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Spatiotemporal heterogeneity reveals urban-rural differences in
post-disaster recovery
Sangung Park1✉, Tong Yao2✉ and Satish V. Ukkusuri 1✉

A post-disaster recovery process necessitates significant financial and time investment. Previous studies have found the importance
of post-disaster spatial recovery heterogeneity, but the recovery heterogeneity has not been extended to the directed recovery
relationships despite the significance of sequential recovery plans. Identifying a causal structure between county-level time series
data can reveal spatial relationships in the post-disaster recovery process. This study uses a causal discovery method to reveal the
spatiotemporal relationships between counties before, during, and after Hurricane Irma in 2017. This study proposes node
aggregation methods at different time scales to obtain internally validated causal links. This paper utilizes points of interest data
with daily location information from mobile phones and county-level daily nighttime light data. We find intra-regional
homogeneity, inter-regional heterogeneity, and a hierarchical structure among urban, suburban, and rural counties based on a
network motif analysis. Subsequently, this article suggests county-level post-disaster sequential recovery plans using the causal
graph methods. These results help policymakers develop recovery scenarios and estimate the corresponding spatial recovery
impacts.

npj Urban Sustainability             (2024) 4:2 ; https://doi.org/10.1038/s42949-023-00139-4

INTRODUCTION
Natural disasters suspend normal human activities and cause
severe community-level disruptions that exceed capacity in
multiple ways1. Recovering the current conditions to pre-disaster
conditions in many perspectives is called a post-disaster recovery
(PDR) process2. There are two reasons why the PDR process needs
high budgets. At first, large-scale catastrophes and subsequent
high damages require high budgets3 and workforce4 for the PDR
process. The other reason for demanding high budgets and
workforce is that boosting the PDR process is affected by various
costly but influential factors: (1) a functional state of physical
infrastructure5–8, (2) a functional state of social vulnerability1,9–13,
and (3) socioeconomic attributes14–17.
The PDR process is usually modeled as a complex system due to

the interconnected influential factors5,7,9,18–22. Previous studies
have constructed the PDR process consisting of the physical
network and the social network interwoven by influential
elements5–7. However, it is hard to capture the functionality of
each layer and the linkages across them. Instead, previous studies
have used the proxies of two layers. The proxies of physical
infrastructure are the moonlight-adjusted nighttime light (NTL)
data23,24, electricity data5, and water deficit data19. The other
proxy of social infrastructure is normalized visit density (NVD) to
certain types of points of interest (POIs) using mobile phone
location data19,25,26 coming from the number of visits to POIs. NVD
of POIs serves as an indicator of the community recovery, as
community activity necessitates visits to POIs27. Previous studies
have noted that the aggregation of human mobility is a key factor
for the urban vitality index28, which in turn is related to
community activity, a main building block of the effective disaster
recovery of communities29. Thus, the number of visits to POIs
determines the community recovery. This study builds upon the
literature and models the PDR process using two proxies of
influential factors, NTL data and NVDs of POIs.

Previous studies have focused on correlations between
influential factors but did not model causal relationships between
influential factors1,8,11–13. The limitation of correlation analysis is
that it often gives spurious outcomes in the complex systems.
Spurious results occur when predicted results and tested counter-
factual scenarios do not come from causal relationships30–32 in the
complex system33. This is mainly because correlation analysis does
not capture confounders32. The confounder is a variable that
simultaneously affects both a dependent and an independent
variable. If we only revealed the associations among factors, we
could not determine whether the associated factors are causally
related due to the confounding effect. Consequently, we obtain
ambiguous relationships among factors that produce spurious
results. On the other hand, a causal relationship represents which
node affects the other neighbors of the nodes and explains the
directed relationship from the cause to the effect. The confounder
can be captured by revealing directed relationships among
influential factors. For example, in the second section of Fig. 1a,
a confounder node Xi1 only reveals the undirected node
associations, but we can easily observe the confounding effects
in the causally related nodes with directed links. Recent studies
have revealed that confounding analysis is indispensable in the
era of big data30 and complex systems33, especially in urban
areas34, due to many interconnected factors.
Through the causal relationship in the complex system,

previous studies in several fields have inferred regionally
heterogeneous outcomes, such as earth systems35–37, human
body35,38, local sustainable development39, and urban heat
island40. These studies provided perspectives on the usage of
causal discovery methods. Causal discovery is a method of
revealing the causal relationship between various datasets with-
out randomized controlled experiments, used in the machine
learning community30,41,42. Causal discovery considers multi-
variate features in the time series data with causal graphs
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represented by nodes (variables in time series data) and directed
links (causal relationships between nodes). Through the causal
graphs, we can trace the direct and indirect impacts of the nodes,
as causal relationships inherently include the time-delayed
relationship among regions35,43. This also holds true when we
subsample or aggregate the time series data43–45. Previous studies
have revealed potential causal links between regions and assessed
the performance of causal discovery methods by comparing true
positive correlation rates. Various methods have been employed,
such as Granger causality for human brain regions38, the PC
algorithm for country-level air temperature and the elements of
the human heart35, and the graphical Lasso regression for
continent-level precipitation37 and country-level finance
interactions46.

