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Cities can benefit from complex supply chains
Nazlı B. Doğan 1, Alfonso Mejia 1✉ and Michael Gomez 1

Supply chain complexity is perceived to exacerbate the supply disruptions or shocks experienced by a city. Here, we calculate two
network measures of supply chain complexity based on the relative number—horizontal complexity—and relative strength—
vertical complexity—of a city’s suppliers. Using a large dataset of more than 1 million annual supply flows to 69 major cities in the
United States for 2012–2015, we show that a trade-off pattern between horizontal and vertical complexity tends to characterize the
architecture of urban supply networks. This architecture shapes the resistance of cities to supply chain shocks. We find that a city
experiences less intense shocks, on average, as supplier relative diversity (horizontal complexity) increases for more technologically
sophisticated products, which may serve as a mechanism for buffering cities against supply chain shocks. These results could help
cities anticipate and manage their supply chain risks.
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INTRODUCTION
In our highly interconnected world, cities fundamentally depend
on supply chain networks to function and thrive1–4. Supply
networks have become increasingly complex over time due,
among other factors, to the intensification of global trade and
changes in supply chain management practices5,6, such as just-in-
time supplies and lean replenishments. These management
strategies promote efficiency but may also undermine network
redundancy and resiliency7. The complexity of supply chains is
widely perceived to exacerbate supply disruptions or shocks3,4. In
ecological theory, however, the stability of ecosystems is related
to their complexity8, and empirical analyses of ecological8,9 and
human10,11 networks show that complexity often accompanies
diversity, which can serve as a stabilizing force10,12. By analogy, we
contend that supply chain complexity linked to supplier diversity
may serve as a mechanism for protecting cities against supply
chain shocks.
Many internal characteristics of cities (e.g., number of employ-

ees and length of roads) have been shown to vary systematically
with urban population in a universal power-law relationship13.
These findings, however, do not explicitly consider the fact that
cities coexist and interact with other cities and regions in a
network system14,15. Thus, it is unclear whether urban supply
networks share a common pattern across cities with different
characteristics. Although previous studies have investigated the
association between supply chain complexity and supply chain
shocks at the company level3,4, this association is not well known
for cities. Furthermore, a network’s complexity is determined by its
topological and interaction strength patterns, which tend to shape
the network’s resiliency16,17. Therefore, understanding how the
network architecture of supply chains varies across cities, and how
that architecture relates to a city’s ability to resist or buffer supply
chain shocks, is crucial for predicting and managing supply
chain risks.
Measuring supply chain complexity is generally complicated by

a lack of visibility of upstream or higher-tier suppliers1,5. Typically,
a company only has complete visibility of immediate or first-tier
suppliers18. Here, we derive a network-based index of supply chain
complexity that uses data about a city’s immediate suppliers to
infer the complexity of its higher-tier suppliers. The index assumes

that the level of technological sophistication or complexity of a
product reflects its level of upstream supply chain complexity,
which is a reasonable assumption because more complex
products (e.g., electronics) tend to have more component parts
and require more upstream supply chain stages for production
than basic ones (e.g., coal)19. To rank the complexity of city import
products in the United States, we use a dimensionality reduction
algorithm that has been shown to be useful for this task20–22 as
well as for predicting economic growth23 and identifying
economic specialization patterns20 at the city level. Thus, our
data-driven measure of supply chain complexity is based on both
the structure of supply networks and the sophistication of
products, which according to supply chain theory are key factors
driving supply chain complexity3,18,24. In addition, our measure
has the advantage that it can be calculated using supply chain
data for first-tier suppliers.

