
ARTICLE OPEN

On the impact of urbanisation on CO2 emissions
Muhammad Luqman 1,2✉, Peter J. Rayner2,3 and Kevin R. Gurney 4

We use a globally consistent, time-resolved data set of CO2 emission proxies to quantify urban CO2 emissions in 91 cities. We
decompose emission trends into contributions from changes in urban extent, population density and per capita emission. We find
that urban CO2 emissions are increasing everywhere but that the dominant contributors differ according to development level. A
cluster analysis of factors shows that developing countries were dominated by cities with the rapid area and per capita CO2

emissions increases. Cities in the developed world, by contrast, show slow area and per capita CO2 emissions growth. China is an
important intermediate case with rapid urban area growth combined with slower per capita CO2 emissions growth. Urban per
capita emissions are often lower than their national average for many developed countries, suggesting that urbanisation may
reduce overall emissions. However, trends in per capita urban emissions are higher than their national equivalent almost
everywhere, suggesting that urbanisation will become a more serious problem in the future. An important exception is China,
whose per capita urban emissions are growing more slowly than the national value. We also see a negative correlation between
trends in population density and per capita CO2 emissions, highlighting a strong role for densification as a tool to reduce CO2

emissions.
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INTRODUCTION
Cities are responsible for close to 70% of global CO2 emissions
associated with energy consumption1. In North America, the
proportion reaches 80% depending upon the definition of
emissions scope and urban boundary2,3. Furthermore, cities could
add over 2 billion people this century with global urban area
tripling by 20304,5. While concern mounts over the potential lock-
in of high-emitting infrastructure, many cities also have taken
leadership on greenhouse gas mitigation, pledging ambitious
reduction targets6,7. Quantifying trends in urban CO2 emissions is
critical to understanding near-term urban emission trajectories.
Identifying major contributions to these trends will help expose
the factors driving emissions over the longer term. These drivers
are points of mitigation leverage, a goal of several urban alliances
such as the Global Covenant of Mayors or the C40 Cities Alliance8.
Given the rate of urbanisation, it is important to establish

whether, on average, urbanisation contributes to increased
national/global CO2 emissions. This has been a source of
considerable debate with the consensus that developing cities
are generally wealthier and more energy-intensive than the rural
areas from which they draw their population. Thus, urban dwellers
will consume more energy when compared to rural lifestyles, such
that urbanisation per se, drives increased CO2 emissions9. A
countervailing view is that, beyond some stage in its develop-
ment, economic growth in cities comes from low-emissions
service industries so that urbanisation will be a decreasing or even
negative contributor to national/global CO2 emission trends10.
This is a version of the Environmental Kuznets Curve (EKC)11. The
more general statement of the EKC, that economic growth will
first worsen but then improve environmental outcomes has been
both theoretically and empirically controversial12.
To elucidate the role of urbanisation in emissions trends we

would ideally like a quantitative analysis of the factors driving
emissions. We could then ask whether such factors acted

differently in urban and non-urban settings and during different
stages of urban development. Such data is not available globally
or for a long enough period for our needs. We can, however,
decompose urban emissions into underlying factors and study the
trajectories of different cities through the space defined by these
factors. The approach is motivated by13 who performed a similar
analysis for national emissions. They decomposed emissions
according to the KAYA identity as [a product of population, per
capita GDP and the carbon intensity of the economy. They were
thus able to distinguish pathways of emissions growth undertaken
by regions or countries. Our decomposition must account for
changes in city area and cannot include economic data since we
lack this at the needed resolution. We can track the effects of
changing population density and per capita emissions in hopes of
revealing the variety of development pathways.
Most previous studies of trends in urban emissions have been

limited by either space or time. these studies are simplest within
one country where definitions of urban boundaries and emissions
are more likely to be homogeneous. Examples include: Malaysia14,
Turkey15, U.S.16,17, Japan18, U.K.19. Efforts at data harmonization,
either by the researcher or regional agencies, allowed multi-
country studies e.g.: African region20,21, developed countries22,
developing countries23,24, and Europe25.
Some recent studies have been able to extend the domain of

