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Urbanity: automated modelling and analysis of
multidimensional networks in cities
Winston Yap 1, Rudi Stouffs 1 and Filip Biljecki 1,2✉

Urban networks play a vital role in connecting multiple urban components and developing our understanding of cities and urban
systems. Despite the significant progress we have made in understanding how city networks are connected and spread out, we still
have a lot to learn about the meaning and context of these networks. The increasing availability of open data offers opportunities
to supplement urban networks with specific location information and create more expressive urban machine-learning models. In
this work, we introduce Urbanity, a network-based Python package to automate the construction of feature-rich urban networks
anywhere and at any geographical scale. We discuss data sources, the features of our software, and a set of data representing the
networks of five major cities around the world. We also test the usefulness of added context in our networks by classifying different
types of connections within a single network. Our findings extend accumulated knowledge about how spaces and flows within city
networks work, and affirm the importance of contextual features for analyzing city networks.
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INTRODUCTION
Cities are increasingly being recognised as complex urban
systems1–5. From this viewpoint, numerous interdependent social,
economic, and environmental components merge from the
ground-up to comprise what we come to acquaint with as
‘urban’. As the lifeblood of cities, urban street networks play a vital
role in connecting multiple urban components and developing
our understanding of cities.
In recent years, having more detailed information about cities

and ways of analyzing that data have led to many city network
analytical use cases—spatial homogeneity6, human develop-
ment7, active mobility8,9, colocation and social bonds10, retail
demand estimation11, traffic forecasting12, and urban wealth
scaling13. All these changes have greatly helped us understand
how the spatial structure and connectivity of networks influence
specific parts of city systems. In reality, city networks are complex
because they involve multiple city elements interacting and
changing together14,15. For instance, how many people choose to
walk or bike along a certain route can depend on many factors,
like how easily they can reach their destination, how pedestrian-
friendly the streets are, and how many people live in the area
(which has become even more important because of Covid-19). In
this scenario, standard methods for studying city networks that
only focus on the structure and flow within these networks, such
as how many connections a point has or how movement happens
in the network, only capture a part of the rich diversity found in
city landscapes16.
Current studies show that city networks have a high degree of

similarity in their structures due to real-world physical constraints,
which makes it hard for many computational algorithms to learn
from them17. To fix this problem, researchers have suggested
using more detailed deep learning models that use location-
specific features18–20. While the idea of using diverse city
indicators to better represent the complexity of a city isn’t new,
existing solutions (e.g. Knowledge Graphs, Planning Support
Systems, City Information Models, Digital Twins) pose significant

barriers to adoption due to immense computational and human
resource requirements21,22. Not discounting the importance of
aforementioned approaches, the lack of accessible tools persis-
tently limits our ability to conduct open science and reason with
the complexity of our urban environments23–26.
To address these challenges, we introduce Urbanity, a network-

based Python package that helps create detailed city networks
worldwide in an automated way. This network-based method has
several advantages: (1) it is a scalable and lightweight way to
represent data, (2) it can be used with many different analysis and
modelling methods, including graph machine learning and
complex network analysis, and (3) it can be extended to work
with both within-city and across-city analysis tasks. With Urbanity,
our goal is to help make the study of complex city systems easier
and more comprehensive. It gives urban researchers and
practitioners an easy way to (1) automatically build typical city
networks at any scale, (2) add diverse city indicators like building
shapes, street views, population counts, and points of interest to
network nodes, and (3) get summary city indicators for any
geographical area they’re interested in. At its core, Urbanity aims
to bring our computational tools and theoretical understanding of
cities as complex urban systems one step closer to each other27,28.
We proceed with a brief background on how city networks are
commonly represented. In the process, we discuss and compare
Urbanity with related tools for urban network analysis. Subse-
quently, we describe data acquisition and preprocessing strategies
underlying the core modules of our package. We’ll also present a
unique set of city network data from five major cities across Asia,
Europe, and North America. We use this data to (1) study the
differences in city networks within and across cities, and (2) test
our tool’s ability to predict road categories for different cities. Our
experiments show that adding these different types of contextual
features significantly improves predictive accuracy for graph
deep-learning tasks. We wrap up with a discussion about what
this means for complex city systems, current limitations, and our
plans for future development.
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Urban networks manifest themselves most visibly through our
streets. Uncoincidentally, archetypal representations of urban
networks are street-centric—primal planar and dual networks.
Primal planar networks are the mainstay of urban networks and
represent street intersections as nodes and street segments as
non-intersecting edges. On the other hand, dual networks
consider nodes as street segments, and edges represent
contiguity between connected streets. Primal planar graphs are
often translated into dual graphs (see Supplementary Fig. 1). At its
simplest, urban networks can be represented by undirected,
distance-weighted graphs. More sophisticated network models
may introduce additional properties on nodes and edges of the
graph—edge direction or multi-typed nodes/edges. Without loss
of generality, we define a network as G = (N, E), where N and E
refer to the set of nodes/vertices and edges/arcs of the graph,
respectively. Both types of network representations are closely
related functionally but show different aspects of city
networks29,30.
Both primal and dual network representations are well-