Although different areas explored regional properties through
causal discovery methods, previous studies in the PDR manage-
ment area have not compared urban and rural properties with
respect to heterogeneous spatiotemporal government PDR
policies. Government PDR policy is a policy for the recovery
action or effort from the local or federal governments to mitigate
disaster damages. Through the government PDR policy, govern-
ments adjust the timing and intensity of the support efforts to
meet the effective, efficient, and equitable recovery process2.
Some examples missed the appropriate recovery period and
suffered recovery failure47–49.
Another critical aspect of government recovery policy is the

recovery sequences between regions. In this paper, the PDR
sequence is defined by the recovery sequence to determine the
recovery order by county. Currently, the urban area owns the top

Fig. 1 Spatiotemporally sequential recovery plans by causal discovery methods and a framework of this study. a Descriptions of
spatiotemporal recovery policy. A spatiotemporal recovery policy is suitable for disproportional recovery impacts between different types of
counties. b Descriptions of associations and causal relationships. Spatiotemporal recovery policy requires causal relationships to gain the
practical implications of the spatiotemporal recovery policy. c Data preprocessing of POI and NTL data. This study uses the POI dataset and
NTL dataset to obtain the NVDs and brightness aggregated by counties, types of POIs, and different time scales. d Descriptions of causal
discovery and two grouping methods. We utilize the causal discovery method to obtain causal links. We use two grouping methods to obtain
internally validated causal links, the POI-level and county-level node aggregation and simple block bootstrapping merging causal graphs at
different time scales. e Model interpretations. We interpret the graph union from three different perspectives: (1) interpreting delays within
two nodes to validate the causal links, (2) node centrality to identify the spatial heterogeneity, and (3) hierarchical structures to reveal the
causal relationships between different types of counties. Finally, we suggest spatiotemporally sequential recovery sequences.
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priority of the recovery due to the damage difference between
urban and rural areas. Specifically, the physical and social
infrastructure recovery cost of urban areas is higher than that of
rural areas50–52. Sometimes, rural areas began the recovery with
insufficient resources50,53 by disaster resilience index-based
approaches25. This leads to slower recovery in rural areas
compared to urban areas, a discrepancy inherently arising from
economic inequality54. Despite the importance of timing, intensity,
and spatially sequential recovery plans, previous studies have not
modeled the sequential and spatial impact of government policies
on the PDR process.
Therefore, the spatiotemporal sequential recovery plan should

be supported by the directed spatial relationships to consider
confounding impacts. The sequential recovery plan is important in
different types of areas, including urban, suburban, and rural
counties. However, associations between regions cannot repre-
sent spatiotemporally sequential recovery plans, while causal
relationships can represent spatial directions. In this work, we
verify the effects of recovery sequences between urban, suburban,
and rural areas with causal analysis. The general logic of the
spatiotemporally sequential recovery plan is expressed in Fig. 1a.
In summary, this work has two motivations. First, methodolo-

gically, previous studies regarding PDR did not consider the causal
relationships between various factors. Previous studies have
focused only on intra-level associations between influential
factors. Second, practically, previous studies have not focused
on spatial heterogeneity in the disaster recovery process based on
a data-driven spatiotemporal propagation analysis of PDR impacts.
To bridge these gaps, this study uses causal discovery methods

to infer the PDR sequential recovery plans in the PDR process with
disaster-related datasets from Hurricane Irma, 2017, for six months
from the first day of July (see Fig. 2a). This article finds the causal
graphs of different PDR-related datasets: (1) the NVD of certain
types of POIs (see Fig. 2c) using mobile phone location data and
(2) moonlight-adjusted nightlight data (see Fig. 2d). We use
Structural Analytical Modeling (SAM), one of the causal discovery
techniques, to infer the directed causal graph. Subsequently, this
study uses two grouping methods, POI-level and county-level
node aggregation and simple block bootstrapping at different
time scales, to obtain the internally validated causal links of the
different causal graphs (see Fig. 2b). Based on these results, we
reveal the recovery directions between different types of POIs and
find how spatiotemporal impacts affect the PDR process. We also
obtain data-driven proof of the spatially sequential recovery plans
by uncovering the existence of hierarchical structures in a causal
graph union and extract the spatiotemporal propagation of the
PDR impacts. This framework is illustrated in Fig. 1b.

RESULTS
We use SAM to model a causal graph Gtpm ¼ ðVtp;EtpÞ denoted
by a set of nodes Vtp and a set of links Etp. Note that a node
represents a county, and a link represents a causal relationship
from one node to the other. Specifically, this paper defines the link
from node 1 to node 2 as the recovery sequence from node 1 to
node 2, meaning that node 1 begins to recover before node 2, and
changes in node 1 directly affect node 2 (see Results section for
details). We obtain causal graphs at different time scales in
Fig. 3b–f. The upper part of each panel describes the results of
county-level aggregation, and the lower part depicts the results of
POI-level aggregation. This study uses aggregation of POI nodes at
the county level and aggregation of county nodes at the POI level.
The county-level node aggregation groups ten different POIs’
NVDs into one county node. On the other hand, the POI-level
node aggregation groups seven different county nodes into one
POI node. In the aggregation step, we obtain internally validated
links that imply the recovery sequence after Hurricane Irma, where
the direction of a link represents the recovery sequence from a

node that recovers first to a node that recovers later. An internally
validated link from the grouping methods is defined as an
integrated causal link from one node to the other within different
causal graphs representing repeated robust results. We draw the
internally validated link based on graph union if and only if there
are at least five links with the same node and relationships.
Threshold five is selected to determine the internally validated
link, eliminating 30.6% (56) of the causal links.
We observe two general patterns of internally validated links

using POI types. The first pattern is the county-level intra-regional
homogeneity which explains the homogeneity of POI trends in
one county. We find that a causal graph union has 18.2% of the
intra-regional internally validated links, and all causal graphs have
more than 10% of the intra-regional internally validated links
within eleven nodes (ten POIs and one brightness) from Fig. 3g.
Note that the probability of drawing the intra-regional link in the
random graph is 13.1%. The high proportions of intra-regional
internally validated links indicate that the patterns of NVDs within
one county are similar to each other. For further analysis, see
Supplementary Table 1 in the supplementary material to check
the spatial homogeneity by the correlation coefficients and
Supplementary Table 2 in the supplementary material to check
the Granger causality test results between types of POIs.
The second pattern is the consistent relationships between

