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Exploring residential built-up form typologies in Delhi: a grid-
based clustering approach towards sustainable urbanisation
Aviral Marwal 1✉ and Elisabete A. Silva1

Previous studies have established a significant link between urban form and sustainability. However, the diversity of micro-scale
urban forms in cities in the global south has received limited attention, hindered by the lack of neighbourhood-level spatial data
and maps, which poses challenges in exploring micro-urban form features. The study addresses this gap using a grid-based k-
means clustering algorithm to identify residential built-up form typologies in Delhi and assess their impact on sustainable
urbanisation. The algorithm clusters 100×100 metre grid cells based on their attributes of accessibility, built-up density, and street
design. The results show six distinct built-up form typologies in Delhi. However, only 19% of residential areas meet the criteria for
sustainable urbanisation, highlighting the need for planning interventions in most areas. The study methodology can be applied to
analyse micro-scale urban form features in other cities in the global south, providing a fresh perspective on urbanisation research.
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INTRODUCTION
Cities have significantly impacted human and environmental well-
being throughout modern civilisation. Currently, more than half of
the global population, which is 4.4 billion people, resides in urban
areas, and this is projected to rise to 68% by 2050. According to
the UN DESA report1, Delhi is currently the second most populous
urban agglomeration (UA) globally and is anticipated to surpass all
other UAs in terms of population with an estimated 37.2 million
individuals by 2028. As the world becomes more urban, human
interaction with a city’s built-up environment is bound to increase,
and thus important to study. The built-up of a city, referred to as
the urban form, provides an objective tool to understand this
human-city relationship2. Previous studies have emphasised the
significance of comprehending urban form as a fundamental
component of urban sustainability3. Research shows that urban
form influences a city’s land use pattern and has a widespread
impact on residents’ lifestyle choices4 and the urban environment,
such as residential location and commuting5, social well-being6,
environmental well-being7,8, and energy use9. Thus, a more
comprehensive understanding of urbanisation can be achieved
by characterising it through urban form, which is today largely
driven by population density and the nature of employment10.
While urban morphology has been a subject of academic

enquiry for a considerable period, it has regained emphasis since
the 1990s with the advancement of geographical information
systems (GIS) and remote sensing2. Over the last 20 years, studies
have used different classification methods to categorise the
morphological elements of urban form at different spatial scales,
such as neighbourhoods and cities, applying both quantitative
and qualitative categorisation tools11. While these studies enrich
our understanding of the relationships between different urban
configurations and their impact on urban sustainability, the bulk
of our comprehension regarding urban morphology has come
from the cities in the global north. However, in recent years, a
discernible shift towards understanding urban morphology in
cities in the global south has been noticed12.
In recent decades, cities in developing countries have seen a

very high influx of migrants, leading to changes in land use

pattern13 and the mushrooming of residential settlements, many
of which are often in unregularised neighbourhoods and can be
termed illegal settlements or slums14. In cities with such diverse
settlement patterns, neighbourhoods differ not only in terms of
their socio-economic indicators but also in their built-up
structure15. In such cases, characterising a city with a particular
urban form can be misleading. Thus, to study the extent of
sustainable urbanisation in such cities, one needs to explore the
variation in neighbourhood built-up types. Although a topic of
great importance, few studies have analysed variations in urban
form within a city16.
In this context, this study raises some important questions: Do

residential areas in Delhi have diverse built-up forms? If so, how
can we visualise and measure them? Moreover, what impact does
the built-up form have on sustainable urbanisation in Delhi? In this
regard, the study has two objectives: first, to cluster the
neighbourhoods in Delhi using the k-means clustering algorithm
and characterise them with their dominant built-up form typology;
second, to analyse how these different built-up form typologies
affect sustainable urbanisation. It is important to note that, as the
study aims to explore residential built-up form typologies, it
considers only the physical aspects of residential areas. Other
aspects of residential areas related to socioeconomic and
demographic features have not been explicitly addressed in this
study.
In the context of urban morphology, to the best of our

knowledge, this study is one of the earliest to examine and map
the variations in the built-up form of residential areas in Delhi. The
study holds significance on two grounds. First, the study uses the
grid-based clustering method, which provides a methodological
tool for urban planners to delineate the different built-up forms in
a city in a more dynamic and adaptive manner, in contrast to
relying on administratively defined boundaries. This provides
more flexibility in mapping, as it can easily adapt to changes in a
city’s physical layout and demographics. The method also offers
greater precision as it considers the actual physical layout of the
city in the mapping17. With flexibility and precision, this method
also offers consistency in mapping residential areas across
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different cities and regions, which makes it generalisable and thus
significant for cities in the global south that lack micro-scale
spatial maps.
Second, and more importantly, by addressing the sustainable

cities paradigm, as specified under sustainable development goal
11: sustainable cities and communities, the study provides another
perspective to study urbanisation through the lens of urban form.
While urbanisation is seen as a synonym for economic growth, if
poorly planned, it can have adverse implications for individual and
environmental well-being18. In this context, we argue that the
study of urbanisation should include elements of urban morphol-
ogy19. By doing so, we can have a more informed understanding
of how future urbanisation will impact the neighbourhood’s living
and what planning interventions can be made to achieve
sustainable urbanisation. This can help ensure that urbanisation
leads to sustainable cities rather than just economic growth.
We now provide a brief review of the literature and highlight