RESULTS AND DISCUSSION
Network measures of supply chain complexity
Using a large dataset of more than 1 million annual supply flows
from 2012 to 201525, the years with available data, we determine
the supply chain complexity of 115 regions covering the entire
United States, including 69 major cities ranging in population from
~2 × 105 to 2 × 107 in the year 2012 (Supplementary Data 1). In
2012, these cities accounted for ~68% of the total population and
~74% of the total gross domestic product in the United States. The
dataset also includes international supply flows from eight world
regions (see Methods).
To implement the dimensionality reduction algorithm, we start

with the supply network for each of the 39 product categories in
our dataset (Fig. 1a illustrates one of these supply networks).
These 39 product categories capture the complete product
economy of the United States, although at a coarse level of
aggregation. We combine the 39 supply networks into a single
product-region, binary bipartite network (Fig. 1b and Supplemen-
tary Fig. 1), with links assigned using a location quotient (LQ)
equation. For a specific product, LQ is used to calculate the
concentration of supply inflows (connections) in a region as the
share of that region’s supply inflows (connections) relative to the
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national share (Methods). The product–region pairs with LQ ≥ 1
are assigned a link in the bipartite network (Fig. 1b and
Supplementary Figure 2). This condition highlights key industries
that differentiate city supply chain structure26.

We distinguish between two key structural dimensions of
supply chain complexity, termed vertical and horizontal complex-
ity4. Vertical complexity is calculated using the shares of a city’s
supply inflows whereas horizontal complexity is based on the

Fig. 1 Workflow created to calculate supply chain complexity indices. a Illustration of the supply network for pharmaceutical products in
the United States in 2012. Although not shown for clarity, the network includes international connections to the rest of the world via eight
different world regions. The nodes in the network correspond to the 115 United States regions in our dataset. The node size represents the
total supply inflows to a node (in-strength), and links represent the supply flows (in dollar units) between nodes, with the direction of flow
being clockwise. b Binary bipartite network of product-region pairs (only the 25 most populous cities are shown) derived from all spatial
supply networks in 2012. Similarity matrix for SCI (c) and SCI′ (d) derived from the product-region bipartite network. e Rank order of cities and
regions with respect to their unstandardized SCI and SCI′ values. Mapping of normalized SCI (f) and SCI′ (g) values for cities and regions in the
United States.

N.B. Doğan et al.

2

npj Urban Sustainability (2023)    20 Published in partnership with RMIT University

1
2
3
4
5
6
7
8
9
0
()
:,;



shares of a city’s number of supplier connections (Methods). This
results in two estimates of our supply chain complexity index (SCI);
hereafter, SCI is used to indicate vertical complexity and SCI′ to
indicate horizontal complexity. The calculation of SCI is similar to
that of the economic complexity index20 with the main difference
being that SCI is based on supply flows rather than production
flows. By being based on the supplier connections, the calculation
of SCI′ differs more fundamentally from that of the economic
complexity index (Methods). Thus, SCI and SCI′ characterize the
interaction strength and topological patterns, respectively, of
urban supply chains. Furthermore, Spearman’s rank correlation is
moderate (R= 0.53, P < 0.001) between the ranking of the
products’ complexity used to derive the SCI and SCI′ (Methods),
indicating that the indices tend to rank the same product
categories as high or low, facilitating comparison between SCI
and SCI′.
To visually interpret the algorithm20, we employ the similarity

matrices (Fig. 1c, d), which are used to calculate the indices
(Methods). The rows and columns of the similarity matrices are in
ascending order according to the SCI (Fig. 1c) and SCI′ values
(Fig. 1d). The algorithm places cities with similar supply network
structures closer together and cities with dissimilar structures
farther apart. At SCI or SCI′= 0 (Fig. 1e), the algorithm aims to
partition cities into two main similarity groups20, although here
this partition is more evident for SCI′ (Fig. 1d) than for SCI (Fig. 1c).
Despite the spatial heterogeneity of the indices (Fig. 1f, g), some
distinctive features emerge; for example, SCI values tend to be
high for large cities and SCI′ low.

Relationships between supply chain complexity and local city
and supply network characteristics
We find that SCI values tend to increase as SCI′ values decline
(Fig. 2). This trade-off pattern between SCI and SCI′ characterizes
how the architecture of urban supply networks varies across cities.
The pattern is observed across different local city (Fig. 2a–d) and
local supply network (Fig. 2e–h) characteristics, suggesting that it
is a consistent empirical feature of urban supply chains. For
example, the SCI is positively related to population (Fig. 2a and