different types of POIs, (1) from school POIs to childcare services
POIs, and (2) from restaurant POIs to entertainment POIs in Fig. 3a
to f. The first type of relationship is interpretable since, during and
after the natural disasters, school POIs can substitute childcare
services POIs, but childcare services POIs cannot take the role of
school POIs supported by the current role of childcare services in
some public schools55,56. Therefore, policymakers recovered
schools before childcare services. On the other hand, the possible
explanation for the interdependence from restaurant to entertain-
ment POIs is that restaurant POIs are an important type of POIs,
while entertainment POIs are not necessary during and immedi-
ately after Hurricane Irma. Note that restaurant POIs are the
necessary social capital for living, and entertainment POIs do not
have the first priority for the disaster recovery process of the social
capital. This relationship also holds before and after Hurricane
Irma (See Supplementary Figs. 2 and 3).
Figure 4b also supports the delayed relationship between

restaurant POIs and entertainment POIs during and after the
disaster. The red trajectory represents the period around
Hurricane Irma from September 8th to September 15th. This red
line forms a polygon whose upper part shows the period before
and during Hurricane Irma and whose lower part shows the period
after Hurricane Irma. Specifically, if the red line has a linear
relationship, it represents the prompt and same responses
between restaurant and entertainment POIs before, during, and
after Hurricane Irma. However, the formation of a polygon
indicates a relationship change between two different periods:
the pre-disaster period and the post-disaster period. Specifically, in
Fig. 4b, the two types of POIs simultaneously decrease in the pre-
disaster period, which can be attributed to the equal impact of the
hurricane on the two types of POIs. Subsequently, in the post-
disaster period, the recovery of restaurant POIs is faster than that
of entertainment POIs, suggesting a delayed relationship between
restaurant and entertainment POIs. Figure 3a to f further support
the delayed relationship between restaurant and entertainment
POIs.
We obtain universal patterns of the spatial relationships

between county nodes based on the graph union (Fig. 3a) over
different periods (Fig. 3b–f). We obtain 13 internally validated links
from the graph union in Fig. 3a. These internally validated links
represent causal relationships in different counties and describe
the propagation of the recovery process between counties.
The county nodes are classified into three different types by

population density, (1) urban, (2) rural, and (3) suburban counties
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Fig. 2 Descriptions of datasets and grouping methods. a Descriptions of the spatiotemporal scope of Hurricane Irma, 2017. The black line
represents the path of Hurricane Irma. Colored regions identify different types of counties, urban, suburban, and rural counties. The
coordinate of the center of this image is N 28∘32'1” E 278∘33'5” with CRS EPSG:4269 - NAD83. b Explanations of two grouping methods. We use
two grouping methods. One is the county-level node aggregation to obtain internally validated links within one county. The other method is
the simple block time series bootstrapping to have internally validated links between different counties. If the number of the same links is not
less than 5, we treat it as an internally validated link for stable results. c 10 focused types of POIs and brightness. We select ten different types
of POIs and brightness related to disaster recovery. d County-level time series data. The upper figure describes county-level time series data of
normalized visit density on restaurants. The lower plot describes county-level time series data of brightness.
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(see Methods section). We can clearly see the heterogeneity by
the types of counties. For example, Fig. 3a shows the inter-
dependence of Orange County with Seminole, Osceola, Brevard,
Polk, and Pasco counties. Specifically, we observe the spatial

pattern that urban counties’ out-degree centrality is greater than
or equal to the in-degree centrality, while rural counties have a
higher in-degree centrality than out-degree centrality in Fig. 4a
and c also support the spatial heterogeneity of county-level

Fig. 3 Causal graphs at different time scales. a A causal graph union aggregated from b to f. b A causal graph for July 1st, 2017 - December
31st, 2017 (tp1). c A causal graph for July 1st, 2017 - September 10th, 2017 (tp2). d A causal graph for September 11th, 2017 - September 30th,
2017 (tp3). e A causal graph for October 1st, 2017 - December 31st, 2017 (tp4). f A causal graph for September 11th, 2017 - December 31st, 2017
(tp5). Panels (b) to (f) in this figure have two parts. The upper part shows the county-level aggregation results, and the lower part describes the
POI-level aggregation results. g The proportion of types of causal links of causal graphs from panels (a) to (f). Intra-regional links represent the
links within a certain county. On the other hand, inter-regional links represent the links between two counties.
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Fig. 4 Model interpretations. a Node centrality of the graph union in Fig. 3a. We compare the in-degree and out-degree of the graph union.
b A trajectory plot over time between NVD on restaurants and entertainment in Orange County. We compare two different types of POIs in
Orange County to validate the causal relationship. A red line represents the points during and right after the disaster. c A trajectory plot over
time between NVD on restaurants in Orange County (Urban) and Polk County (Suburban). d A trajectory plot over time between NVD on
restaurants in Orange County (Urban) and Lake County (Rural). e NVD time series data on restaurants by three different types of counties.
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recovery patterns over time. Also, the polygons in Fig. 4c and d
explain the interdependence between two counties, like the
explanations in the 4b.
The last pattern we observe is the independence between the

NTL data and the POI data. The correlation coefficients between
POI and NTL data are less than or equal to 0.2 (see Supplementary
Table 1 in the supplementary material). Also, the Granger causality
test between POI and NTL data does not make any causal links
between them (see Supplementary Table 2 in the supplementary
material). It implies that the NTL and POI data are uncorrelated.
Likewise, the causal discovery methods do not give any
implications between NTL data and POI data. This independence
implies that the proxies of the physical and social infrastructure
are irrelevant. The contrasting independence can be explained for
two reasons. The first reason is that the NTL dataset is not a good
indicator of representing daily changes in physical infrastructure.
For example, the NTL dataset only visualizes the intensity of daily
night light, so the data can be unstable due to cloudy conditions
and cannot quickly represent the recovery states.
The other reason for the contrasting independence is that