such studies to the globe. Wu et al.,26 used measurements from
the Orbiting Carbon Observatory (OCO-2) to quantify emissions
from 20 cities. While this platform removes some of the
restrictions of self-reported or proxy emissions data it limits the
spatiotemporal extent for inferences and enforces a meteorolo-
gical definition of city boundaries. Crippa et al.,27 used the
Emissions Database for Global Atmospheric Research (EDGAR)28

and an urban classification based on the Global Human
Settlement Layer (GHSL)29 to derive longer-term trends in urban
emissions. They found that CO2 emissions had grown rapidly for
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large cities in emerging areas while they have not in high-income
countries. They also showed considerable variability in per capita
emissions but noted that developed countries appear to have
decoupled economic growth from emissions, at least in large
cities. One limitation of this study is the spatial resolution of
EDGAR (0.1o) and temporal resolution of the underlying popula-
tion database (roughly five years). Here we extend the study of
Crippa et al.,27 by using a higher spatial resolution (30 arc seconds)
and a higher native temporal resolution (1 year). We wish to
understand the contributions of bulk urban characteristics (area,
population density and per capita emissions) make to trends in
emissions.
To probe this question, we must separate the contributions of

population growth and per capita CO2 emissions trends from total
CO2 emissions growth. Such analyses require a time-series of the
urban extent and CO2 emissions with global coverage and enough
duration to establish trends. No direct data set allows this. In
particular, integrated measures of urban emissions or energy
consumption such as fuel sales or electricity flows cannot
disentangle the contributions to change. There are now reliable,
remotely sensed proxies of urban energy consumption or CO2

emissions which meet these criteria. By combining these with
measures of urban extent and some underlying emissions
contributors we can generate a global picture of the interaction
of urbanisation and CO2 emissions.
Previous studies have studied the relationships between

emergent and intrinsic properties of cities (such as emissions
and size). Gudipudi et al.,30 used the traditional Kaya identity31 to
examine the relationship between emissions and underlying
drivers. Ribeiro et al.,17 used production functions to relate
parameters such as population and area and emissions. Both these
studies (as with most others) use static data sets. As one by-
product of our approach we will test whether a fit to cross-
sectional data (static in time) plus an index of urban development
suffice to explain emission trends. Our target is the trend in
emissions. Bettencourt et al.,32 noted that scaling properties
derived from temporal and spatial (cross-sectional in their
terminology) analyses were not equivalent.
Our study establishes these trends directly for a group of cities

and examines drivers of these trends. For this we require a data
set with global coverage and a considerable time-span. these have
not, to our knowledge, been available before, at least using
consistent definitions.
The other reason to monitor urban emissions directly is more

practical. The United Nations Framework Convention on Climate
Change33 suggests monitoring the spatiotemporal variations of
GHG emissions to inform international climate change policy13,34.
Atmospheric concentration measurements combined with on-
ground information are emerging as the means to best achieve
the combination of accurate emissions tracking and detailed
source characterization of emissions in urban areas35–37.
The structure of this paper is as follows: The “result” section

describes the analytical method, a modified form of the Kaya
identity, and the data sources used in our analysis. The
“discussion” section describes the resulting trends in these
emission contributors and summarises our major findings, a
cluster analysis to place the trends in a regional context, and
placement of urban emissions within the national context to
demonstrate the potential impact cities may have on future
national trends. The “method” comments on the implications and
caveats of the results.

RESULTS
Trends
Figure 1 shows the emission trends for the 91 cities in our analysis
(trend values of each city are provided in supplementary data as

Table 1). Overall, we see rapid increases in urban CO2 emissions
averaging 4.7%/yr. These averages conceal considerable variability
across cities with emission trends ranging from −2.8%/yr (Madrid
Spain) to 11.0%/yr (Xi’an, China). On average, the dominant
contributor for CO2 emissions growth is the change in urban area,
(3.5%/yr). The change in population density contributes −0.6%/yr,
indicating that cities continue to sprawl as they grow. The trend in
per capita CO2 emissions makes a positive contribution (averaging
2.2%/yr).
There are also significant relationships among the trends.

Table 2 shows the correlations among the contributors across the
91 cities. It is important to stress that these are not temporal
correlations but represent the relationship between trends in the
three contributor variables across the 91-city sample.
The correlation of the area trend with the other two

contributors is to be expected: cities that grow fast in areal
extent, see declines in population density and increases in per
capita CO2 emissions. More surprising is the correlation between
the two intensive contributors, population density and per capita
CO2 emissions. The relationship suggests that cities experiencing
declines in population density, have increasing per capita CO2

emissions providing direct evidence of the impact of changing
urban form on CO2 emissions.