represented by urban network analytical tools. We overview the
landscape of related tools, discuss their functionality, and justify
our development efforts (see Table 1). Our review excludes tools
for general network analysis (e.g. NetworkX, igraph, Gephi, graph-
tools), reflecting a consistent focus on the urban planning
applications and use cases.
We observe that most tools focus primarily on distance-based

measurements (metric) and connectivity (topological) network
indicators. While some tools such as OSMnx, Place Syntax Tool,
and cityseer allow users to compute contextual indicators (e.g.
building footprints and land use), it is not the primary objective of
those tools. On functionality, urban accessibility and network
clustering form the central component among tools.
Our development efforts extend the current eco-system of

urban network tools on three fronts: (1) user interface support; (2)
enhanced network feature representation; (3) efficient bench-
marking and comparative functionalities. Firstly, Urbanity offers a
network-based mapping interface that is easy to understand and
navigate for urban planners. This mapping interface helps users to
quickly specify and confirm site boundaries, which can be a
complicated coding process when dealing with complex site
boundaries. Secondly, Urbanity supports subsequent analytical
tasks by automatically integrating context-based and semantic
indicators into city networks. With improved feature representa-
tion, Urbanity can assist in various applications like multi-criteria
site analysis, graph predictive modelling, and geospatial visualisa-
tion of networks. For instance, Urbanity can help planners identify
key areas for age-friendly planning and design by filtering network
locations to include areas with a high proportion of older adults,
poor streetscape conditions (like a lack of greenery), and a lack of
amenities. Last but not least, Urbanity supports benchmarking and
comparative studies between urban networks by allowing rapid,
consistent extraction of aggregate spatial information for any
geographic area of interest.

RESULTS
Descriptive summary
On initial impression, urban networks seem relatively small and
low-dimensional when compared to their counterparts in the
biological or social sciences31. Yet, traditional measures of network
size (e.g., count of nodes and edges) belie the multitude of
distinctions that define cities and their inhabitants32,33. Notably, as
our ability to capture and process large scale urban data improves,
the inherent complexities within urban systems become more
apparent34,35. In this vein, we introduce the Urbanity global
network dataset (an ongoing initiative) that aims to promote
complex network analysis and machine learning for global urban Ta
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networks. An overview of selected descriptive attributes and
network visualisations for each city is presented in Fig. 1.
At first glance, we observe palpable differences between cities.

For example, Bangkok has the highest population count and the
lowest proportion of building footprints among cities, indicating
evidence of urban sprawl36. On the other hand, Paris, Chicago, and
Seattle have less than half as many nodes and edges as Bangkok,
but their network density is relatively high, reflecting a dense and
intricately planned urban mobility network. Compared to other
global cities, Singapore stands out as a city-state with a high
population counts coupled with low building footprint and
network density. Notwithstanding, Singapore is one of the densest
cities to live in with a population to built-up area ratio of
approximately 68,000 persons per km2. In comparison, Paris and
Chicago measure at 66,600 persons per km2 and 20,600 persons
per km2, respectively.
The following section demonstrates how indicators derived

from Urbanity can be used for descriptive, and predictive urban
analytical tasks to better understand urban complexity within and
between cities.

Segregation within urban networks
Urban areas closer to one another are more likely to be related
than areas further apart37. However, cities commonly exhibit
patterns deviating from spatial homogeneity and often display
signs of segregation38,39. In this regard, urban networks provide a
powerful lens for understanding how semantic values correlate
throughout the urban fabric between connected locations.
Network assortivity measures the extent to which nodes with
the same properties are joined to one another40.
Using Singapore as a case study, we observe a high and

consistent network-based correlation (assortativity) in green view
index (GVI) throughout Singapore (see Fig. 2. Our observation
suggests that urban greenery between adjacent locations in
Singapore is generally well balanced, reflecting the success of
early planning efforts pursued by the city state41,42.
On the other hand, Fig. 2 shows urban greenery to be

sporadically distributed throughout Bangkok. Sites with high
assortativity for GVI coincide with the location of existing green
zone regulations in Bangkok36. These findings suggest the

importance of green zone protection strategies in maintaining
equitable urban greenery access in Bangkok.
The World Health Organisation predicts that by 2030, one in

every six people globally will be over the age of 60. As population
aging accelerates, cities will face an increased prevalence of
dementia among older adults. Planning and designing dementia-
friendly neighborhoods will become crucial, with a focus on
creating walkable communities. Green streets encourage more
walking, providing a comprehensive set of health benefits for
older adults43. Urbanity, with its capacity to provide detailed
street-level information, can facilitate more precise and effective
urban planning strategies. This is particularly beneficial for
communities striving to meet the challenges presented by a
rapidly aging population and a rise in dementia cases.