Hurricane Irma did not severely damage the county compared to
the other hurricanes. For example, counties in Florida overcame
most of the power outages caused by Hurricane Irma in one week,
compared to Puerto Rico counties that were severely damaged by
Hurricane Irma and Maria consequently23. We have discussed the
two reasons in detail in the Discussion section.
The above findings on spatial heterogeneity of recovery only

compared the in-degree and out-degree centrality between
different types of counties. However, they did not give us the
overall spatially sequential recovery plans among the types of
regions. We find the hierarchical structure of the causal graph
union by network motif analysis to reveal the overall spatially
sequential recovery plans. Network motif analysis is used to find
structural properties by looking at the statistically frequent triads
of the entire network57–59. Previous studies have stated that the
high frequencies of certain types of network motifs imply the
existence of a hierarchical structure in the network57. There are
three network motifs positively related to the hierarchical
structures in Fig. 5a: (1) double-dominant (DD), (2) double-
subordinate (DS), and (3) transitive triad (TT)57. On the other
hand, frequent pass-along (PA) network motifs support the
nonexistence of the hierarchical structure.
We compare the frequencies of the network motifs with the

mean frequencies of the network motifs of 100 null graphs
generated from the directed Erdos-Renyi random network model
with 7 nodes and link probabilities of 0.260. From61, we use the
normalized z-score to compare the frequencies of network motifs
as follows statistically:

Zi ¼
Ftarget;i � μnull;i

σnull;i
; (1)

where Zi is the normalized z-score of the i-th network motif, Ftarget,i
is the frequency of the i-th network motif on the target graph,
μnull,i is the mean of network motifs on the null graph, and σnull,i is
the standard deviation of network motifs on the null graph model.
The results of network motif analysis in Fig. 5b show the high
z-score of DD and DS and the low z-score of PA. It supports the
existence of a hierarchical structure. Figure 5c is an example of a
hierarchical structure in the graph union. The graph union can be
classified into urban, suburban, and rural counties. The urban
county class emits the causal link to the other classes of counties,
suburban and rural counties. The rural county class receives the
link from the urban and suburban classes. The suburban county
class interacts with both classes. The overall direction of the graph
union goes from urban counties to suburban and rural counties.
(1) Intra-regional homogeneity, (2) inter-regional heterogeneity,

and (3) the hierarchical structure revealed from the causal graph

union motivate us to establish the data-driven spatiotemporal PDR
sequences and propagation of spatiotemporal recovery policy.
First, Orange and Seminole counties are the most important
counties for PDR based on the hierarchical structure in the graph
union. Changes in Orange and Seminole counties directly affect
almost all nodes except Lake, and all trends are caused by Orange
in this study. Second, the recovery order of Osceola and Lake is
relatively low compared to the other counties. Third, Pasco, Polk,
and Brevard counties interacted with urban and rural counties.
Therefore, we can set the recovery sequence as {Orange,
Seminole, (Pasco, Polk, Brevard), Osceola, and Lake}. Note that a
brace represents a sequence that has an order within elements.
For example, {A, B, C} means that A starts recovery first, and B and
C start recovery sequentially. Note that the elements of the brace
in the inner parentheses can be interchangeable. On the other
hand, we can also set up the recovery sequences by types of POIs,
{(Restaurants, Schools), (Entertainment, Childcare services)} since
changes in restaurants affect entertainment POIs and changes in
schools highly influence childcare service POIs.

DISCUSSION
This study utilized SAM, one of the causal discovery methods, to
reveal the spatiotemporal relationships between counties. This
study extracted a causal graph of NVD to certain types of POIs and
NTL data for periods before, during, and after Hurricane Irma in
2017. This study has shown (1) intra-regional similarity, (2) inter-
regional dissimilarity, and (3) a hierarchical structure of PDR
between regions to help policymakers set up spatiotemporally
sequential recovery plans in PDR.
First, results show the intra-regional similarity in the county-

level aggregation. Universal trends of POIs in each county are
similar, although they have different properties by the types of
POIs. Specifically, the intensity and timing of the PDR process by
NVD within the same county are similar in Fig. 4b, supported by
the previous studies27,62. Second, we found the inter-regional
similarity by types of POIs. Each type of POIs has similar patterns
between all the selected counties. For example, restaurant POIs
between different counties share similar patterns in Fig. 2d.
Universal POI interdependence from restaurant to entertainment
POIs and from school to childcare service POIs, is observed in
Fig. 3a to f and 4b. It is also supported by previous studies in
different disasters, e.g., Hurricane Harvey in 201727. The universal
interdependence among POIs implies that the prioritization and
necessity of various types of POIs are consistent in the PDR
process, as illustrated by the recovery sequences for different
types of POIs in Results section. The interdependence can serve as
a foundation for developing disaggregated spatiotemporal
recovery plans tailored to specific types of POIs.
Third, we found the regional dissimilarity between urban,

suburban, and rural counties in the PDR process. This regional
dissimilarity is a basis for explaining the urban-rural differences of
the PDR process. We observed the regional dissimilarity of in-
degree and out-degree by types of counties in Fig. 4a. Also, it is
supported by Fig. 4b and e by explaining the spatial heterogeneity
and the delays of county-level recovery patterns. It can be
identified by the distinct dissimilarity of socioeconomic attributes
between urban, suburban, and rural counties in Table 1, such as
the populations and budgets they allocated for Hurricane Irma.
This observation can be assisted by the previous studies and
perspectives of urban-rural differences53,63,64. The delayed rela-
tionships among three types of counties extend the interdepen-
dence among them to the regional dissimilarity in the PDR period,
shown by Fig. 4c and d. Therefore, the regional dissimilarity and
the delayed relationships support the internally validated causal
graphs in the PDR process, indicating that the NVDs in urban
counties began recovering before the NVDs in rural counties.