the important gaps. Our examination of existing literature on
urban form reveals three primary issues. First, studies conducting
systematic exploration to capture the heterogeneity of spatial
patterns at the neighbourhood level are found to be limited20.
While previous studies have analysed cities based on their
dominant urban forms21,22, few have applied quantitative
methods to study the variation in urban forms within a city16,23.
Cities, especially in developing countries, have diverse settlement
patterns that result due to inadequate zoning laws and weak
regulations24,25. Unplanned urbanisation can result in the
proliferation of urban sprawl, slums, and unauthorised colonies
in a city, which has distinct urban forms compared to more
affluent areas26. Thus, it is crucial to understand the possible urban
form typologies within a city for effective localised land use
planning27,28.
A few recent studies have investigated urban form typologies at

the neighbourhood level. For example, Braulio et al.29 developed a
taxonomy of the city of Castellón de la Plana, Spain, using
elements of residential buildings, and analysed variations in urban
form patterns at different geographical scales. Lu et al.30 measured
urban form in different neighbourhoods of Chengdu City, China,
using indicators of density, accessibility, shape, and diversity.
Fleischmann et al.20 developed a numerical taxonomy for urban
form to classify urban types using street networks and building
footprints, which they applied to generate a hierarchical
classification of urban form in Parague and Amsterdam. On
similar lines, Fusco et al.31 built a taxonomy of contemporary
urban forms in France using indicators of street design and
building types. With limited studies analysing urban form in the
global south, our study contributes to the growing body of
literature on built-up form typologies at the neighbourhood level
in cities in the global south.
The second issue concerns the geographical scale for measuring

urban form, an inappropriate selection of which can lead to the
modified area unit problem (MAUP). The Modified Area Unit
Problem (MAUP) refers to the phenomenon wherein the results of
statistical analysis vary based on the scale or size of the
geographic units used32. It is a common issue in spatial analysis,
where geographical data can be aggregated into different levels
of spatial resolution, such as census tracts, counties, states, or
countries. Studies find that based on the choice of spatial
resolution, results can vary33.
To minimise the MAUP, data should be aggregated at the most

appropriate spatial scale as per the research objective. In urban
micro-planning, residential blocks/ neighbourhoods can serve as a
unit of spatial analysis. However, if block-level spatial maps are
unavailable, a grid cell approach can be used to define the study
area34,35. Under this approach, the geographic space is divided
into a mesh of identically sized cells that are commonly square
shaped, known as a grid. Each cell contains a numerical value that
represents a specific geographic attribute, such as density or

elevation, for that unit of space36. One of the key advantages of
the grid cell approach is that it allows for a high degree of
precision and granularity in spatial analysis17. By breaking down a
geographic area into small cells, researchers can identify subtle
spatial patterns and relationships that might be missed with other
methods37. Aggregating data under grid cells has been found to
yield better results than aggregating data under administrative
boundaries38,39. Considering the lack of administratively defined
neighbourhood boundary maps in Delhi and the advantages of
the grid cell approach in minimising MAUP, this study relies on the
grid cell approach as a spatial unit of analysis.
Finally, there is a challenge in clustering spatial data in urban

form analysis. Clustering techniques in spatial science refer to a
group of methods used to identify and group spatially related
data points or objects. Clustering involves grouping objects based
on their similarity in terms of geographic attributes such as
distance, spatial density, or other spatially relevant features40. The
basic idea behind clustering techniques is to divide a dataset into
subsets or clusters, such that the objects within each cluster are
more similar to each other than to objects in other clusters. This
allows researchers to identify spatial patterns or groupings in the
data that may not be immediately apparent through visual
inspection.
Recent studies on urban morphology have applied various

clustering techniques to group spatial units with similar attributes
and to identify dominant urban form typologies. These techniques
include k-means, hierarchical agglomerative clustering41–43,
density-based clustering44, Bayesian clustering45, Gaussian mix-
ture model46, and spatial clustering methods like local indicators
of spatial association (LISA) and local indicators of network-
constrained clusters (ILINCS)47. Advanced methods like self-
organising maps, which combine statistical and machine learning
methods, are also being used2,48.
Although the study used different clustering algorithms,

k-means was found to be more suitable in terms of model
construction and execution. The model uses few input parametres
and can be executed using different open-source software49,50.
The model results are also easy to interpret compared with
hierarchical clustering51. We also noticed the model requires less
computational time and is more efficient in processing large
multivariate datasets in comparison to density-based and
agglomerative clustering52,53. More importantly, we found that
among different clustering techniques, k-means clustering has
been widely used in recent studies19,54–57. Thus, owing to its
widespread applicability, it made it easier for us to connect our
model results with those of studies that have employed similar
clustering techniques. However, one of the limitations of the
K-means algorithm is that it requires the number of clusters to be
specified in advance, which can be difficult if the data does not
have a clear structure52. Incorrectly specifying the number of
clusters in k-means clustering can produce oversimplified or
overcomplicated results. A low number of clusters may miss
important distinctions between data points and result in the loss
of information, whereas an excessive number of clusters may lead
to meaningless clusters, obscuring the underlying structure of the
data58. To overcome this limitation, this study uses a cluster
optimisation method, which is discussed in the methodology
section.
This section concludes by highlighting the challenge of