Network and building complexity across cities
Here we look beyond individual cities and examine how complex
network indicators can help to benchmark and compare urban
structures within and between cities. Figure 3 presents a
comparison of node density against mean building complexity
for five cities and their subzones. Both indicators relate directly to
the complexity and density of cities, suggesting implications for a
city’s resilience and sustainability.
We observe several distinct patterns between cities. For

example, subzones in Paris display high homogeneity which
corresponds to a long history of centralised planning under the
‘Haussmann period’44. On the other hand, subzones across
Singapore show the largest variance. This observation makes
intuitive sense as Singapore faces diverse land use requirements
as a global city state without a hinterland.
Another interesting observation relates to a striking positive

relationship between mean building complexity and node density
across subzones in Bangkok, Chicago, and Seattle which could be
explained by the presence of a centralised and economic-driven
planning context45. Among this group, American subzones are
identified by low average mean building complexity—a char-
acteristic of the well-known urban block morphology. As an
exception in this group, the Magnificent Mile district (a premier
arts and commercial district) in Chicago, displays high mean
building complexity.

Fig. 1 Aggregate network indicators and network spatial structure. a Aggregate indicators for five global cities. Urbanity automates the
computation of contextual and semantic network indicators (e.g. population count and building morphology), producing a feature-rich urban
network. Indicators help to support efficient multi-criteria site analysis. b Spatial network of Paris reveals a concentric ring pattern of
emergence. c Spatial network of Singapore with hub-and-spoke transit structure. Basemap: OpenStreetMap and Mapbox.
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Classification of urban streets
Urban streets are intrinsically complex, showing self-similarity and
self-organisation across scale. On a more fundamental level,
streets function as multi-faceted urban elements that feature a
rich diversity of social, economic, and environmental activities.
Correspondingly, the task of predicting street category (e.g.
primary, secondary, or arterial) is a complex endeavour since
street categories depend not only on the geometric properties of
streets but also on their semantic and contextual dimensions.
Reliable estimates for street categories provide many useful
applications and use cases, not limited to, understanding urban
hierarchy, clustering and segmentation of road networks, estimat-
ing urban air and noise pollution, modelling urban mobility flows,
and assessing disaster response.
We specify a transductive (within-city), graph neural network

edge classification task to predict road classification labels for
each city in the Urbanity global network dataset. Based on OSM
tag information, we categorised road type into five main
hierarchical categories—national (1); regional (2); precinct (3);
neighbourhood (4); and local access roads (5). For each city, we
randomly split network edges into a training and validation set
with 80:20 ratio. To obtain edge feature embeddings, we adopt
the cross-attention method which appends adjacent node
features. We evaluate feature importance for prediction through
ablation studies and report mean classification accuracy across
each model configuration. We run each model configuration for
500 epochs with hidden dimension size = 64 and learning rate =
0.01. All models were implemented with the PyTorch Geometric
graph deep learning framework46. Table 2 lists feature ablation
results for each city and corresponding feature set.
Feature ablation shows that the inclusion of semantic and

contextual indicators provides clear, consistent improvements in
model predictive performance across all cities and model
architecture. For instance, Paris and Singapore saw the largest
increase in mean classification accuracy by up to 11.7% and 7.9%,
respectively. On the other hand, Chicago, Seattle, and Bangkok
saw marginal increase of between 3 to 5%. In line with graph
machine learning literature, we find that GAT and GraphSAGE
architectures consistently outperform standard GCN in terms of
predictive accuracy. Figure 4 shows multi-class performance for
models with the highest accuracy. In general, neural network
(GNN) models deliver consistent performance across all categories.
For Bangkok, poorer predictive performance on neighbourhood

and local access categories might be attributed to data quality
issues.
Another interesting observation is the sharp drop in model

performance across all cities when metric and topological
measures are removed. Intuitively, this makes sense as existing
graph machine learning architectures such as GCN47, Graph-
SAGE48, and GAT49 are designed to aggregate information from
graph neighbourhood structure. These results present opportu-
nities to explore various graph aggregation and learning
architectures that improve the utility of contextual and semantic
attributes.
Our experiments further underline the importance of context-

based analysis. For example, smaller node buffer radius led to an
increase in predictive performance for Paris, Singapore, and
Chicago, while performance decreased for Seattle and Bangkok.
Findings show that cities are fundamentally different, providing
support for 1) comparative analysis of cities; and 2) context-based
feature representation, and model parameter tuning for machine
learning models. Our findings suggest that there is no one-size-fits
all solution—parameters such as buffer bandwidth should be
tuned according to geographical context.