Cluster analysis
While there is considerable spatial variability in trends and their
contributors, some significant patterns emerge among classes of
cities. We investigate these by performing a cluster analysis using
the three contributors in Eq. 3.
Cluster analysis is a method for objectively identifying group-

ings in multi-dimensional data. Here we use a centroid-based
technique: If each point is described by N parameters then these
define its coordinate in an N-dimensional space. Clusters are
defined so that the distance from every point in a cluster to its
centroid (defined as the average of all the coordinates in the
cluster) is less than that to the centroid of any other cluster. The
number of clusters is set by the user and is generally chosen by
considering the change in some metric of the analysis as a
function of the chosen number of clusters. Here we use the
Calinski-Harabasz score38 which is roughly the ratio of the average
distance between members of a cluster to that between clusters.
One seeks the maximum amount of information available before
we move from delineating truly isolated clusters to partitioning
randomly distributed points within clusters. For our analysis we
use the KMeans function from the python scikit-learn package39.
Figure 2 shows Calinski-Harabasz metric as a function of the

number of clusters. Optimal choices for the number of clusters
occur at inflections in this curve, with the segments between
demonstrating partition of randomly distributed points. For our
case the optimal choice is four.
Henceforth we focus on our choice of four clusters. Figure 3

shows the cluster assignment for each city while Table 3 shows
the cluster characteristics.
The clusters can be classified according to their overall emission

trends. This yields two high-growth clusters, one intermediate and
one low-growth cluster.
Cluster 1 shows a moderate positive area trend with a larger

positive per capita emissions trend. It is dominated by cities in the
developing world, mostly the Asian subcontinent. Cluster 2
exchanges these contributions with the area trend contributing
more than the per capita emission trend. It is dominated by
Chinese cities. Clusters 3 and 4 show similar area trends but are
differentiated by their per capita emissions trends. Cluster 3, with
a positive per capita emissions trend, contains mostly cities
throughout the developing world in addition to the two largest
cities in Australia, Sydney and Melbourne. Cluster 4, with the
lowest positive emissions trend, is the only cluster to show a
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negative per capita emissions trend. It consists almost entirely of
cities in the developed world. The presence of Baghdad in this
cluster suggests the role of conflict in reducing per capita
emissions.

National emissions impact of urbanisation
We define the rate of urbanisation as the trend in the proportion
of the population living in cities. Let us define the national

population as P, the urban fraction of the population as c, the
urban per capita emissions as u and the non-urban per capita
emissions as n. We can write the national emissions as

F ¼ P cuþ 1� cð Þn½ � (1)

Differentiating yields

dF
dt

¼ dP
dt

cuþ ð1� cÞn½ � þ P ðu� nÞ dc
dt

� �
þ P c

du
dt

þ ð1� cÞ dn
dt

� �

(2)

The role of urbanisation in trends in national emissions is the
contribution of dc

dt to dF
dt , i.e., P (u− n). We also know that the

national per capita emissions e are given by

e ¼ cuþ ð1� cÞn (3)

Some manipulation yields the coefficient of dc
dt in Eq. 2 as P u�e

1�c.
Thus, urbanisation contributes positively to the trend in national
emissions if urban per capita emissions are higher than the
national average and vice versa. Changes in the role of
urbanisation hence depend on d

dt ðu� eÞ, the trend in urban
versus national per capita emissions. We can calculate the
difference in per capita emissions for a reference year and
the trend in this difference over our data set. We calculate the
emissions for a reference year by fitting a linear regression to the
per capita emissions and calculating the value of the resulting fit
at the reference year (in this case 2010.5 representing the 2010

Table 1. List of excluded cities.