interpreting the cluster results. Although machine learning (ML)-
based clustering algorithms can cluster multivariable big datasets,
they may not provide a clear understanding of how to interpret
the cluster results59. With the increase in the usage of machine
learning models in data analysis, there has been growing concern
about how to efficiently interpret the results of ML models60. This
becomes particularly challenging when multiple features are
significant predictors of a cluster, making it difficult to determine
how a particular feature affects cluster prediction61. ML-based
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clustering algorithms typically employ unsupervised learning
techniques, meaning that there is no predetermined outcome.
As a result, the interpretation of the results is subjective and relies
heavily on analysts’ understanding of the data and research
question. Thus, unfamiliarity with the working of ML models or
inadequate understanding of the study context can lead users to
wrongly interpret the model results, which can affect the study
findings62.
To overcome this issue, a recent development has been the rise

of explanatory methods, such as SHAP, to enhance the interpret-
ability and transparency of ML models63. SHAP (SHAPley Additive
exPlanations) is a method that explains the output of a machine
learning model by computing the contribution of each feature to
the final prediction by averaging the marginal contribution of
each feature over all possible coalitions of features64. The SHAP
method is effective in providing insights into the inner workings
of complex machine learning models65. In the last few years, the
use of the SHAP tool has been seen in studies from different
disciplines, such as health66, engineering67, and finance68, which
shows the growing acceptance of the SHAP tool in interpreting
cluster results.
The remainder of the paper is organised as follows: The study

results are presented in the next section. After that the discussion
section discusses the study results and their implications for
promoting sustainable urbanisation in Delhi. At last, the methods
section provides the data preparation and research methods.

RESULTS
Study Context
Delhi, the capital of India, is the second most populous city
globally, with over 28 million residents. It is expected to become
the densest city in the world by 20301. Spread over 1483 sq. km,
Delhi is divided into 11 districts and 250 wards that come under
the Municipal Corporation of Delhi (MCD), with almost 3000
residential colonies. Figure 1 shows the map of Delhi with
residential areas under the 100 x100 metre grid size. The city is a
hub for social, economic, and cultural activities, attracting

migrants from across the country and abroad. In the last decade,
Delhi’s built-up area has almost doubled, making housing and
transportation management challenging for the government69.
According to Delhi’s 2018–19 socio-economic survey, 85% of the
population requires affordable housing options, 11% live in slums,
and 60% of households (size of 5) are congested.
The 2011 Census estimates that Delhi will need 34.5 lakh

dwelling units by 2041. As per the Delhi Development Authority70,
the mismatch between housing demand and supply and
unaffordable prices has led to the growth of over 1700
unauthorised colonies, which are home to over four million
people in the city. The Delhi economic survey 2019–20 reports
that there are 643 vehicles per 1000 population, double the
2005–06 number, leading to traffic congestion, road accidents,
and parking space shortages. The Master Plan Delhi-2041 projects
that Delhi will have over 46 million daily trips, with a per capita trip
rate of 1.58. These are some of the issues that Delhi is facing due
to massive urbanisation, which may be exemplified further if
suitable planning interventions are not made. In this context, we
consider Delhi as our case study to understand what local
planning interventions can be performed to achieve sustainable
urbanisation.

Clusters characteristics
One of the study objectives was to cluster the neighbourhoods in
Delhi and characterise them with their dominant built-up forms.
After scaling the data and determining the optimum number of
clusters, we ran the k-means clustering algorithm with five urban
form elements. The algorithm clustered the grid cells into six
distinctive clusters, designated T1 to T6. Table 1 shows the
percentage share of the grid cells in the six clusters. Cluster T6 has
the maximum share of the total grid cells, i.e., 28%, while cluster
T3 has the least share, i.e., 7%. Figure 2 shows the spatial
distribution of the grid cells under the six clusters. We find cluster
T1 is located in the centre and south of the city. Cluster T2 is
spread in the south and north of the city, while cluster T3 is visible
in small pockets in the north and west of the city. Cluster T4 is

Fig. 1 Map of Delhi with residential areas shown under 100 × 100m grid size. Source—Author, mapped using ArcGIS and Google Earth
Software. The grid cells are 100 × 100 m in size and represent the residential areas, which come under the wards managed by the municipal
corporation of Delhi (MCD). The residential areas in the city’s outer areas are spatially non-contiguous as the majority of land use in these
locations is under cropland or fallow land.
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primarily located in the city’s outer areas, and cluster T5 can be
seen in locations lying towards the central west of the city. Lastly,
cluster T6 is primarily clustered in the northeast of the city.
To determine the statistical disparity among the clusters, we