Supplementary Table 1; slope= 0.8, R2= 0.20, P < 0.001) whereas
SCI′ shows a negative dependency on population (Fig. 2a and
Supplementary Table 1; slope= -0.43, R2= 0.09, P= 0.012). This
indicates that a city’s shares of supply inflows become more
concentrated in high-complexity products as city size (population)
increases, whereas its shares of supplier connections increases for
low-complexity products. This interaction strength pattern is
consistent with the observation that the complexity of urban
economic activity rises with city size27, which for large cities would
imply an increase in the complexity of supply chains, assuming
that more complex supply inflows require more component parts
and supply chain stages19.
The distribution of the number of suppliers in a city’s imports is

an important constraint on the observed pattern for SCI′ (Fig. 2).
To meet urban demand for low-complexity products, which tend
to be associated with resource-constrained products (e.g.,
agricultural and mining products)23, large cities require a greater
share of supplier connections than medium-sized cities. Taking the
share of supplier connections as a measure of suppliers’ relative
diversity8,9,12, the suppliers’ relative diversity for low-complexity
products tends to increase with city size, which makes the SCI′
decline (Fig. 2a and Supplementary Table 1). In addition, the linear
regression fits between supply chain complexity and local supply
network characteristics are better for SCI′ than for SCI (Fig. 2e–h),
suggesting that SCI′ is more effective than SCI at differentiating
city supply network structure.

Association between supply chain shock intensity and supply
chain complexity
Using nested, cross-sectional regression models, we find that the
supply chain shock intensity experienced by cities strongly
decreases with a city’s horizontal supply chain complexity (Fig. 3
and Supplementary Fig. 5). This finding holds up after accounting
for a variety of model specifications (Supplementary Tables 3–10).
The shock intensity is calculated for each product-region pair as
the largest negative, annual inflow deviation from the average
inflow during 2012–2015 (Methods)10. With shock intensities
varying from ~1% to 85% (Supplementary Fig. 4), supply chain

Fig. 2 Trade-off pattern between horizontal and vertical supply chain complexity. a–d Relationships between supply chain complexity and
local city characteristics for 2012 [ln population, ln gross metropolitan product (GMP), ln population density, and standardized economic
complexity index (ECI)]. e–h Relationships between supply chain complexity and local supply network characteristics for 2012 [in-degree (total
number of suppliers), out-degree (total number of exporting regions), in-strength (total inflows), and out-strength (total outflows); all in ln
scale]. Local supply network characteristics are calculated by aggregating all the supply networks for 2012. For each plot, n= 69 with each
point representing a city. The best linear fits are also shown, together with their 90% confidence intervals, R2 values, and p values.
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shocks during 2012–2015 cover a wide range of cases for
evaluating the association between supply chain shocks and
supply chain complexity.
For the first set of nested regression models (Supplementary

Tables 1 and 2), we relate the supply chain complexity indices to
the average shock intensity of a city’s main imports. This model
explains 72% of the variation in the average shock intensity across
cities (Fig. 3a, Supplementary Fig. 7, and Supplementary Table 3).
Both urban population and SCI′ are strongly and negatively
associated with the average shock intensity (Fig. 3a), suggesting
that large cities as well as cities with high horizontal supply chain
complexity tend to experience less intense shocks, on average.
Letting reductions in the average shock intensity across cities

be indicative of a greater resistance to shocks, both the local
(population) and network (SCI′) effects influence a city’s resistance
to supply chain shocks. Resistance, defined as the ability to buffer
or avoid shocks, is a key aspect of resilience28. Given that large
cities tend to have low SCI′ values (Fig. 2a), they benefit from the
local effect, whereas the network effect is important to medium-
sized cities. A possible mechanism for this local effect is the
weaker dependence of large cities on supply networks, at least in
the sense that a larger share of their trade is local23,27, which may
serve to dissipate small to moderate supply chain shocks29.