DISCUSSION
We maintain our position that urban networks form a powerful,
multi-scalar focal lens to examine the complexities embedded
within and across cities. Streets, as multi-faceted conduits of urban
life, encompass much more than linear movement—sustaining
numerous vital human connection and functions. Throughout this
paper, we argue for a more comprehensive approach to urban
network analytics that accounts for diversity of urban functions
embedded within our streets. In the face of complex urban
challenges, an interdisciplinary approach to designing systemic
solutions for cities is fundamental50.
As a way forward, Urbanity aims to promote theoretical and

empirical consolidation in the study of complex urban networks
on four aspects—(1) reconciliating ongoing network studies with
traditional planning theory; (2) extending current planning
approaches beyond urban physicalism; (3) exploring linkages with
the emerging field of GeoAI; and (4) improving benchmarking
practices for the empirical evaluation of urban networks.
On reconciliation with planning theory, current street network

studies and tools prejudice a technical interpretation of urban

Fig. 2 Co-similarity of urban greenery across city networks. Scale bars correspond to 10 kilometres. Grid cells coloured dark blue indicate
high similarity of urban greenery between adjacent locations. On the other hand, red grid cells suggest segregation of urban greenery
between adjacent locations. The white cells and the grey hashed cells correspond to areas with no spatial overlap with the underlying
network, and to areas reporting an observation count of less than 30, respectively. a Urban greenery throughout Singapore is generally well-
balanced with high assortativity, indicating the success of Singapore’s “city in a garden" policy. b Bangkok shows signs of segregation with
sporadically distributed urban greenery pattern. Sites with high assortativity correspond to existing green zone regulations, indicating their
importance for promoting equitable urban greenery access in Bangkok.
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streets that is largely based on graph theory or the network
sciences (see Table 1). While such approaches have proven useful
to understand the structure and connectivity of streets, they
remain disconnected to the qualitative, ground-up interpretations
of streets that is characteristic of traditional urban studies51,52. As
argued by53: “there is nothing simple about that order (of streets)
itself, or the bewildering number of components that go into it.
Most of those components are specialized in one way or another.
They unite in their joint effect upon the sidewalk, which is not
specialized in the least". Towards a fuller contemplation of urban
networks in their multi-faceted entirety, it is important to reconcile
this disconnect and recognise the bottom-up, self-organised
complexity of streets54,55. In this regard, Urbanity offers an
extensible basis to promote integration between the physical
and social aspect of complex networks and their interconnected
interactions. Specifically, our framework will lay the foundation to
develop cross-over models56 that consider social (actor-based)
interactions within physical networks. These developments will
bring network analytics closer to urban studies by allowing for
fuller engagement with the human and experiential dimension of
streets.
Secondly, while the physical form of cities is undeniably a key

aspect in our understanding and modelling of urban environ-
ments, it is clear that a host of other contextual factors play a
crucial role in forming a well-rounded understanding of cities.
Emerging evidence suggest that form is not guaranteed to follow
function57. Cities are intricate and constantly evolving systems
that don’t settle into a predictable, static condition. Urbanity, by
linking a variety of urban indicators (uniting factors of urban
demand and supply), offers an exploratory framework for urban
planners. This framework goes beyond the physicalism of cities
and paves the way for methods to envision, measure, and uncover

connections between diverse, interlinked components of urban
environments.
Current developments in the fields of GeoAI and machine

learning provide opportunities to examine urban networks at an
unprecedented scale58. Although such computational methods
allow us to make sense of a fast emerging urban data landscape,
they also implicitly influence our perceptions and thought
processes of the city59. In this regard, it is important to realise
that optimization might not be a universal/sustainable goal across
urban systems. For instance, cities planners often have to
recognise and make seemingly ‘non-optimal’ decisions to ensure
that planning is carried out in an equitable, inclusive, and
collaborative manner. A notable example is Bogotá, the first city
in South America to address needs related to care work with its
innovative ‘Block of Care’ framework, which targets support and
development for systematically marginalised women caregivers.
Urbanity supports such use cases by allowing planners to pinpoint
optimal care block locations with high proportion of women and
children across neighbourhoods. Data on streetscapes, like
greenery and visual information, can also be used to evaluate
traffic safety around care blocks. To promote equitable and
sustainable planning, the integration of machine learning should
be both transparent, explainable, and accountable to all
stakeholders. Ideally, this involves crafting a clear implementation
technology adoption roadmap that outlines specific goals, trade-
offs, model biases, and the extent of stakeholder involvement. We
must stay vigilant against criticisms of technological determinism;
computational methods, in the quest for efficiency, should neither
undermine established good planning practices such as partici-
patory and communicative elements nor override traditional
planning wisdom. Domain knowledge and theory play a funda-
mental role in safeguarding against model predictive biases. The
inclusion of these critical aspects facilitates a more nuanced urban