S. Park et al.

7

Published in partnership with RMIT University npj Urban Sustainability (2024)     2 



Furthermore, this study has shown the existence of the
hierarchical structure in the causal graph union. The network
motif analysis in Fig. 5b inferred the existence of the hierarchical
structure. Figure 5c showed a candidate of the hierarchical
structure classified by urban, suburban, and rural county levels.
The graph union also has internally validated causal links from
urban to suburban and rural counties. This direction implies the
temporal dependence of POI recovery between county types.
The independence between the NTL data and the POI data can

be explained for the following reasons. Since Hurricane Irma did

not cause severe damage to the physical infrastructure system of
selected counties due to disaster preparedness, the selected
counties did not suffer severe power outages and quickly
recovered the original electrical functionality. Therefore, NTL data,
proxies of electricity outage, appear independent of POI data, a
proxy of social infrastructure. Regarding hurricanes with severe
damage, we can observe the evident interdependence between
the NTL data and the disaster recovery process1,23.
The findings of this study have significant implications for

setting up spatiotemporally sequential PDR plans. The recovery

Fig. 5 A hierarchical structure in the causal graph union. a Network motifs of hierarchical structures. There are four types of network motifs
related to the hierarchical structure. PA is negatively related to the hierarchical structure, and the others are positively related to the
hierarchical structure. b Normalized z-score on network motif analysis. We extract all types of triad network motifs and compared them to the
networks generated by the Erdos-Renyi model. Red boxes are network motifs related to the hierarchical structure. c A hierarchical structure in
a graph union. We relocate all nodes by different types of counties and observe the hierarchical structure with few exceptions in the suburban
counties.
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sequence plan is a good foundation for efficient and fast recovery
policies. Targeted recovery policies can be developed when
policymakers allocate the budget to a group of the nodes
affecting a certain county (parents). For example, an increase in
NVD in Orange and Polk counties promotes the recovery of Pasco
County. Furthermore, Osceola County is directly affected by
Orange, Seminole, and Polk counties, but not Brevard or Pasco
County. Accordingly, to boost the recovery of Osceola County, we
can promote the recovery of interconnected counties - Orange,
Seminole, and Polk counties, including Osceola County itself.
This study suggests two different directions of spatiotemporal

recovery plans from the above findings. The first direction is to
build upon the current recovery policies with special considera-
tions for rural areas. In other words, this policy starts the PDR from
urban counties to suburban and rural counties. Simultaneously,
this policy allocates PDR support to the selected suburban and
rural areas that are highly likely that insufficient recovery actions
will be provided. Adjusting the recovery speed by types of
counties is necessary to alleviate the consequent dangers of
hurricanes between regions. The results of this study, the causal
graph unions, identify the suburban or rural areas that are not
spatially related to the urban areas in the PDR process. Those
suburban or rural areas will be candidates to be considered with
special considerations for rural areas. Also, policymakers can
establish recovery priorities when the resilience index and the
extent of damage in suburban and rural areas are similar. The
amounts of budgets to be allocated for the suburban or rural areas
are the future direction. Merging considerations for rural areas
with current recovery policies is straightforward as policymakers
already allocate the budgets based on the fundamental disaster-
related statistics and vulnerability indices of counties, such as
population density, hurricane damage estimates, and social
vulnerability index65, and it naturally yields the urban area first
recovery policy. Currently, this pattern can be managed through
proactive strategies in the suburban and rural areas during the
pre-disaster preparedness66,67, but no such strategies exist in the
PDR process. Adding considerations for rural areas to the current
PDR process might simplify its implementation.
However, there exists room for more efficient recovery

strategies than the first direction. For example, we do not know
the holistic recovery impact of one county from the other counties
through the first direction. When a certain county is severely
damaged, we usually focus on the county itself and ignore the
impact of other counties. However, certain types of POIs are
interconnected within the county and the other neighboring
counties. It implies that supporting the recovery of other
neighboring counties indirectly helps the county boost the
recovery.
Therefore, we propose an alternative to enhance the PDR of the

targeted county by leveraging the indirect recovery impacts from

neighboring counties. To boost the recovery of the targeted
county, policymakers should initiate the recovery of counties
directly affecting the targeted county, similar to the spatiotempo-
rally sequential PDR plans. There are three steps to establishing
the spatiotemporal sequential PDR plans. The first step is to
identify the counties impacting the recovery of POIs by using the
causal graph union. Second, policymakers select the county in
urgent need of the PDR process. The final step is to allocate the
recovery budgets for the targeted county as well as counties
affecting the targeted counties. By considering the indirect
impacts of neighboring counties, we can boost the PDR process
of the target county. This approach will help policymakers
mitigate the recovery equity issues in PDR68–70.
This work is suitable for organizing the county-level PDR

process in an era of frequent natural hazards. Recent Intergovern-
mental Panel on Climate Change (IPCC) reports have warned of
the concurrent and repeated natural hazards of climate change
driven by human activities71. Simultaneously, IPCC stated that the
impacts of natural hazards disproportionately affect people and
cities vulnerable to natural hazards71, leading to the regional
difference among various types of regions and countries. United
Nations Office for Disaster Risk Reduction (UNDRR) also high-
lighted that disadvantaged groups disproportionately incur
inequality due to the vicious cycle of climate-related disasters72,
making disadvantaged groups vulnerable to natural hazards.
However, IPCC and UNDRR cannot organize the fast PDR process
in sustainable and resilient infrastructure systems and commu-
nities at the county level. This study provides spatiotemporally
sequential PDR plans which can boost the PDR process by using
mobile phone location data to estimate the state of POIs. Since
frequent natural hazards require stakeholders to achieve a faster
PDR process than before, spatiotemporally sequential PDR plans
can serve as an alternative to current recovery policies.
This study elucidates the new usage of mobile phone location