Robustness of our findings
To further evaluate the sensitivity of our results, we implement
two other sets of nested regression models. For the second set of
models (Fig. 3b, Supplementary Fig. 8, and Supplementary
Table 4), the specifications are the same as in the first set, except
that a city’s shock intensity is calculated as the average shock from
all its imports. The results from this analysis reinforce our finding
that both urban population and SCI′ have a significant negative
association with shock intensity. For example, a large 10% increase
in population reduces the average shock intensity by 6%, whereas
an increase of one standard deviation in SCI′ reduces the average
shock intensity by ~13% (Fig. 3b and Supplementary Table 4).
Overall, the results are similar when employing standardized
coefficients (Supplementary Fig. 6). Although in our analyses the
association between the average shock intensity and SCI′ is strong
(P < 0.01; Fig. 3a, b), care is needed in interpreting these results as
causal, because only cross-sectional analyses can be performed

due to the relatively short duration of the available supply
network data.
For the third set of nested regression models (Fig. 3c and

Supplementary Tables 5, 6), the results are consistent with our
previous models, even though this third set uses the shock
intensity of individual product-region pairs as the response
variable, resulting in a much larger sample size (n= 2512). For
instance, a large 10% increase in population reduces the shock
intensity by 5.6%, whereas a one standard deviation increase in
SCI′ reduces the shock intensity by ~13% (Fig. 3c and
Supplementary Table 5). For this analysis, SCI has a slightly
significant and positive effect on the shock intensity (Fig. 3c),
indicating that the influence of horizontal and vertical complexity
on supply chain shocks may differ. Overall, we find similar results
when considering control variables other than those in Fig. 3c
(Supplementary Tables 7–10). For the third analysis, however, the
explained variation is less (Fig. 3c) than in the first and second
regression analyses (Fig. 3a, b), suggesting that our approach is
better at predicting a city’s shock intensity across multiple
products than individual ones. Despite the drop in the explained
variation, the coefficient for SCI′ is consistently negative and
strongly significant across all the regression analyses (Fig. 3 and
Supplementary Tables 3 to 10).
We perform two additional robustness checks to test the

influence of our shock intensity measure (Eq. 8) on the regression
analyses. For the first robustness check, given that Eq. 8 is most
useful for stationary time series data, we recalculate the regression
analyses using stationary data alone, by removing from the
dataset the time series for individual product-region pairs with
significant linear trends at a 5% significance level (25% of the
data). The results from this analysis (not shown) are consistent
with our regression findings based on the entire dataset (Fig. 3).
For the second robustness check, we use the average fluctuation
of supply inflows instead of shock intensity (Methods) as the
response variable in the regression analyses. For this analysis, we
find that R2 values improve slightly compared to the values
reported in Fig. 3. In addition, the coefficient for SCI′ is negative
and significant (P < 0.01), indicating that SCI′ values tend to
increase as the average fluctuation of supply inflows declines or
supply chain stability improves. Taking gains in supply chain
stability as indicative of resilience, this result is consistent with our
key finding that a city’s resilience to supply chain shocks increases
with SCI′, on average.

Fig. 3 Effect of supply chain complexity on the intensity of supply chain shock. Coefficients associated with the regression of the supply
chain shock intensity on the supply chain complexity indices and several control variables [ln population, ln average distance, standardized
economic complexity index (ECI), and ln gross metropolitan product (GMP)]. The shock intensities are calculated using data for 2012-2015 and
the explanatory variables using data for 2012. a Coefficients obtained using the average shock intensity of a city’s main imports as the
response variable (n= 69). b Coefficients obtained using the average shock intensity of all imports to a city as the response variable (n= 69).
(c) Coefficients obtained using the shock intensity of individual city-product pairs as the response variable (n= 2512). The standardized
regression coefficients are shown in Fig. S6. ***, P < 1%; **, P < 5%; and NS (nonsignificant), P > 10%. The standard error is indicated with the
black vertical line. These regression analyses are for the city data only.
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Outlook
Across our 69 cities, the supply network and local city effects
complement each other in reducing the supply chain shock
intensity (Fig. 3). A central tenant of urban economic theory is that
urban economic benefits are offset by costs30, which leads to
spatial equilibrium and ultimately long-run stability in an urban
system of interacting cities and regions30,31. Extending this idea to
our results, and assuming that costs will tend to increase for cities
that experience higher-intensity shocks, both network and local
city effects may be seen as stabilizing forces in the supply chains
of cities. Specifically, the network effect may be crucial for
reducing shock intensity in medium-sized cities (Fig. 3), which
could be used to help manage supply chain risks, for example, by
facilitating gains in horizontal supply chain complexity.
To quantify and visualize the relationship between the risk of