Fig. 3 Comparison of node density and building complexity across five cities. Each point on the scatter plot indicates a city’s subzone.
Points are coloured according to their respective city. Clear patterns and clusters emerge across different cities that correspond intuitively with
each city’s planning history and context. Parisian subzones share high co-similarity, corresponding to a long history of centralised planning.
On the other hand, Singaporean subzones have the highest diversity, reflecting the diverse national land use requirements faced by the
global city state. Seattle, Chicago, and Bangkok exhibit a positive association between node density and mean building complexity which
hints at implicit similarities between these cosmopolitan cities.
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analysis, aligning with the broader, emancipatory goals of urban
planning.
Towards developing a science of cities, we posit the importance

of urban benchmarking datasets. They provide a standardised and
transparent basis for researchers to measure progress between
different analytical methods, providing direction to advance the
current state-of-the-art. Consistent feature and data representa-
tion is especially important in the study of complex urban systems
since system components interact with one another in dynamic
and non-linear ways. Through modular and extensible design,
Urbanity eases the data construction process and helps to reduce
data consistency limitations.
Future development opportunities largely involve enhancing

modelling capabilities to capture richer contextual representation

of networks. At present, information like sidewalk condition and
barrier-free accessibility at the pedestrian scale are frequently
missing from global city networks, presenting challenges to
pedestrian planning initiatives60. Incorporating such local network
information is critical in aiding marginalized local communities
and enabling robust evaluation of local spatial entities. In light of
these gaps, data sharing and interoperability modules that permit
various stakeholders to dynamically modify or enrich networks
could prove significantly beneficial. Implementing these advance-
ments not only promises to boost collaborative planning
endeavours but also aims to enhance the spatial-temporal data
frequency. Another promising direction of exploration lies in
assessing the impact of actor-based interactions on urban
networks. Recent efforts employing reinforcement learning

Table 2. Feature ablation for edge classification across different cities.

Modela Allb only M/T w/o M/T w/o Bldn w/o Popn w/o POIs w/o SVI

(MA) (MA) (MA) (MA) (MA) (MA) (MA)