datasets that have not been used for understanding the hierarchy
of the PDR. Current opportunities of mobile phone location
datasets for the natural hazards are population displacements and
evacuation modeling, analyses on migration and recovery, and
damage estimates73. This study inspects the spatiotemporal
relationships of POIs by counties, which are easily overlooked
but are still crucial in the complex dynamical systems of the PDR
process. The usage of the mobile phone location dataset
empowers revealing the spatiotemporal relationships that cannot
be detected before.
This study scientifically contributes to understanding spatio-

temporal heterogeneity and how urban counties affect suburban
and rural counties in PDR. In particular, state-of-the-art causal
discovery methods are used to identify causal relationships
between regions. The causal discovery method is also applicable
to modeling any inter-regional dependence from the mobile

Table 1. Sociodemographic attributes of selected counties.

Name μ (thousands) A (square mile) μ / A Damage (millions) Budget (millions) Budget / μ

Seminole(U) 422.7 310 1366 6.62 9.60 22.7

Orange(U) 1146.0 903 1269 15.97 20.75 18.1

Pasco(S) 464.7 748 622 6.24 9.78 21

Brevard(S) 543.4 1015 535 16.42 16.25 29.9

Polk(S) 602.1 1797 335 22.58 24.73 41.1

Lake(R) 297.1 941 316 5.66 7.02 23.6

Osceola(R) 268.7 1328 202 7.70 6.01 22.4

The alphabet letters after the name represent the types of counties, U for urban counties, S for suburban counties, and R for rural counties. μ denotes the
population of one county, and A represents the area of one county (square mile). Note that damage and budget come from housing assistance program data
for owners collected by FEMA.
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phone location data. Using this method, we can identify how the
PDR process spatially disseminates over time. This work also
addresses the importance of selecting suburban counties to
explain spatial heterogeneity clearly. Furthermore, this study
proposes two node grouping methods to clarify the causal
relationships and obtain internally validated causal links. These
grouping methods help us manage large time series datasets and
raw causal links. They also enable the creation of causal graph
unions, categorized by different POIs and time scales. Moreover,
we reveal the hierarchical structure in the PDR process by network
motif analysis. We derive suggestions for spatiotemporally
sequential PDR plans from the causal graph union and the
hierarchical structure.
We summarize the validation of this study from similar case

studies. First, we found the county-level intra-regional and POI-
related patterns from Hurricane Harvey27. The relationships
between childcare services and schools are supported by public
school cases55,56. Second, a systematic review of urban-rural
differences in PDR supports the regional recovery heterogeneity
among types of counties53. Third, the recovery priority from urban
to rural areas is emerging due to the damage difference affected
by hurricanes50–52.
There are still some limitations to this study. First, this study

lacks a measure for model effectiveness as it does not include a
ground truth for the causal graph. Using data fusion on the survey
dataset regarding the causal relationships between POI types, we
can obtain a sample of a ground-truth causal graph and estimate
the model. Second, this study focuses solely on counties with
minor damage, excluding those with severe or complete damage
to POIs and housing. Although Hurricane Irma was one of the
most damaging storms, Orlando and its neighboring counties
were not severely damaged due to their preparedness for
hurricanes based on previous critical experiences on hurricanes.
As the objective of this study is to explain the urban-rural
differences, we limited our dataset to counties with minor
damages. With a dataset on severely damaged urban and rural
counties, we can further examine whether the interdependence
exists between physical infrastructure and social networks from
the causal discovery method. Third, we do not model and quantify
the intra-regional and inter-regional recovery impacts. This work
only suggests a candidate for the spatiotemporally sequential PDR
plans based on time series data. Future research will focus on
developing metrics for regional interdependence and integrating
them into data-driven PDR planning models.
This research serves as one of the building blocks of the inter-

regional PDR dynamics to evaluate the spatiotemporally sequen-
tial recovery plans between regions quantitatively. Furthermore,
this work will help policymakers develop spatiotemporally
sequential PDR plans with limited budgets and a limited
workforce.

METHODS
Disaster information and spatiotemporal scopes
We select Hurricane Irma as a target disaster to explain the causal
relationships between urban and rural counties. Hurricane Irma
was a Category 5 hurricane that hit Florida in the United States on
September 10, 2017, and dissipated on September 13, 2017. FEMA
provided a housing assistance program by Hurricane Irma in
Florida for homeowners worth $414 million3. We handle datasets
covering the six months from July to December 2017 to
investigate the impacts of Hurricane Irma. We point out that the
six-month period is sufficient to describe the PDR process from
the mobility patterns of POIs27. Mobility patterns from the
previous disasters returned to normal within two months - see
Supplementary Figure 1.

We select a cluster of urban and rural areas to analyze the inter-
regional recovery dependence. Orlando is the largest city affected
by Hurricane Irma in central Florida. Therefore, seven counties are
selected including Orlando and its surrounding counties: Polk,
Orange, Osceola, Seminole, Pasco, Lake, and Brevard counties.
We choose urban, suburban, and rural counties based on the

population density of 1,000 people per square mile shown in
Table 174. If the population density of a county is greater than
1,000, that county is considered an urban county. Rural counties
are selected when the population density is less than 500. The
urban counties are Seminole and Orange counties, and the rural
counties are Lake and Osceola. Suburban counties in this paper
are defined as counties that have both urban and rural counties’
characteristics. We especially treat Pasco and Brevard counties as
suburban counties since most of these counties are densely
populated, but the county’s population density is less than 1,000.
On the other hand, Polk County is also selected as the suburban
county since most of the county is sparsely populated, but part of
this county contains a highly densely populated area.

