movement and visitation patterns. Spectus collects data
on around 15 million daily active users in the U.S. High privacy
policy standards are set to enable data collection and use of data
responsibly and ethically. Users are allowed to opt out of location
sharing at any stage, and all information is obtained transparently
with consent. All data provided by Spectus is de-identified to
ensure anonymity and endures further privacy improvements,
such as removing sensitive points of interest and obscuring
dwelling locations at the census block group level. In addition to
delivering location-based data at the device level, Spectus
aggregates data using artificial intelligence and machine learning
algorithms. By offering access to an auditable and on-premise
sandbox environment, Spectus’ platform for responsible data
sharing allows us to query anonymized, aggregated, and privacy-
enhanced data64. In this study, we used one of the aggregated
datasets from Spectus, the Device Location database, to
determine the Census tracts of devices’ home locations. The
Device Location table includes a timestamp, a privacy-compliant
device ID, and geoinformation at the device level. To evaluate UH
exposure, we used population activity in February 2020, which
reflects a steady-state period with no events that could affect
population activity and movement.
It is important to note that the location-based data from

Spectus used in this study does not capture cross-county trips.
This means that the movements of individuals from one county to
another are not represented in our dataset. Our analysis, therefore,
focuses on intra-county human mobility patterns in the selected
metropolitan areas.

Table 2. Metropolitan areas with the total number of census tracts (CT) and classification of the metropolitan areas.

MSA Total #
of CT

Total #
CT in
high UHI
areas

High
UHI %

Total #
CT in low
UHI
areas

Low
UHI %

Total # CT
with trips
from low
to high

Low to
high
trips%

Total # CT
with trips
from high
to low

Total # of
CT with
trips from
high to
high

High to
low %

High to
high %

Classifications

Atlanta, GA 885 186 0.21 280 0.32 37 0.13 75 75 0.4 0.4 trap

Boston, MA 947 343 0.36 264 0.28 10 0.04 128 133 0.37 0.37 trap

Chicago, IL 1,923 945 0.49 301 0.16 168 0.56 739 739 0.78 0.78 trap

Columbus, OH 340 155 0.46 67 0.2 21 0.31 155 155 1 1 escalate & trap

Dallas. TX 1122 575 0.51 110 0.1 42 0.38 282 282 0.49 0.49 trap & escape

DC 179 56 0.31 49 0.27 49 1 56 56 1 1 escalate & trap

Denver, CO 581 218 0.38 98 0.17 5 0.05 96 96 0.44 0.44 escape

Detroit, MI 1,158 658 0.57 183 0.16 31 0.17 408 408 0.62 0.62 trap

Houston, TX 908 434 0.48 130 0.14 86 0.66 402 402 0.93 0.93 trap

Los Angeles, CA 2788 1462 0.52 351 0.13 284 0.81 1179 1179 0.81 0.81 escalate & trap

Memphis, TN 221 93 0.42 51 0.23 50 0.98 93 93 1 1 escalate & trap

Miami, FL 1206 514 0.43 232 0.19 97 0.42 291 291 0.57 0.57 escalate & trap

Minneapolis, MN 683 306 0.45 120 0.18 31 0.26 170 170 0.56 0.56 escape

Orlando, FL 299 99 0.33 58 0.19 26 0.45 88 88 0.89 0.89 escalate & trap

Philadelphia, PA 968 279 0.29 274 0.28 20 0.07 238 238 0.85 0.85 trap

Phoenix, AZ 893 327 0.37 165 0.18 157 0.95 326 326 1 1 escalate & trap

Pittsburgh, PA 599 190 0.32 203 0.34 99 0.49 168 169 0.88 0.88 escalate & trap

Portland, OR 334 178 0.53 58 0.17 25 0.43 106 106 0.6 0.6 escalate & trap

Rochester, NY 206 102 .0.50 17 0.08 12 0.71 102 102 1 1 escalate & trap

Seattle, WA 660 200 0.3 155 0.23 97 0.63 120 120 0.6 0.6 escalate & trap
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Mobility network from the home census tract to the visitation
census tract
Data processing consisted of utilizing Spectus data to construct
the human mobility network models. Specifically, it involves two
steps. The first step is to identify each device’s home tract. The
second step is to construct the mobility networks. A device’s home
tract was determined based on its dwell times, as Spectus
provides dwell time at each location.
By using unique identifiers for each device, Spectus can collect

each visitor’s destination tract and aggregate the number of visits
from one tract to another tract. Accordingly, we construct the
monthly mobility network model of each city, which captures the
number of visits from home tracts to visitation tracts. In this
network, each node is a tract, and the links are the number of trips
observed between each pair of tracts.

The ratio of urban heat traps, escalates, and escapes
In each metropolitan area, we used quantile breaks dividing
Census tracts into low UH areas, median UH areas, and high UH
areas. In this study, we only considered low and high UH areas. We
aggregated the human mobility dataset to summarize the number
of trips between low and high UH areas. As noted earlier, we
define heat traps as high UH areas whose populations visit places
in other high UH areas. Similarly, heat escalates in low UH
exposure areas whose populations visit places in high UH areas.
Heat escapes are high UH exposure areas whose populations visit
places in low UH areas. This new classification not only provides a
more granular understanding of urban heat dynamics but also
emphasizes the significant role of human mobility in shaping
these patterns, a factor that has been largely overlooked in
previous studies. The ratio of UH traps, escalates, and escapes of
each tract are calculated by summing the trips in each category
(high to high, low to high, and high to low, respectively) and
dividing by the total trips associated with each home tract. The
ratio of heat escalates, representing trips originating from low UH
tracts and visiting high UH tracts, is computed using Eq. 1:

RLowi;j ¼
Census TractDhighLi ;j

TOTLi
(1)

where, RLowi;j refers to the ratio of trips visiting from low UH tract i
to high UH j, Census TractDhighLi ;j

refers to the total number of trips
from low UH tract i to high UH tract j, and TOTLi refers to the total
number of trips starting from origin tract i. Similarly, the ratio of
trips visiting from high UH tract to low UH tract, representing trips
originating from high UH tracts and visiting low UH tracts, and the
ratio of trips visiting from high UH tract to high UH tracts,
representing trips originating from high UH tracts and visiting
other high UH tracts are computed using Eqs. 2 and 3,
respectively:

RHighi;j ¼
Census TractDlowHi ;j

TOTHi

(2)

RHighi;j ¼
Census TractDhighHi ;j

TOTHi

(3)

Classifying cities
For each metropolitan area, we first calculated the total number of
tracts in high and low UH exposures based on the UH dataset.
Then, we classified cities as heat traps, heat escalates, and heat
escapes based on the percentage of trips in each category. If more
than half of trips in the city were heat trap type, we classified
these cities as urban heat traps. Similarly, if the city has more than
half of heat escalate trips or heat escape trips, the city is classified
as a heat escalate city or heat escape city, respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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