Singapore

GCN100M 72.4% 67.2% 57.7% 70.3% 72.0% 72.0% 71.8%

GAT100M 77.0% 69.7% 64.9% 74.6% 77.1% 76.1% 75.1%

GraphSAGE100M 75.1% 69.8% 53.7% 72.3% 74.4% 74.5% 74.2%

GCN200M 72.5% 67.5% 56.6% 70.4% 71.8% 72.0% 71.4%

GAT200M 76.9% 69.0% 63.6% 74.5% 75.5% 75.0% 75.2%

GraphSAGE200M 75.3% 70.7% 48.6% 72.9% 74.0% 74.1% 74.4%

Paris

GCN100M 71.0% 64.3% 64.2% 70.8% 70.3% 69.8% 70.1%

GAT100M 78.9% 67.8% 70.7% 77.9% 79.3% 75.9% 77.3%

GraphSAGE100M 74.0% 66.1% 64.4% 73.1% 73.2% 72.1% 72.6%

GCN200M 69.6% 62.8% 62.8% 68.9% 68.4% 68.1% 68.8%

GAT200M 77.9% 67.2% 65.3% 75.2% 76.9% 74.6% 75.8%

GraphSAGE200M 72.4% 65.6% 60.3% 70.0% 70.9% 70.7% 70.9%

Bangkok

GCN100M 73.8% 71.0% 68.8% 72.9% 73.2% 73.6% 73.3%

GAT100M 76.8% 72.5% 70.3% 76.3% 76.8% 76.3% 76.5%

GraphSAGE100M 75.9% 72.5% 67.7% 74.7% 75.0% 75.0% 75.0%

GCN200M 73.2% 70.5% 68.4% 72.7% 72.3% 72.8% 73.1%

GAT200M 77.3% 72.1% 69.5% 74.9% 76.3% 75.9% 75.5%

GraphSAGE200M 74.9% 71.9% 67.7% 74.0% 74.6% 74.2% 74.5%

Chicago

GCN100M 64.5% 64.6% 55.7% 64.0% 64.1% 64.0% 63.7%

GAT100M 74.6% 72.8% 58.7% 74.0% 75.4% 74.5% 74.5%

GraphSAGE100M 76.5% 73.9% 59.0% 75.3% 76.5% 75.8% 76.2%

GCN200M 63.8% 63.5% 54.1% 63.4% 63.2% 64.6% 63.9%

GAT200M 73.4% 72.4% 56.9% 74.2% 74.1% 74.3% 73.8%

GraphSAGE200M 75.9% 74.2% 58.3% 75.0% 75.7% 75.9% 75.9%

Seattle

GCN100M 71.4% 69.4% 58.8% 71.2% 71.8% 71.7% 71.5%

GAT100M 79.1% 72.6% 63.6% 77.8% 79.1% 78.1% 77.4%

GraphSAGE100M 76.1% 72.6% 56.2% 75.6% 76.2% 75.5% 75.6%

GCN200M 72.4% 69.8% 58.0% 70.7% 72.6% 71.5% 71.2%

GAT200M 79.3% 73.2% 62.7% 77.2% 78.4% 77.1% 76.6%

GraphSAGE200M 76.5% 73.0% 55.0% 75.5% 75.9% 75.6% 75.6%

aModel column: GCN—Graph Convolution Network47; GAT—Graph Attention Network48; GraphSAGE—Graph Sample and Aggregration49; 100M/200M—

Euclidean buffer radius.
bFeature columns: MA—Mean Accuracy; M/T—Metric and topological features; Bldn—Building; Popn—Population; POIs—Points of Interest; SVI—Street View
Imagery.
Bold values refers to the top 4 best-performing models that were selected for visualisation in Fig. 4.
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algorithms demonstrate potential in dynamically modelling urban
processes on networks61,62. Ultimately, these advancements could
set the stage for scrutinizing dynamic processes within urban
systems, discerning the emergent behaviour of urban networks,
and deepening our comprehension of urban complexity.
In this work, we developed an open-source urban network

analysis tool to automate construction of feature rich urban
networks, and demonstrated the value of contextual network
features for multi-scalar descriptive and predictive urban analytical
tasks. Our findings show that contextual network features form
the foundation for comparative urban studies and are vital in the
creation of scalable and expressive urban machine-learning
models. Towards advancing our understanding of complex urban
systems and supporting evidence-based planning, comprehensive
modelling of both the physical and social facets of networks will
be of paramount importance. The sustained advancement and
application of accessible open-source tools will serve as a key
contributor to this endeavour.

METHODS
Urbanity was developed with the Python programming language.
Python was chosen because it provided an open-source, general-
purpose, and high-level programming interface for package
development. Urbanity’s main modules are built upon existing
packages (see Supplementary Table 1).

Data acquisition
Urbanity provides a high-level interface to read, extract, and pre-
process global urban data. We evaluate datasets for inclusion
based on several criteria: (1) global coverage (to facilitate
comparative studies); (2) spatial granularity (finer spatial resolution
is preferred); (3) open access (non-proprietary access which allow
liberal usage for analytical purposes). These conditions meant that
some popular, proprietary datasets (e.g., Google Street View and
WorldPop) were excluded from our study.
Urbanity utilizes data elements with consistent global jurisdic-

tional coverage to carry out comprehensive comparisons of cities

Fig. 4 GNN multi-class predictive performance on road categories. Each curve is a One versus Rest (OvR) receiver operating curve that
reports classification performance for each road category. Area under curve (AUC) provides a measure of model performance by aggregating
across all possible decision thresholds. For our predictive task, graph attention networks, while taking longer to train, demonstrate better
classification accuracy over classical graph convolutional and graph sampling and aggregation (SAGE) architectures. a Graph attention model
is able to accurately predict road categories from adjacent node attributes in Singapore. b Similarly, model performs well across all road
classes for Paris. c Model displays strongest performance for national and precinct road categories for Seattle. d For Bangkok, the model has
some difficulty predicting neighbourhood and local access roads.
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around the world. There has been extensive research into the
reliability and soundness of urban open data. As laid out in their
guidelines, the OSM community typically authenticates OSM data.
A significant amount of work has gone into examining the
existence and standard of OSM data related to aspects like road
networks63–67, points of interest68, and building footprints69–72.
Likewise, several studies have assessed the quality and coverage
of street view imagery on crowdsourced platforms like Mapillary
and KartaView73–75. Furthermore, the geographical precision of
high-density population maps has been rigorously validated
against population census data in a technique-oriented paper76.