Sr. No. City Country

1 Abidjan Cote d’Ivoire

2 Accra Ghana

3 Alexandria Egypt

4 Bogota Colombia

5 Kinshasa Dem. Republic Congo

6 Kuwait Kuwait

7 Lagos Nigeria

8 New York United States

9 Onitsha Nigeria

10 Quanzhou China

11 Singapore Singapore

12 Xiamen China

Fig. 1 Trends of 91 large cities. a Overall emission trends for 91 large cities b overall area trends, c overall population density trends, and
d overall per capita emissions trends. Circles show the location of the chosen cities.
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average). Figure 4 shows both these values for 39 countries
containing cities in our data set.
We average reference per capita emissions and trends for

multiple cities in one country. The averaging is population-
weighted. Egypt had too few points in its national emissions to
allow calculation of trends and it is therefore excluded.
Figure 4 (panel a) shows that the current role of urbanisation is

mixed. There is a tendency for developed countries to have urban

per capita emissions lower than national emissions. This is by no
means universal and several developing countries show the same
behaviour. The case for trends in per capita emissions (panel b) is
less equivocal. Here most countries show more rapid growth in
urban than national emissions though again there are exceptions.
There is little difference between developed and developing
countries in this regard. One important exception is China whose
2010 urban per capita emissions are larger than the national value
but with much slower growth. The results themselves do not shed
light on whether this striking anomaly is a result of particularly
emissions-efficient growth in China’s cities or the result of an
explicit policy to move high-emissions industries away from cities,
trading-off urban and non-urban CO2 emissions40. Cheng et al.,41

came to a similar conclusion using a traditional version of the Kaya
identity and a cross-section of Chinese cities for the period 2000—
2016.

DISCUSSION
There are several caveats to the analysis presented above. First,
the spatial structure of CO2 emissions calculated here is deduced
from the distribution of satellite-derived nighttime lights starting
in the early 1990s42–44. These are used to downscale country-level
fossil fuel emissions provided by various national and international
agencies45–47. When considering urban CO2 emissions, the
important quantity is the proportion of nighttime lights irradiance
arising from the city compared to the country as a whole. There
are two potential problems with this proxy. First, trends in the
proportion of urban to country nighttime lights that arise from the
different penetration rates of lighting technologies in urban and
rural areas will contaminate our results. We expect these to
introduce noise rather than bias since the take-up of this
technology is highly variable. This problem reaches its most acute
with the reference emissions for 2010.
The other problem is that the time-averaged spatial distribution

of emissions might not be perfectly represented by nighttime
lights. If this misrepresentation occurs, the temporal variation
driven by urban growth will be incorrect. This problem highlights
the need for better spatial proxies for individual emission sectors
but at the moment these are not available. Recent advances in the
EDGAR emissions product28 may provide a path forward but will
require extreme care in how proxies are used to downscale
national statistics. Analysis by Doll et al.,42 suggests that nighttime
lights are a reasonable proxy for temporal snapshots of spatial

Fig. 3 Cluster assignments for the 91 cities in the study. The clusters are grouped into four and their characteristics are described in Table 3.

Fig. 2 Calinski-Harabasz score graph as a function of the number
of clusters. From the inflection in the curve, four clusters are chosen.

Table 2. Correlations among proportional area trend (δA),
proportional population density trend (δp) and proportional per
capita CO2 emissions trend (δe).

δA (p) δp (p) δe (p)

A 1.00 (0.00) −0.52 (0.00) 0.37 (0.00)

δp −0.52 (0.00) 1.00 (0.00) −0.28 (0.01)

δe 0.37 (0.00) −0.28 (0.01) 1.00 (0.00)
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emissions but there are few independent data sets to assess
trends.
There is also some ambiguity in the quantity represented by the

ODIAC results displayed in Fig. 4. The intensity of nighttime lights
is a mixed indicator of emissions (scope 1) and energy
consumption (scope 2). The comparisons with bottom-up
inventories carried out by Asefi-Najafabady et al.,45 suggest this
is not a major limitation for this application. Furthermore, the role
of urban development in overall emissions is also a mixed scope 1
and scope 2 problem, so it is likely the nighttime lights distribution
captures the relevant dynamics.
The results of this study have implications both for CO2

emissions projections and preferred modes of urban develop-
ment. First, we note the range of trends in per capita emissions.
The per capita CO2 emissions trend is the largest single
contributor to the urban CO2 emissions trend explaining, alone,
75% of the variance. Reducing this trend in the developing world
seems, from our analysis, to be a general and powerful mitigation
pathway. Cluster 2 (largely China) offers evidence that this is
possible. In developed countries, our analysis suggests that the
evolution of urban density is an opportunity for mitigation.
Figure 4 does not show clear differences between developed and
developing countries in the current role of urbanisation. The
comparison of trends does not suggest any simple relationship as
in the UKC. If there are discernible contributors of per capita CO2