supply chain shock and horizontal supply chain complexity, one
can plot the probability of cities experiencing a supply shock
greater than a certain threshold against their average SCI′ value
(Supplementary Fig. 5b). Such graphical tools could help cities in
managing their supply chain risks, as highlighted by Gomez
et al.10. For the food sector in the United States, Gomez et al.10

found that increasing functional supply chain diversity can reduce
the probability of food supply shock to cities. To reduce the risk of
supply shock to cities in a multisector supply network, our results
indicate that improvements in supply chain diversity (horizontal
supply chain complexity) in one sector may need to be balanced
against improvements in other sectors. Our findings point to the
need for a holistic, multisector approach to supply chain design
and policy.
The COVID-19 pandemic has exposed vulnerabilities in the

global supply chains. In response, governments and companies
have taken action to try to enhance supply chain resiliency32. Our
results highlight the possibility of boosting resiliency through
coordinated actions that foster supplier diversity for high-
complexity products in urban supply chains. Our data-driven
approach is general and potentially applicable at different levels of
analysis, from individual companies to countries. This, coupled
with emerging datasets from smart technologies33, could make
our results relevant beyond cities to a wide spectrum of supply
chain actors.

METHODS
Supply chain networks
We use annual commodity flow networks to represent supply
chains in the United States during 2012–2015. The networks are
obtained from the Freight Analysis Framework version 4 (FAF4)
database25. The FAF4 provides empirical, annual commodity flow
data for the year 2012, and annual reanalysis data for the years
2013–2015. All data are in units of tons per year or United States
dollars per year. The reanalysis data are obtained by combining a
national macroeconomic model, regional trade modeling, and
fine-grained empirical economic data34.
The FAF4 database divides the contiguous United States into

132 domestic regions and the rest of the world into eight
international regions. For the United States, the domestic regions
consist of 85 metropolitan statistical areas or cities, 35 remainders
of states, and 12 states. The remainder of a state is the area of a
state that is not part of one of the FAF4 cities. For example,
the FAF4 includes the cities of Philadelphia and Pittsburgh in the
state of Pennsylvania. The remainder of Pennsylvania is the area of
the state not covered by these two cities. The state regions in
FAF4 are states without any FAF4 cities in them; each of these
states represents a single region. Further, some of the FAF4 cities
are broken down into parts based on state lines. For example,
Philadelphia is divided into four areas since its metro area falls
under four different states—Delaware, Maryland, New Jersey, and

Pennsylvania. For each city that is divided into parts, we combine
the parts into a single unit. This reduces the number of domestic
FAF4 cities from 85 to 69 and the total number of domestic FAF4
regions from 132 to 115 (Fig. 1, f and g, illustrate the 115 domestic
regions). To calculate the supply chain complexity indices, we use
these 115 domestic regions and the 8 international FAF4 regions
—Canada, Mexico, Rest of Americas, Europe, Africa, Southwest
and Central Asia, Eastern Asia, and Southeast Asia & Oceania.
Using 41 different product categories, the FAF4 database covers

the entire product economy of the United States25. For our
analysis, we use 39 out of these 41 product categories, leaving out
only the product categories for “mix of unclassified flows” and
“waste.” Since the FAF4 data consist of annual origin-destination
flows between geographic location pairs, the data can be
visualized as spatial supply networks, with links representing the
value of supply flows. When interpreted in this way, the FAF4
database consists of a unique supply network for each product
category in a given year, with all networks sharing the same 123
nodes (115 domestic nodes and 8 international nodes). Thus, for
our analyses, we use a total of 156 supply networks (39 product
categories × 4 years of data = 156 supply networks) that together
represent more than 1 million annual supply flows. Figure 1a
illustrates the domestic supply network for pharmaceutical
products.