performed the multivariate analysis of variance and covariance
(MANOVA) test. MANOVA is a statistical test used to measure the
impact of one or more independent variables (factor variables) on
two or more dependent variables. In other words, the MANOVA
test determines whether the mean value of the dependent
variable changes for different groups in the independent variable.
The null hypothesis assumes that there is no statistical difference
in the mean values of the chosen dependent variables across
different groups71. We ran the MANOVA test using the urban form
elements as dependent variables and the assigned clusters as
independent variables. We used four different test parametres to
determine statistical significance. All four tests computed in the
MANOVA rejected the null hypothesis based on p-value sig-
nificance. Table 2 presents the result of the MANOVA test. The test
revealed substantial disparities in the average values of urban
form elements among the six clusters, indicating that each cluster
possesses a different composition of urban form features.
To graphically analyse the differences among the clusters, two

data visualisation techniques were employed: box plots and
parallel coordinate plots. Figure 3 displays the box plots of various
urban form elements across the six clusters. For example, Fig. 3(a)
shows that the median accessibility score is highest in cluster T1,
whereas Fig. 3(b) shows that the median street intersection
density is highest in cluster T5.
Figure 4 depicts the parallel coordinate plot of the multivariate

data for each cluster, offering a visual illustration of the disparities
between the clusters. As shown in Fig. 4, the urban form variables
are marked on the x-axis, and the clusters are shown with different
coloured line segments. For example, cluster T1 (marked in green)
has the highest normalised score for accessibility, whereas cluster
T3 (marked in red) has the highest normalised score for growth in
the built-up area.

Cluster typology
The SHAP (Shapley Additive exPlanations) tool was employed to
visualise the variations between the clusters using the SHAP
module in Python. As described in the Introduction section, the
SHAP tool is a machine learning technique that provides a way to
explain the contribution of each feature in a prediction made by a
model and how that feature affects the output. The SHAP tool
generates a plot called a “summary plot”, which displays the most
important features and how they affect the prediction. Figure 5
displays the summary plot of the SHAP tool.
The summary plot shows the nature and magnitude of the

impact of urban form elements on cluster prediction. The element
that has the strongest impact on cluster predictability is
considered the dominant element and is used to frame the
cluster typology. In the case of Cluster T1, we find that high values
of accessibility to services, built-up density, and block size have a
positive SHAP value. Moderate values of street intersection density
and low values of the growth rate also have a positive SHAP value.
This means that cluster T1 is more likely to be predicted by high
values of accessibility to services, built-up density, and block size,
along with moderate values of street intersection density, and low
values of growth. However, to construct the cluster typology, we
use the cluster feature that has the strongest impact, which is a
high value of accessibility to services in the case of cluster T1.
Thus, we label cluster T1 as an area with high accessibility to
services.
Based on the analysis of cluster T1, the typologies of the

remaining clusters can be similarly framed. Cluster T2 has a
moderate built-up density as its dominant feature, and it is also
marked by a moderate growth rate, a low accessibility value, and a
large block size. With such characteristics, cluster T2 is labelled as a
moderate built-up density area. The dominant feature in cluster T3
is a very high growth rate, with a moderate built-up density and
street intersection density also contributing to cluster character-
isation. Thus, cluster T3 is labelled as an area with high growth
rate.
In cluster T4, low built-up density is the dominant feature. Other

important features include a high growth rate and low
accessibility. We find that residential areas in this cluster are
mostly located on the city’s periphery. Considering the high
growth rate and spatial location of residential areas lying in cluster
T4, the cluster is referred to as an urbanisable area with a rural
landscape. The dominant feature in cluster T5 is high street
intersection density. High built-up density and small block size
also contribute to the cluster characterisation, which makes the
cluster densely populated. Thus, cluster T5 is labelled as a compact
and congested area. Finally, in cluster T6, we find that high built-
up density has the highest positive impact, followed by moderate
to low accessibility and moderate to low street intersection
density. Due to this, cluster T6 is referred to as a high density area.
Table 3 tabulates the clusters’ characteristics based on the

boxplot and multivariate plot analyses, and their dominant urban
form or typology framed using the SHAP tool. The next section

Table 1. Percentage share of grid cells in the six clusters

Cluster T1 T2 T3 T4 T5 T6

Share of grid cells (%) 19 23 7 10 13 28

Fig. 2 Spatial distribution of grid cells under the six clusters. The
figure shows the spatial distribution of six clusters across Delhi.
Cluster T6 has the maximum share of the total grid cells while
cluster T3 has the least share.

Table 2. MANOVA test result.

Test Name Statistic df df1 df2 F Prob>F

Wilks’ lambda 0.0145 5 25 137755 11707.02 0a

Pillai’s trace 2.4759 25 185430 7275.75 0a

Lawley-Hotelling trace 8.8455 25 185402 13119.79 0a

Roy’s largest root 4.8066 5 37086 35651.56 0u

Residuals 37086

Total 37091

e exact, a approximate, u upper bound on F.
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discusses the clusters’ characteristics and their impact on
sustainable urbanisation.
Before concluding this section, we highlight a few recent

studies that have used k-means clustering to analyse neighbour-
hood typologies. For example, Vogiazides and Mondani72 used
k-means clustering to cluster neighbourhoods in Sweden to
analyse the variation in neighbourhood status and found ten
different neighbourhood types. Wu et al.73 used k-means
clustering to identify four neighbourhood typologies for London,
Paris, and Amsterdam. Similarly, Lynge et al.74 used k-means
clustering to build eight neighbourhood typologies for different
cities in South Africa. Although, due to different study contexts

and the choice of variables, the results from these studies cannot
be directly compared with our study results, the fact that k-means
clustering has been used successfully in these studies reinforces
the reliability and robustness of this technique. The demonstration
of consistent findings in previous studies lends additional support
to the validity of the current research.