Population data. We collect population data from Meta’s high-
resolution population density maps, which provide spatially
detailed population data in 30-m spatial resolution for 200
countries76. Based on implementation checks conducted on
October 7, 2022, we found population data for all countries
except Ukraine to be available. Urbanity’s application program-
ming interface (API) fetches population data in a dynamic manner,
bypassing data storage. Since access to population data is
provided at a national scale, this poses challenges for micro scale
(e.g. precinct or neighbourhood level) queries for large countries
(e.g., the USA). To allow API queries at a finer geographical
resolution, we slice the original national level dataset into equal-
sized vector tiles. Lastly, where data is available for multiple time
periods, we report the most recent population figures.

Street network, points of interest, and building footprints. We
extract street network, points of interest (POIs), and building
footprints from OpenStreetMap (OSM). OSM is an open collabora-
tive mapping platform that hosts the most comprehensive global
crowdsourced collection of geometric features including building
footprints, urban amenities, and street networks. OSM data access
is provided through Pyrosm API, which provides access to raw,
daily updated OSM data from GeoFabrik. This approach prevents
bottlenecks resulting from continuous querying of OSM’s Over-
pass API. We pre-process raw urban networks to simplify network
edges and include connected boundary nodes77.
POIs correspond to OSM primary key tags (amenity, shop,

tourist, leisure). For each primary key tag, not all tags correspond
to urban amenities. To address this issue, we manually inspect and
choose relevant tags under each primary key tag. For example, we
extract ‘museum’, ‘gallery’, ‘artwork’, and ‘attraction’ from the
tourist primary key tag. In addition, we found observations to be
tagged under multiple POI tags. For example, an observation
might be tagged as both amenity and shop. To prevent double
counting, we apply procedural selection across each observation.
More specifically, we first check if the amenity field is empty, and if
it is, we check for values in the order of tourist, leisure, and shop.
Finally, we relabel the list of amenities according to eight main
categories—civic, recreational, entertainment, food, healthcare,
institutional, social, and commercial.
For buildings footprints, we implement a procedural script to

ensure that all buildings correspond to valid polygons. We first
check the geometric type of each building row and convert line
objects into polygons (see Supplementary Figure 2). For objects
with multiple lines (e.g., compounds with inner courtyards), we
build polygons in a two-step process: (1) identify the exterior
building perimeter by geographic extent; (2) build polygon with
building perimeter as bounds and interior lines as open space
within each building.

Street view imagery. Mapillary is a free and open crowdsourcing
platform that provides high-resolution SVI for cities and urban
regions. Till date, Mapillary’s coverage has penetrated most cities
around the world75. Compared to other popular data sources, such
as Google Street View, Mapillary images are hosted under a CC-BY-
SA 4.0 licence, which allows users to freely share, use, and adapt

images. The latest access point is provided by Mapillary API
Version 4.0, which allows location-based query of image vector
tiles. As dynamic computing of images would be resource
intensive, we adopt a pre-compute and store approach to
integrate SVI information into our package. Accordingly, we first
query the vector tiles according to each city’s geographic extent.
Subsequently, we extract meta-information for all street view
imagery located within each vector tile. To ensure consistency in
image segmentation results, we filter out non-frontal facing
images. The process was carried out in two steps: (1) computing
the bearing of the closest network edges to each image; (2)
removing images where the bearing angle differs from the
compass angle by more than 20∘. As daylight visibility is important
for image segmentation, we further filter the set of images to
those captured between 9 am till 5 pm (local time) to ensure
optimal lighting. Last but not least, where there are many images
within a tile, we reduce computational workload by randomly
sampling 2000 images. An overview of the image screening and
selection process is enumerated for each city (see Supplementary
Table 2).

Data integration
A variety of spatial methods have been used to delimit catchment
areas and measure access coverage for urban locations. Popular
methods include uniform Euclidean78,79, network-based dis-
tance80, network voronois81, and spatial modelling
approaches13,82. Euclidean methods are the most straightforward
and delineate catchment areas through the creation of a radial
buffer around each network node. Similarly, network-based
distance methods create catchment zones along networks that
correspond to all points that are accessible within specified
distance from the starting node. Network voronoi methods extend
on distance-based approaches by splitting the network into
continuous subgraphs where all points in each subgraph belong
to its closest node. For example, network voronois are commonly
used to evaluate the network coverage of medical emergency
facilities and identify infrastructure shortage along networks83.
However, we found that not all spatial methods lend themselves
readily to the integration of urban data due to (1) data
interoperability; and (2) standardisation issues. For our application,
we adopted the uniform Euclidean approach as it provided a
flexible basis to harmonise heterogeneous geospatial data types,
including building polygons, vector point data, and population
raster maps. In particular, Euclidean buffers provide an intuitive
and straightforward mechanism to compute building footprint
area around network nodes. On the other hand, network-based
methods provide a less intuitive interpretation of building
footprint proportion since most buildings do not occur directly
on networks. Accordingly, we construct Euclidean buffers around
each network node and, for each indicator, compute the spatial
intersection with the corresponding spatial element (see Supple-
mentary Table 3). For example, building footprint proportion
corresponds to the ratio between the building area and the
buffered area for each node 84. While we specify attributes for 100-
metre and 200-metre intervals, Urbanity allows users to freely
specify buffer distance depending on their application and
use cases.