emissions trends, these might be valuable points of policy
intervention to limit emissions growth. Possible candidates
include an urban form48 and economic specialisations.
The correlations among contributors of urban emissions also

contain pointers for policy intervention. Table 1 shows that far
from densifying, rapidly growing cities are generally thinning. This
is associated with a growth in per capita CO2 emissions. There is
also a direct correlation between trends in population density and

per capita emissions. Cities choosing a development path with
greater population density are also minimising their growth in per
capita CO2 emissions. The historical link between urban planning
and carbon efficiency should motivate city managers to
strengthen policies on urban density.
Figure 4 also carries an important lesson for studies of urban

development and emissions. The panel a describes a snapshot in
time. The snapshot suggests that per capita emissions decrease
relative to national totals as cities develop. The trend analysis
(panel b) suggests this is not the case. This highlights again the
importance of data sets that can probe the temporal and spatial
aspects of urban development and the risks of using a static view
to predict evolution. The complex relationship between size and
emissions trend is support by Crippa et al.,27, showing that
different urban categories had different trends.
This work is an opening exploration of a potentially rich data

set. While we have captured most of the world’s largest cities,
some are missing due to incomplete Landsat data or the
impossibility of determining an urban boundary in a large
agglomeration such as the U.S. East Coast. Nonetheless, we
should broaden the coverage of the data, in particular to include
the mass of smaller cities which are also changing rapidly.
We stress that this analysis is descriptive rather than casual.

Trends in multiple contributors may have common underlying
drivers. Also, we do not consider energy flows (either embodied or
direct) between urban and non-urban regions. An important
future task is to investigate the underlying drivers of the
relationships exhibited here. For example, how important is the
trend in per capita GDP as an explanatory variable and can we
learn anything about the carbon efficiency of the economies of
different cities. This requires considerable care since many of the
data sets attempting to spatially allocate economic activity also
use nighttime lights as proxies, confounding the required
independence of the explanatory variable.
We analysed trends of CO2 emissions for 91 of the world’s

largest cities using algorithmically generated urban boundaries
overlaid on gridded fossil fuel CO2 emissions data. The average
growth rate of 4.4%/yr reflects rising CO2 per capita emissions
globally and the growth in our chosen cities. With a modified Kaya
identity as a framework, we decomposed urban CO2 emissions
into three contributing variables: area, population density and per
capita CO2 emissions. The trend in area contributes to CO2

emissions growth across almost all cities while the trend in per
capita CO2 emissions makes a large contribution in most
developing countries. Population density and per capita CO2

emissions trends correlate negatively, suggesting a relationship
between changing urban form and per capita CO2 emissions. For
our reference year of 2010, the per capita emissions in developed

Fig. 4 Difference and percentage trends between large cities and their host countries. a Difference between reference year per capita
emissions, and b percentage trend (trend divided by reference) between large cities and their host countries.

Table 3. Characteristics of clusters defined as the coordinates of their
centroids and the number of cities in the cluster.

Cluster Emission
trend (E)

Area
trend
(δA)

Pop
density
trend (δp)

Per capita
emission
trend (δe)

number-
cities

1 7.9 3.5 −0.8 5.9 20

2 7.7 7.1 −2.9 3.9 14

3 5.1 2.9 0.6 2.1 30

4 0.8 2.3 −0.4 −0.8 27

The full results for individual cities are listed in the supplementary data.
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countries are generally lower than the national average, while
those in developing countries are generally higher. With the
strong exception of China, emissions trends are generally larger
for our chosen cities than the national averages suggesting that
urbanisation will play an increasing role in driving national
emissions and highlighting the importance of mitigation policies
for cities.