DISCUSSION
The cluster analysis identified six distinct residential built-up form
typologies in Delhi. This section develops the study’s second
objective, which is to analyse how these different built-up form

(a) (b) (c)

(d) (e)

Fig. 3 Box plots showing the data distribution of urban form elements across different clusters. The urban form elements shown in the
figure are as follows: (a) accessibility, (b) Street intersection density, (c) Built-up density, (d) Growth in the built-up area, and (e) Block area (sq.
metres). In a box plot, the distribution of the data is represented using a box and a set of whiskers. The box in a box plot represents the
interquartile range (IQR) of the data, which is the range between the 25th and 75th percentiles of the data. The median value of the data is
represented by a line inside the box. The whiskers extend from the box to the minimum and maximum values of the data, excluding any
outliers.

Fig. 4 Parallel coordinate plot. The variables are shown on the x-axis, and their normalised mean value score for every cluster is shown on
the y-axis. In a parallel plot, each variable in the dataset is represented by a separate axis, which is arranged in parallel to each other. The data
points are then plotted as a set of connected line segments across the different axes, with each line segment representing the value of a
particular variable for a specific data point110. The lines marked with numbers 1 to 6 represent the clusters from T1 to T6 in the same order.
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typologies affect sustainable urbanisation in Delhi. Before
discussing further, we first list the parametres used in this study
to comprehend sustainable urbanisation. Sustainability is a
comprehensive concept examined in the literature from different
perspectives75,76. In this study, we analysed sustainability from the
perspective of the urban form. Previous studies have analysed
sustainability for different urban forms/city models, such as
compact cities77, urban sprawl78, green city framework79, transit-
oriented development80, and smart cities81. While all of these
frameworks have some advantages and limitations, there is no
consensus as to what constitutes the best urban form from a
sustainability perspective82. Moreover, the applicability of an

urban form to a city’s planning is influenced by diverse factors,
including the city’s existing land use pattern and resource
availability.
Using the sustainability indicators from the different city models

and based on our understanding of urbanisation and urban form
in Delhi, we identify the following urban form characteristics that
can contribute to sustainable urbanisation: high accessibility to
services and transit stations, moderate or high built-up density
with open spaces, moderate street network density, and large
block sizes. Moderate to high built-up density, along with high
accessibility to services, ensures spatial equity in the distribution
of public services across neighbourhoods. Moderate street

Built-up density

Growth

Accessibility

Block area

St. Inter. density

Accessibility

Built-up density

St. Inter. density

Growth

Block area

Growth

Built-up density

St. Inter. density

Block area

Accessibility

Built-up density

Growth

Accessibility

St. Inter. density

Block area

St. Inter. Density

Built-up density

Block area

Accessibility

Growth

Built-up density

Accessibility

St. Inter. density

Growth

Block area

Cluster T1 Cluster T2

Cluster T3 Cluster T4

Cluster T5 Cluster T6

Feature Value

Low High

Fig. 5 SHAP value summary plots for all six clusters. The SHAP value summary plot ranks features based on their contribution to cluster
characterisation, with the most important features at the top. Each feature is represented by a horizontal bar where the colour of the bar
indicates the value of the variable or feature, with blue indicating a low value and red indicating a high value64. The direction of the SHAP
value denotes how effectively a feature value can characterise the cluster. A positive (negative) SHAP value denotes a feature that is more
likely (less likely) to characterise the cluster.
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network density in areas of high density and high accessibility
makes the area compact, which encourages active forms of
transportation and reduces street traffic congestion and vehicular
emissions83–85. The study also recognises the potential benefits of
large block sizes in the context of Delhi, where block sizes are
generally smaller than standard norms. Therefore, the inclusion of
large block sizes is deemed necessary for sustainable urbanisation
in Delhi.
The first typology (T1) is of high accessibility to services. Along

with high accessibility, cluster T1 also has moderate street
intersection density and larger block sizes, making it less
congested despite its high built-up density. Such characterisation
resembles the features of a planned neighbourhood, which is
known to provide a better quality of life to its residents86,87. In this
context, we classify T1 under sustainable urbanisation. From a
different perspective, high accessibility to services in planned
neighbourhoods also leads to increased housing demand,
establishing upscale gated communities and excluding low-
income households88,89. In Delhi as well, such areas have a very
high residential land price per sq. km, approximately four times
higher than the city’s average land price90. As these areas of high
accessibility are primarily populated by high-income households,
there is a need for inclusive policies such as (a) affordable housing
subsidies for low-income households; (b) inclusive zoning, where a
certain percentage of new housing developments is reserved for
low- and middle-income households; and (c) building community
land trusts, which are non-profit organisations that hold land and
make it available for affordable housing or community develop-
ment purposes91. Such measures can ensure sustainable urbanisa-
tion with social equity.
The second urban form typology (T2) exhibits a moderate level