Supply chain complexity indices
When estimating supply chain complexity, we distinguish
between upstream horizontal (SCI′) and vertical (SCI) supply chain
complexity, which are considered key structural dimensions of
supply chains in supply chain theory and management4,35–37.
Hereafter SCI is exclusively used to indicate vertical complexity
and SCI′ to indicate horizontal complexity. Vertical supply chain
complexity refers to the upstream depth of supply chains, whereas
horizontal supply chain complexity refers to the number of
immediate upstream connections or suppliers4,37–40. To account
for these dimensions with our supply networks, we use the in-
strength (i.e., a product’s total inflow to a region) and in-degree
(i.e., a region’s total number of supplier connections for a given
product) of a node (region) to quantify the vertical and horizontal
complexity, respectively. For a given product or commodity type,
the total inflow to a region is equal to the sum of the supply flows
from all other regions, whereas the total number of supplier
connections is equal to the number of different regions that
supply a given product or commodity to a region.
We assume that a product’s level of technological sophistication

or complexity reflects its upstream supply chain complexity. This is
a reasonable assumption because more complex products tend to
have more component parts and require more supply chain
stages for production19,24,41. To rank the complexity of our 39
product categories, we use the eigenvalue approach of Mealy
et al. 20, which is equivalent to the method of reflections of
Hidalgo and Hausmann22. This way of ranking product complexity
has been shown to work well at different levels of product and
spatial aggregation23,27,42–48, including metropolitan areas or cities
in the United States23. The approach is essentially a dimensionality
reduction algorithm that extracts or learns key patterns from the
data21. When applied to commodity flows or city-level economic
data23,27,42–48, the algorithm has been shown to successfully
classify the complexity of products or economic activity and to
distinguish between regional economic specialization patterns.
This is in part the reason why we use the algorithm here to derive
our supply chain complexity indices.
To calculate the SCI and SCI′, we aggregate the spatial supply

networks for a given year into a single, unweighted and
undirected, product-region bipartite network with dimensions of
115 × 39 (Fig. 1b). The two groups of nodes in the bipartite
network consist of the 39 product categories linking to the 115
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domestic regions in the FAF4 database (Fig. 1b). The links on the
bipartite network are assigned using a LQ equation20,23,49. Using
the total supply inflows of product p to region r, xrp, we obtain LQ
for each product-region pair as follows:

LQrp ¼
xrp=

P
p xrpP

r xrp=
P

r

P
p xrp

(1)

For each product category, LQrp measures the concentration of a
region’s supply inflows (numerator of Eq. (1) relative to the product’s
national concentration (denominator of Eq. (1). Note that to calculate
SCI we use the region’s share of inflow products in Eq. (1), whereas for
SCI′ we use the region’s shares of supplier connections.
With the following condition, we emphasize a region’s most

dominant supply inflows

Mrp ¼
0; LQrp<1

1; LQrp � 1

�

(2)

This results in a product-region bipartite network defined by the
binary matrix M with elements Mrp and links assigned to product-
region pairs with LQrp � 1. The LQ threshold of 1 allows us to focus
on the supply chains that make a region unique or different from
other regions. This is useful here because in our dataset every
region requires inputs from all the different product categories. In
addition, for low (e.g., LQrp � 0:5) or high (e.g., LQrp � 1:5) values
of LQ, the value of the supply chain complexity index is similar
across cities (Supplementary Fig. 1), so LQ values between 0.5 and
1.5 are desirable. Ultimately, we select LQrp � 1 because this value
captures differences or heterogeneity in the supply chain
complexity indices across our 69 cities (Supplementary Fig. 1),
and it has been used before to study the complexity of cities20,23.
The column-wise and row-wise sums of M give the diversity of

regions d and the ubiquity of products u20,22, respectively. The
elements of d and u are given by

dr ¼
X

p

Mrp (3)

up ¼
X

r

Mrp (4)

The variables in Eqs. 2–4 can be used to determine the matrices ~M
and M̂ that capture the similarity between the supply chain
structures of regions20. ~M captures the similarity between supplies—
similarity weighted by the regions’ diversity—and M̂ the similarity
between suppliers—similarity weighted by the products’ ubiquity.