Datasets
Daily moonlight-adjusted nighttime light (NTL) data represent the
daily nighttime brightness of the surface by Suomi National Polar-
orbiting Platform/Visible Infrared Imaging Radiometer Suite
(SNPP/VIIRS), preprocessed by National Aeronautics and Space
Administration23,24. This dataset contains daily NTL monitoring
results at a 500-meter resolution. We utilize NTL data as the
brightness of certain regions at night and as an indicator of
electricity after the disaster for the physical network. The lower
part of Fig. 2d shows the county-level aggregated NTL data
over time.
We use the daily visit dataset of POIs to illustrate the social

network in the multilayer network structure. The POI visit dataset
is provided by Safegraph Inc. (https://www.safegraph.com). POI
datasets are commonly used to infer daily human activity26,75. The
POI visit dataset is made up of the GPS location information
dataset of mobile phones and smartphones in the United States
through various apps. It consists of detailed information on POIs,
including name, location, types, and brand of POIs based on North
American Industry Classification System (NAICS) codes, and the
number of visits by day based on GPS location data by counting
the number of visits only if the visitor stays there for more than
four minutes.
We select 10 different classes of POI to represent PDR: child care

services (children), colleges, construction, entertainment, gasoline,
groceries, hospitals, religious places (religion), restaurants, and
schools19,27. We use J to represent ten different types of POIs.
We convert the number of visits of devices by the census block

group to the normalized visit density (NVD) by county. First, we
normalize the number of daily visits of mobile devices by county
and POI information:

XTarget
ijk ¼ Xijkffiffiffiffiffiffiffiffi

AðiÞp ´
PðlÞ
DðlÞ ; (2)

where XTarget
ijk is the visit density of the k-th POI in the j-th POI class

in the i-th county, Xijk is a sequence of the number of daily visits of
mobile devices to the k-th POI in the j-th POI class in the i-th
county, A(k) is the area of the k-th POI, P(l) is the population in the
l-th census block group, D(l) represents the number of devices in
the l-th census block group.
Subsequently, we normalize the visit density (XTarget

ijk ) by the POI
classes:

XNorm
ijk ¼ XTarget

ijkP
j2JX

Base
ijk =nðJÞ ; (3)
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where XNorm
ijk is a sequence of NVD of the k-th POI in the j-th POI

class in the i-th county, XBase
ijk is the normalization factor for XNorm

ijk
by the j-th class of POIs in the i-th county, n(j) is the number of
POIs in the j-th class, and J is a set of the selected classes of POIs.
Normalization is composed of an aggregation of data from the j-th
class of POIs in the i-th county in March, July, and August 2017.
Finally, we use aggregated POIs XNorm

ij by types of POIs:

Xij :¼ XNorm
ij ¼

X

k2K

XNorm
ijk

nðkÞ : (4)

Here, XNorm
ij is the mean visit density to j-th POI class in the i-th

county. We simply suggest Xij as the abbreviation of XNorm
ij . We let

K= {k1, k2, k3, . . . , k10} represent a set of POIs of the same class.

Causal discovery (CD) methods
Causal discovery (CD) methods are defined as an alternative to
forward causal inference. Conventional forward causal inference
aims to quantify causal effects using average treatment effects
(E[y∣t= 1]− E[y∣t= 0]), where t= 1(0) denotes a treatment (con-
trol). The input data for forward causal inference have features (X),
treatment (t), and outcomes (y). Furthermore, forward causal
inference does not necessarily have ground-truth causal graphs
regarding the dataset.
On the other hand, the CD method aims to select causal links

among X by checking whether Xi causes Xj, Xi→ Xj, ∀ Xi, Xj∈ X. CD
can infer causal graph G with high-dimensional observational time
series data without experimenting with treatment t. It would be
helpful to give a ground-truth causal graph to evaluate the model,
but it is not required to acquire that graph. This study aims to
select causal links among various PDR-related datasets, so we
choose the CD method to obtain causal links between regions and
POI types.
There are four assumptions for the CD methods to rigorously

match the causal graph with the real causal structures41. The first
assumption is the causal Markov assumption, meaning that the
noise variables of all nodes are assumed to be independent of
each other except for the direct causes (called parents) of each
node. The second assumption is the causal faithfulness assump-
tion, implying that causal graphical structures must include all
conditional independence relationships. The third assumption is
the causal sufficiency assumption, which means that there is no
external confounder outside of the causal graph. The last
assumption is the acyclicity of the causal graph. The causal graph
must be a directed acyclic graph that does not have a cycle in the
causal graph.
In this paper, we assume the underlying generative model of

the data is a Functional Causal Model (FCM)32. Let X= {X1,…, Xd}
denote a set of continuous random variables whose causal
relationships are of interest. We let FCM be defined by a pair ðG; f Þ.
Here, G is a directed acyclic graph (DAG) with nodes denoted by X
and f= (f1,…, fd) is a set of d causal mechanisms. In FCM, f can be
non-linear or non-parametric. For each variable Xj∈ X, we assume
it follows the distribution