of built-up density and features large block sizes, indicating its
potential to facilitate sustainable urbanisation. However, this
cluster is also characterised by low street intersection density
and limited accessibility, which degrade its sustainability levels. In
urban planning, low street intersection density is associated with
low walkability and limited access to public transportation, as well
as decreased social interaction and community connectivity,
which studies have found to have an adverse impact on individual
physical and mental health92,93. Thus, better street design and
improved access to transit services are crucial for sustainable
urbanisation81. Some policy and planning measures to enhance
street intersection density and walkability can be: (a) tactical
urbanism, which involves low-cost interventions like street
paintings, parklets, and pedestrian plazas that can help test new
intersections and street designs before committing to permanent
changes; (b) transit-oriented development (TOD) to promote the
development of mixed-use, high-density developments around
public transit stations, which can help increase the density of
intersections in those areas; and (c) narrower streets: reducing the
width of streets can encourage slower traffic and can also create
space for new intersections and crossings94.

The third urban form typology (T3) is of newly urbanised areas
with a rapid growth rate over the last ten years. Such residential
areas also have moderate building density and moderate street
intersection density, which aid in sustainable urbanisation.
However, low access to services in such areas is a cause for
concern. Low accessibility to services diminishes growth oppor-
tunities and degrades the quality of life, as previous studies
show95,96. To sustain growth and promote sustainable urbanisa-
tion in such areas, accessibility to different services needs to be
enhanced. One of the important planning interventions in this
regard can be encouraging land use diversity in this cluster, which
can provide a variety of services and amenities within a single
building or block97.
The fourth urban form typology (T4) is of urbanisable areas.

These settlements are located on the city’s outskirts in isolated
pockets and have rural characteristics. Despite their growth over
the past decade, they have a low building density. Due to
unplanned street networks and block design, features such as
large block sizes and low street intersection density are common
here. Access to services is also low due to their peripheral location.
As these settlements transform from rural to urban, there is an
opportunity to improve sustainability through strategic land use
and accessibility planning interventions, such as compact and
mixed land use development and designing the streets and block
size in a manner that promotes walkability and reduces traffic
congestion98.
The fifth urban form typology (T5) is of compact and congested

areas with high street intersection density, small block sizes, and
high built-up density. Neighbourhoods with such characteristics,
despite having a high degree of interconnected street networks
that enhance walkability, also face issues of traffic congestion and
environmental pollution99. To achieve sustainable urbanisation in
such areas, the following planning interventions can be carried
out: (a) promoting the efficient use of land through land
conversion policies to create more green spaces; (b) promoting
smart mobility through the use of technology to get real-time
traffic information; and (c) other measures such as encouraging
carpooling and road pricing can reduce the number of cars on the
road and alleviate traffic congestion100.
The final urban form typology (T6) can be considered similar to

that of cluster T5 in terms of high built-up density. However,
cluster T6 has a higher street intersection density and block size,
which makes it less compact and congested as compared to
cluster T5. To achieve sustainable urbanisation, planning inter-
ventions of similar nature as highlighted for cluster T5 can be
carried out.
After discussing the different typologies, we are now in a

position to evaluate the level of sustainable urbanisation in Delhi.
The above analysis shows that while a certain urban form
characteristic may contribute to sustainable urbanisation in
isolation, sustainability within a specific cluster must be evaluated
by considering the contribution of each element. In many clusters,

Table 3. Cluster characterisation and typology.

Cluster Accessibility Built-up density Growth rate Street intersection density Block area Dominant Urban Form or Cluster Typology

T1 + + − +/− + High accessibility to services

T2 − +/− +/− − + Moderate built-up density

T3 − +/− ++ +/− +/− High growth rate

T4 − − + − + Urbanisable area with a rural landscape

T5 +/− + − ++ − Compact and congested

T6 +/− + − +/− +/− High density

Note: ‘++’ denotes very high/ very big, ‘+’ denotes high/big, ‘+/−’ denotes moderate, and ‘−’ denotes low/small.
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there are urban form characteristics that support sustainable
urbanisation, such as a large block size in cluster T2 or moderate
street intersection density in cluster T3. However, to achieve
sustainability in a given cluster, all the urban form elements must
have a positive impact. As our results show, only in cluster T1 do
all urban form characteristics contribute to sustainable urbanisa-
tion. Considering that the total area of grid cells that come under
cluster T1 is only 19% of the total residential area in Delhi (refer to
Table 1), we conclude that only 19% of the residential area in Delhi
can be considered under sustainable urbanisation. The rest of the
area requires different forms of intervention to make urbanisation
sustainable, as noted in the above paragraphs.
As highlighted in the Introduction section, this study is important

considering the rapid pace of urbanisation in cities in the global
south. Given the nature of urbanisation in cities like Delhi, as they
become more urbanised, they face various challenges for sustain-
able development. Noting the impact of urban forms on
sustainability, as widely recognised in the literature, this study
argues for incorporating the built-up form into the characterisation
and measurement of urbanisation. Such an approach, as demon-
strated in this study, can provide a more accurate assessment of
urbanisation and help bring localised planning interventions to
areas that have unsustainable urban form features.
We conclude the study by highlighting the major findings. The