eM ¼ D�1MU�1M0 (5)

bM ¼ U�1M0D�1M (6)

where D and U are the diagonalized d and umatrices, respectively,
and M is the binary product-region matrix. Following the
eigenvalue approach of Mealy et al.20, SCI is defined as the
eigenvector associated with the second largest right eigenvalue of
~M, while the ranking of product complexity is defined by the
eigenvector associated with the second largest right eigenvalue of
M̂. Note that the ranking of product complexity is typically referred
to as the product complexity index20,22. Moreover, Eqs. (1–6) are
used to calculate both SCI and SCI′, with the only difference being
that for SCI xrp is equal to the share of a region’s inflows for a given
product p and for SCI′, it is equal to the share of a region’s number
of supplier connections for a given product p.
Alternatively, the matrix ~M (Eq. 5) can be expressed as follows:

eM ¼ D�1K where K ¼ MU�1M0 (7)

K is the symmetric similarity matrix, which places cities with
similar supply chain structure closer together and cities with

dissimilar structure farther apart (Fig. 1c, d). In addition, Eq. (7)
allows interpretation of the algorithm as spectral clustering20.
Following this interpretation, the algorithm aims to partition
regions into two main supply chain structure groups at a value of
SCI or SCI′ equal to 0 (Fig. 1e).

Supply chain shocks
We estimate supply chain shocks to investigate the ability of cities
to avoid or resist shocks. Resistance, together with recovery time
and robustness, is one of the three main components of
resilience28,50,51. To calculate the supply chain shock intensity for
each product-region pair, we use the supply network data during
2012–201510,52. For each region r and product p, we calculate the
supply chain shock intensity Srp as follows:

Srp ¼ 1�min Ipr
� �

Iprh i
� �

´ 100 (8)

where Ipr is the time series of total inflows to node r for product p
for 2012–2015, and min(Ipr ) and Ipr

� �
are the minimum and average

values of the time series Ipr , respectively. We use the supply chain
shock intensities determined with Eq. (8) as the response variable
in the regression analyses. Equation (8) is applicable to our dataset
since most of the times series Ipr (75% of the data) do not exhibit a
significant linear trend at a 5% significance level. Nonetheless, we
test this assumption as part of our regression analyses.
In addition, we determine the probability of shock for a subset S

of all Srp shocks. To do this, we divide the supply chain complexity
of cities into b bins. For each bin b, we count the number of
observations nb that meet the criteria S > s for s 2 {5, 10, 15, 20},
with s being the shock intensity threshold. The probability of a
supply shock being greater than s in bin b is calculated as follows:

PbðS > sÞ ¼ 1� nb
Nb

� �

(9)

where Nb is the total number of observations in bin b. Thus, for
each shock intensity s, we obtain a set of probabilities of supply
chain shock, P S > sð Þ ¼ PbðS > sÞ for b = {1, …, 5}. We use these
probabilities to plot the relationship between the probability of
supply chain shock and supply chain complexity.
To overcome possible limitations with our shock measure

(Eq. 8), we evaluate using the average fluctuation of supply inflows
as an alternative to Eq. (8). For each times series Ipr , the fluctuation
value is calculated as the average of the absolute difference of
supply inflows between consecutive years. That is, for the time
series associated with each product-region pair, we average the
absolute difference between supply inflows in 2012–2013,
2013–2104, and 2014–2015. This way of calculating fluctuations
avoids having to estimate higher-order statistics, which can be
challenging with our short time series data.

Statistical analyses
We use ordinary least squares multiple linear regression to assess
the association between supply chain shock intensity and supply
chain complexity with the natural logarithm of the shock intensity
as the response variable. When using the average shock intensity
of a city’s imports as the response variable, the regression
equation has the following form:

lnðŜrÞ ¼ b0 þ b1SCIr þ b2SCI
0
r þ b3SCIr ´ SCI0r þ

X

i>3

bi ln xirð Þ þ εr

(10)

where Ŝr is the average supply chain shock intensity for city r; SCIr
and SCI0r are the vertical and horizontal supply chain complexity
indices for city r, respectively; the term xir represents a control
variable i (e.g., population, gross metropolitan product, or average
shipment distance); and εr is the error term. The bi terms are the
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regression coefficients. When using the shock intensity of
individual products as the response variable, we use the following
regression equation:

lnðŜrpÞ ¼ b0 þ b1SCIr þ b2SCI0r þ b3SCIr ´ SCI0r

þ PN

i>3
bi ln xirð Þ þP

i>N
bi ln xirp

� �þ εrp
(11)