SVI model architecture. In recent years, Transformer models have
emerged as one of the most exciting innovations for deep
learning85. Originally conceived in the field of Natural Language
Processing (NLP), transformer architectures have since demon-
strated high scalability and applicability, setting benchmarks in
other domains86. Building on these developments, we adopt the
‘Mask2Former’ approach by87, which is a universal, end-to-end
architecture applicable to a wide range of image segmentation
tasks. Mask2Former is trained and validated on the Mapillary
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Version 1.2 validation dataset, which comprises 65 semantic
classes88, reporting state-of-the-art performance (MIoU=63.2%).
Compared to other transformer architectures, Mask2Former
features several notable innovations for computer vision: 1)
masked attention mechanism which allows the model to
concentrate and utilise local information in images; and 2)
multiscale feature decoder which allows the model to extract
features of different sizes. In this regard, Mask2Former offers two
main advantages for our purposes: (1) improved accuracy to pick
out different semantic categories in images (previous models tend
to ignore small objects); and (2) lightweight and scalable
computation. The latter point is especially important given the
computational intensity of segmenting images for entire cities.
Readers interested in the specifics of Mask2Former architecture
and training are referred to87,89.
On hardware, we segment SVI images with a NVIDIA Geforce

RTX 3090 GPU. For each city, computation time took approxi-
mately three days. As a benefit of pre-computation, users can
access and compute SVI indicators within seconds. A descriptive
list of selected cities with pre-computed SVI indicators is provided
in Fig. 1. Upcoming updates will incorporate more pertinent
streetscape indicators and broaden the present city list. These
changes will be integrated into subsequent versions of Urbanity
and detailed in our package documentation as well as our city
discussions page.

Package design
Under the hood, Urbanity is constructed in an object-oriented
fashion and designed to suit planning workflows. For instance,
Urbanity parallels the inchoation of the urban planning process by
allowing planners to interact with their target planning boundary
in a dynamic and visual manner. At this stage, users have the
flexibility to explore, customise, and visualise their area of interest.
Once the location is set, users can specify geographic bounds for
network or aggregate statistical extraction by either (1) manually
drawing on a digital map with the provided draw tools; or (2)
uploading their own geometric shape files.

Network extraction. Urbanity’s network extraction API offers a
flexible and extensible interface for users to request various
combinations of contextual information, not limited to metric/
topological, demographic, building morphology, points of inter-
est, and street view imagery. Internally, we employ pre-proces-
sing, pre-computation, dynamic memory handling, and web
scraping to provide a simple and lightweight data extraction
experience. The computation time depends on both the number
of indicators requested and the size of the target area. For the
computation of areal and metric indicators, geographic projection
is automatically computed and applied based on the chosen
geographic boundary location. As output, Urbanity provides users
with a Networkx graph object, and relational data tables
corresponding to attributes for network nodes and edges
respectively.

Aggregate statistics. It is not uncommon for planners to require
aggregate statistics (e.g. total population, building footprint
proportion) for target sites. Currently, the process to extract such
information is manual, time-consuming, and not straightforward
(especially for boundaries that do not align with the census tract).
To address this concern, Urbanity provides a function that
computes aggregated statistics for any arbitrary geographic
bounding box. Users can specify a common shape file with single
or multiple areas of interest and quickly obtain relevant
information, facilitating rapid comparative analyses across differ-
ent urban scales and geographic contexts.
The outputs from the network extraction and statistical

aggregation steps serve as a bridge towards downstream

descriptive and predictve urban analytical tasks. Urbanity offers
detailed installation instructions, documentation, and example use
cases for users to get started.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All spatial data is publicly available. Urban street network, building footprint, and
points of interest data are obtained from OpenStreetMap. Crowdsourced SVI data are
obtained from Mapillary. Population data are available from Meta’s high-resolution
population density maps: https://dataforgood.facebook.com/dfg/tools/high-
resolution-population-density-maps. Data to reproduce analytical results: https://
github.com/winstonyym/urbanity_examples. Re-tiled population data for fast geos-
patial querying: https://figshare.com/articles/dataset/USA_TILE_POPULATION/
21502296.

CODE AVAILABILITY
Source code for Urbanity is hosted under an open source MIT license at: https://
github.com/winstonyym/urbanity.
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