study aimed to explore residential built-up form typologies and
assess their impact on sustainable urbanisation in Delhi. Only a
few studies have explored variations in the urban form at the
neighbourhood level, and none exist specifically for cities in the
Indian subcontinent. The study used a grid-based technique to
divide residential areas into 100 x 100 metre grid cells and
assigned attributes of accessibility, built-up density, and street
design. The grid cells were then clustered using the k-means
clustering algorithm, which showed the presence of six built-up
form clusters in Delhi. Using the MANOVA test statistics and
graphical visualisations, these clusters were analysed for variation
in their urban form elements and were found to be significantly
different from one another. Using the SHAP tool, the clusters were
analysed for their dominant urban form, using which cluster
typologies were framed. These typologies can be listed as: (1)
areas with high accessibility to services; (2) areas with moderate
built-up density; (3) areas with a high growth rate; (4) urbanisable
areas with a rural landscape; (5) compact and congested areas;
and (6) high density areas. The study then discussed how the
different built-up form elements in these clusters contribute to
sustainable urbanisation in Delhi. Based on the results, the study
concludes that only 19% of residential areas in Delhi can be
classified under sustainable urbanisation, while the remaining
areas require different planning interventions to achieve sustain-
able urbanisation.
We note here the limitations of the study. First, the study

considers only the physical elements of urban form and their
association with sustainable urbanisation. The understanding of

sustainable urbanisation can be further enriched by including
socioeconomic and demographic indicators of neighbourhoods,
such as population density, economic status, and age and caste-
wise composition. Furthermore, sustainability can be analysed
using local environmental and ecological indicators, such as the
air quality index. In this manner, one can develop a more
comprehensive understanding of sustainable urbanisation in
different neighbourhoods, and appropriate localised policies can
be developed. Second, the study has used the cumulative
measure of accessibility, which is a potential measure. Other
accessibility measures based on time/ distance or demand and
supply of services, such as the 2-step floating catchment area
method, can be used. This can provide a more realistic measure of
accessibility. Finally, with the advancements in computationally
efficient learning algorithms, future studies can perform a
comparative analysis among different clustering techniques to
examine the method with the highest clustering efficiency and
utilise it to cluster the urban form at the neighbourhood level.
Despite the shortcomings, the study offers a viewpoint for

understanding urbanisation in rapidly urbanising cities like Delhi,
which are characterised by spatial heterogeneity in their urban
form. Our study shows that urban form at the neighbourhood
level can show significant spatial variation, and thus characterising
a city with a particular urban form can be misleading. Our study
methodology is generalisable to other cities and can be utilised to
create development zones that are based on the dominant built-
up types and are defined by adaptive and dynamic boundaries.
Based on the dominant characteristics of the zones or clusters, the
required planning interventions can be sought. Thus, by factoring
in the neighbourhood’s built-up form in the analysis of sustainable
urbanisation, this study provides another perspective to study
urbanisation, on which future studies can build by considering
non-physical characteristics of neighbourhoods.

METHODS
Data preparation
The first step in the data preparation process involved mapping
residential areas in Delhi using Google Earth. The mapped

Table 5. Data summary of urban form elements

Variable Mean Std. dev. Min Max

Accessibility 134.8 115.31 0 735.63

Built-up area 245.58 69.32 15 348

Growth in built-up area 10.33 35.44 0 314

Street intersection density 116.73 91.47 1 681

Block area (sq. metres) 5187.11 1682.68 1602.36 17379.24

Table 4. Summary of services and their sources

Services Number of observations Variables Source

Schools 2403 Location of private and government schools of
all levels.

Directorate of Education, Government of Delhi.

Hospitals 969 Location of public and private hospitals offering
tertiary care

Department of Health and Family Welfares,
Govt. of Delhi

Entertainment Facilities 827 Location of shopping malls, movie theatres, and
registered restaurants

Department of Excise, Entertainment & Luxury
Tax, Govt. of Delhi

Metro Stations 185 Location of all metro stations Delhi Metro Rail Corporation

Commercial areas 23 District centres and Sub-district centres Delhi Master Plan 2020
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residential area was then exported to ArcGIS software and
transformed into a raster file with a cell size of 100 × 100 metre,
resulting in 37,092 grid cells. These grid cells served as the spatial
unit of analysis and were assigned different urban form elements.
Urban form refers to the physical and spatial characteristics of

urban areas, including the arrangement and distribution of
buildings, streets, open spaces, and other features that shape
the built environment101. Elements of the urban form commonly
found in previous studies belong to the 5D framework developed
by Ewing and Cervero102, which includes population density, land
use diversity, street design, destination accessibility, and distance
to transit stations3,103. Despite its widespread use, there has yet to
be a consensus in the literature on what constitutes urban form.
As Fleischmann et al.11 note, the term has many interpretations,
leading to the need for an objective system of measuring urban
form features. In this study, we focus on commonly used elements
of urban form: (a) density, including built-up density and growth
in built-up density from 2012 to 2022; (b) street design, including
street intersection density and block size; and (c) accessibility to
the five services. Our choice of elements was based on the
research aim, study area context, data availability, and ease of
result interpretation.
The first element is accessibility to services. While accessibility