where Ŝrp is the supply chain shock intensity and xirp is a control
variable i for city r and product p. All other variables and
coefficients in Eq. (11) have the same meaning as in Eq. (10).
Further details about the regression models are included in the
Supplementary Methods.
We perform four different regression analyses. In the first

analysis (I), the average shock intensity of the main inflow
products to a city (i.e., product-region pairs with LQrp � 1) is used
as the response variable (n= 69 cities). In the second analysis (II),
the average shock intensity of all inflow products to a city is used
as the response variable (n= 69 cities). In the third (III) and fourth
(IV) regression analyses, the individual shocks associated with all
possible product-region pairs is used as the response variable
(n= 2513 product-region pairs). The difference between analyses
III and IV is that in analysis IV we consider additional control
variables than in analysis III. These four regression analyses are
designed to progressively increase the robustness and generality
of our results.
For analyses I–III, we use four different control variables for the

year 2012. The variables include urban population (number of
persons)53, gross metropolitan product (GMP) (US$)54, economic
complexity index (ECI)20–22, and the average shipment distance
(miles)25. In addition, for analysis III, we include dummy variables
for each of the product categories. These control variables were
selected based on previous studies4,55,56, which have shown that
size, competitiveness, specialization, shipment distance, and type
of product are key factors that influence supply chain complexity
and shock intensity.
We use urban population to measure city size13,15,57–60. More

generally, urban population is used to account for cities’ local
characteristics since it strongly relates to many social, economic,
and infrastructural properties of cities that tend to scale as a
universal power-law relationship of city size13,59. Shipment
distance is often considered as a proxy for transportation
costs3,61–63. For a given product, the average shipment distance
is calculated as the average shipment distance of all inflows to a
city, which for a given city results in an average distance for each
of the 39 product categories in our dataset. To obtain a single
distance value for a city, we further average the distances across
the city’s inflow product categories. For each commodity flow in
the supply networks, the shipment distance is obtained from the
FAF4 database25. We use GMP or the level of economic activity in
each city as a proxy for urban competitiveness and the ECI to
quantify economic specialization20,23. In addition, ECI has been
used to measure urban economic diversity23,64,65 and predict
urban economic growth23,65 in United States cities. Note that we
use Eqs. (1–6) to calculate ECI. However, differently from our
calculation of SCI, we let xrp in Eq. (1) be equal to a region’s share
of outflows for a given product when determining ECI.
We use regression analysis IV to further evaluate the sensitivity

of our results. This analysis has two parts, IV.a and IV.b, which only
differ in the year used to calculate the supply chain complexity
indices. For analysis IV.a, the supply chain complexity indices are
estimated using annual supply network data for the year 2012,
whereas for analysis IV.b data for 2015 are used. This is done to
assess the sensitivity of our results to the year used to calculate
the indices. For low and high values of the supply chain
complexity indices, the indices tend to remain fairly constant
from 2012 to 2015. For intermediate values, the indices tend to

vary across years for some of the cities in our dataset
(Supplementary Fig. 3).
Furthermore, we consider in analyses IV.a and IV.b three

additional control variables, including the percent of foreign-
sourced supplies, the percent of urban-sourced supplies, and the
total production of products (US$). The percent of foreign-sourced
supplies is the share of the total inflows of product p to region r
sourced from the eight FAF4 international regions. This variable
accounts for possible differences between products sourced
domestically versus internationally66,67. The percent of urban-
sourced supplies is the share of the total inflows of product p to
region r sourced from other FAF4 cities. This variable accounts for
possible differences between intercity and non-intercity interac-
tions14,15,68. For each product-region pair, a city’s total production
is calculated as the node’s out-strength based on the aggregation
of all the FAF4 supply networks. This variable is useful because,
differently from GMP, it solely accounts for products, excluding
services that take on a large share of GMP. These three control
variables are estimated using the FAF4 data for the year 2012.
Prior to the regression analyses, we calculate the variance

inflation factors for all the predictor variables (Supplementary
Table 2). For all the regression models, we perform diagnostic
checks for homoscedasticity/non-autocorrelation, normality, and
leverage and influential points (Supplementary Figs. 7–11)69.
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