Xj ¼ f jðXPaðj;GÞ; EjÞ; (5)

where Paðj;GÞ is the set of parents of Xj in G and Ej is a random
noise variable characterizing the effect of non-observed variables.
If Xi is a parent of Xj, i.e., Xi 2 Paðj;GÞ and Xi→ Xj, variable Xi (the
cause) has a causal influence on Xj (the effect) and vice versa.
To learn the DAG representing the acyclic FCM from observa-

tional data, we use SAM with the Causal Discovery Toolbox
containing the latest CD algorithms41,42. Based on adversarial
neural networks, SAM leverages both conditional independencies
and distributional asymmetries induced by the causal direction,
achieving trade-offs between model complexity and data fitting.
The input of SAM is high-dimensional time series data represent-
ing each node of the causal graph, and the output of SAM is the

weighted adjacency matrix to represent the averaged strength of
the causal relationship41,76. The global score for this model has a
minimax penalized optimization problem considering model
complexity and data fitting loss. This score is executed by a
stochastic gradient algorithm with respect to the set of
parameters and structural gates to compensate for both model
complexity and data fitting loss problems that are commonly
raised in the rest of the models. Finally, the algorithm produces an
acyclic causal graph (for more details, see41 and Supplementary
Figure 4 for the parameter selection process of SAM).
A significant difference of SAM from the other CD methods is

the utilization of a generative adversarial neural network to fit the
loss function. Putting the variable in the structural gates, SAM
designs the conditional generative neural network for the causal
mechanisms of a set of nodes. SAM is adequate and accurate in
identifying nonlinear causal structures between continuous
variables from observational data.

Node aggregation
There are two types of node aggregation, county-level node
aggregation and POI-level node aggregation. The upper side of
Fig. 2b describes the county-level node aggregation. The raw
results of the causal graph yield 11 different nodes in one county,
including 10 types of POIs and brightness. These raw results show
unclear relationships between regions since some links only
represent specific causal relationships between nodes. Therefore,
we aggregate all types of POIs and brightness into one county
node and draw internally validated links.
First, we use mathematical expressions to explain county-level

node aggregation. Define Xi,all as the node representing the i-th
county and Xi,all= {Xij, ∀ j∈ J}, where i indicates the i-th county and
jmeans the j-th POI class or brightness, and J is the set of different
classes of POIs. When we see at least two links from X1j to X2j for
any j∈ J, we draw an internally validated link from X1,all to X2,all.
On the other hand, POI-level node aggregation uses the same

process as county-level node aggregation but utilizes seven
different county nodes into one POI node. Specifically, we
aggregate all county nodes into one POI node. Taking mathema-
tical expressions, Xall,j is defined by a node to represent j-th POI
class or brightness, and Xall,j= {Xij, ∀ i∈ I}, where I is the set of
counties. When we see at least two links from Xi1 to Xi2 for any i∈ I,
we draw an internally validated link from Xall,1 to Xall,2.
We use this node aggregation method in two ways. First, we use

this step to visualize the results of the causal graph. Fig. 3b to f
represent the visualized results. We choose 2 as the threshold for
the number of links to draw the internally validated causal links.
On the other hand, we apply this step to the graph union in
Fig. 3a. Note that the threshold value 5 is used for the graph union
in Fig. 3a. Details of the threshold value are expressed in Simple
block bootstrapping of causal graphs at different time scales
subsection.

Simple block bootstrapping of causal graphs at different
time scales
We perform a simple block bootstrapping step to obtain internally
validated results. The lower side of Fig. 2b explains how we
aggregate raw results using different time scales to obtain
internally validated links. In Fig. 3b, we include the result with
data from the entire period. We split the datasets into five
different time scales in Fig. 3b to f: (1) the entire period related to
Hurricane Irma (from July 1st to December 31st, 2017) expressed
by time period tp1, (2) the pre-disaster period (from July 1st to
September 10th, 2017) represented by time period tp2, (3) the
short-term PDR period from September 11th to September 30th,
2017 by time period tp3, (4) the mid-term PDR period from
October 1st to December 31st, 2017 by time period tp4, and (5)
the aggregated PDR period from September 11th to December
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31st, 2017 by time period tp5. These results are not internally
validated when we do not divide the datasets into different time
scales. Specifically, it is highly likely that we will obtain causal links
that are only applicable to specific time scales or types of POIs.
Let Gtpm ¼ ðVtpm ;EtpmÞ be the causal graph for the m-th time

period tpm, denoted by a set of nodes Vtpm and a set of links Etpm .
Note that each causal graph contains the node aggregation at the
county level and POI level, that is, Vtpm ¼
fXi;all; 8i 2 Ig∪ fXall;j; 8j 2 Jg.
In Fig. 3a, we present the graph union of the raw model output

graphs at all time scales. Let GU ¼ ðVU;EUÞ be the causal graph
union, where VU=Vtp1 and EU ¼ fei1;i2;tpm j

P
m2Mnðei1;i2;tpmÞ � 5;

8i1; i2 2 I; ei1;i2;tpm 2 Etpm ;m 2 M :¼ f1; 2; 3; 4; 5gg. This means that
when we observe not less than five links from vi1 to vi2 in the causal
graphs by different time periods, we add the link ei1;i2 to the causal
graph union. We set 5 as the threshold for the occurrence of links
from vi1 to vi2 to fortify internal validation. Note that the threshold
(thrEU ) for the occurrence of links is calculated by
thrEU ¼ 1þmedianðOccðEUÞÞ, where OccðEUÞ means the occur-
rence of links in EU , and median(S) represents the median of the
occurrence of links S. Fig. 3a represents the causal graph union
grouped by simple block bootstrapping77.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
We use two types of time series datasets. First, the daily moonlight-adjusted
nighttime light (NTL) data are publicly available at Earthdata (https://
www.earthdata.nasa.gov). Second, based on the request, the daily visit dataset from
mobile phone locations is available at Safegraph (https://www.safegraph.com).

CODE AVAILABILITY
The source code and results are available on GitHub: https://github.com/Sangung/
Causal_Discovery_Regional_dissmiliarity.git.
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