can be computed using different measures such as time/distance
or supply-demand of services, we stick to the cumulative measure
of accessibility because it is easy to measure and interpret, and
provides a good indication of the spatial distribution of services in
a neighbourhood104. A buffer radius of 2 km was used to represent
services lying in the immediate neighbourhood that can be
accessed with a non-motorised travel mode. We considered five
types of services: schools, hospitals, entertainment facilities,
commercial areas, and metro rail stations. Good access to schools
and hospitals is crucial for human development, as highlighted in
Sustainable Development Goals 3 and 4. High accessibility to
metro stations provides quick and convenient transportation

options to people, reduces their travel time, and improves overall
mobility. Studies show that high access to entertainment facilities
and commercial areas enhances the quality of life22.
Table 4 lists the services, the number of observations for each

service, and their sources. To compute the accessibility to each of
these services, we first obtained the location addresses of all the
observations from their respective sources and then created a
spatial database by geocoding the addresses in Google Maps. The
geocoded addresses of these observations for every service were
then mapped in ArcGIS in a point shapefile format. Grid cells were
assigned a total count of observations lying in a circular radius of
2 km for every service. Finally, accessibility was calculated as the
sum of the normalised value of the cumulative count of
observations for all five services, as shown in Eq. (1):

Ai ¼ K
X5

j¼1

xij �minj
maxj �minj

� �
(1)

where Ai represents the accessibility of the grid cell i, xij represents
the total count of observations belonging to service j and lying in
the circular radius of 2 km from the grid cell i, minj and maxj
represents the minimum and maximum count of observations,
respectively, belonging to service j and lying within a radius of
2 km across the grid cells. K was used as a constant to keep the
accessibility values within a reasonable limit.
The second and third factors were built-up density and growth in

built-up density, respectively. The built-up density was calculated in
three sequential steps. First, land satellite imagery of Delhi for the
year 2022 was acquired from the USGS (United States Geological
Survey) and exported in ArcGIS. Second, land use classification was
done using a supervised classification tool to classify land use under
built-up, bare soil, cultivated area, wasteland, and water. The
accuracy of land use classification was verified by cross-checking
the land use of randomly sampled 350 data points from the classified
image with the actual land use as visible in the historical imagery tool

Fig. 6 A flowchart of research methodology. The flowchart summarises the research methodology under three parts: residential area
mapping, assigning the attributes of urban form elements to the grid cells, and k-means clustering.
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of the Google Earth software. The classification accuracy measured
using the kappa statistics was 0.86, which denotes a high accuracy of
classification105. Third, the area under the built-up category was
extracted from the classified image and vectorised into points. The
built-up density of a grid cell was calculated as the number of built-
up points lying in a 500 metre buffer radius from each grid cell. The
same process was repeated to calculate the built-up density for each
grid cell in 2012. Finally, we calculated the growth in built-up density
as the percentage change in built-up density from 2012 to 2022 for
each grid cell.
The fourth and fifth elements of our study were street

intersection density and block size, respectively, which were
computed using the open street map (OSM) database. The OSM is
a collaborative open-source mapping platform that provides
information on roads, buildings, landmarks, and other geographic
features106. OSM can be accessed through various applications,
such as QGIS, which was used in this study. To calculate street
intersection density, we used the residential street layout from the
OSM database, which provides a map of all residential streets in
Delhi. Using the line intersection tool in QGIS, we measured the
number of residential street intersection nodes within a 500 metre
radius for each grid cell. To measure the block size, we first
calculated the area of the polygons formed by enclosing
residential streets. For a grid cell, the block size represented the
average area of all polygons lying inside a buffer radius of 500
metre. A data summary of all the elements of the urban form used
in this study is shown in Table 5. The research methodology
described in this section is summarised in the flowchart in Fig. 6.

K-means clustering
We used k-means clustering to classify grid cells into similar urban
form attributes. K-means clustering is a machine learning
algorithm used for clustering or grouping data points in a dataset.
The algorithm partitions the data into ‘k’ non-overlapping clusters,
where k is a predefined number chosen by the user. The algorithm
works by iteratively assigning each data point to the closest
cluster centre (centroid) and then recalculating the centroid of
each cluster based on the newly assigned points. This process
continues until the centroids no longer move significantly or a
specified maximum number of iterations is reached107. We used
the scikit-learn library108 in Python to execute the algorithm. First,
we scaled the data using the min-max scaler to a range of 0 to 1.

We then determined the optimum number of clusters using the
widely used elbow method109. The elbow method calculates the
total variation within a cluster using the WCSS (within-cluster sum
of squares) and plots the results to determine the optimum
number of clusters (k).
As the number of clusters increases, the variation within every

cluster, i.e., the value of the WCSS, is expected to decline. The
optimum value of k is one where the marginal decrease in the
value of the WCSS by adding one more cluster is minimal. This can
be visualised by plotting the values of the WCSS against the
number of clusters (k). As shown in Fig. 7, when the value of k is
six, a sharp bend or an elbow-shaped curve occurs in the graph. At
this point, the marginal change in the value of the WCSS with an
increase in the value of k is at its minimum. The elbow method
showed that the optimum number of clusters was six, which was
used in the k-means clustering. Each cluster was then assigned a
built-up form typology using the SHAP tool.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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