METHODS
Datasets and exceptions
Our task is to calculate trends in fossil fuel emissions for major
cities, decompose these into their dominant contributors and
investigate possible patterns in these contributors. Our chosen
contributors are population, area and per capita emissions. Our
analysis requires data for urban extent, fossil fuel CO2 emissions
and population. Urban extent is generated from the Built-up,
Nighttime lights and Travel Time for Urban Size (BUNTUS)
algorithm of Luqman et al.,49. This algorithm defines a metric
based on land cover classification, nighttime lights intensity and
travel time to an urban centroid. All contiguous 30 arc-second
pixels scoring above a threshold are included and the algorithm
accounts for non-urban islands such as large parks or open space
inside cities. We commenced our analysis with 91 cities chosen
mainly by population50. The 91 cities span 39 countries with
nineteen in China, twelve in the United States and nine in India. All
other countries represented have three or fewer cities. Our study
period covers 2000–2018, the longest period for which all our
required data sets exist.
Some large cities are excluded from the study. There are two

reasons for this. Firstly, the necessary imagery may not exist across
enough of our study period. The usual gap is the Landsat imagery
necessary to characterise the urban boundary. The second is that
some cities exist as parts of such large agglomerations that their
boundaries cannot be defined by physical data. The clearest
example is New York City which forms part of a larger
agglomeration on the East Coast of the U.S. The excluded cities
are listed in Table 1. There is a problem of land cover classification
for some cities. As noted by Luqman et al.,49, a common trajectory
for growing cities is that two regions defined as urban by BUNTUS
fuse to a single region. This obviously changes area and
consequently total emissions suddenly, complicating trend
analysis. Where this occurs we carry out the analysis for the
whole period and include any city defined within the largest
boundary of our chosen city (usually 2018). For example, Beijing
commences with 13 cities in 1998 and finishes with one in 2018.
The name we assign to the final city is its name in 2018.
Gridded population estimates come from the LandScan

product51. LandScan is a global population database depicting
an ambient (24-hour average) population distribution. The Land-
Scan methodology disaggregates subnational census information
through a suite of dynamically adaptable algorithms using spatial
data, imagery-derived spatial products, and manual corrections.
LandScan exploits spatial data and imagery analysis technologies
in a multi-variable asymmetric modeling approach52. LandScan
data represents an average, or ambient, population that integrates
diurnal movements and collective travel habits into a single
measure52. This is different from purely residential population
maps but is better suited for comparison with emissions which
include both residential and nonresidential activities of the target
population.
CO2 emissions are taken from The Open-Data Inventory for

Anthropogenic Carbon dioxide (ODIAC)53. ODIAC is a global high
resolution (1 km × 1 km) fossil fuel CO2 emission data product53,54.
ODIAC is based on spatial disaggregation of CO2 emission
estimates made by the Carbon Dioxide Information Analysis
Center (CDIAC)55. CDIAC emissions are estimated by fuel type

(solid, gas, and liquid fuels, bunker fuel, and gas flares) plus
cement production, rather than the emission sector that is often
used for the national inventory compilation56. The ODIAC spatial
disaggregation is done in two steps. First, emissions from point
sources (mainly power plants) are estimated and mapped using
the power plant emission estimates and geolocation taken from a
global power plant database. The rest of the emissions (country
total minus point source emissions), which we refer to a non-point
source emissions, are distributed using the spatial distribution of
satellite-observed nighttime lights (NTL) intensities53,54. Non-point
source emissions are disaggregated to a 1 km × 1 km spatial
resolution using Defense Meteorological Satellite Program (DMSP)
calibrated radiance and Visible Infrared Imaging Radiometer Suite
(VIIRS) NTL datasets, with mitigated saturation effect, developed
by National Oceanic and Atmospheric Administration’s (NOAA)
Earth Observation Group57. The calibrated radiance NTL data is a
merged product of the regular DMSP NTL product and benefits
from reduced gain observations58. Oda et al.,53 show an improved
spatial emissions distribution from the original publication by Oda
and Maksyutov,54 due to the use of the calibrated radiance data.
We calculate emissions for each city in each year by summing all
emissions from ODIAC for that year which lie within the polygon
defined by BUNTUS. All the data values are provided as
Supplementary Table 2.

Kaya Identity
We proceed by analogy with economics which frequently
decomposes Gross Domestic Product (GDP) as a product of three
terms

GDP ¼ population ´participation ´productivity (4)

Raupach et al.,13 used a decomposition for national emissions.
We write urban CO2 emissions using a modified Kaya identity59 as
a product of urban area, population density and per capita CO2

emissions.

E ¼ Ape (5)

where E is the total CO2 emissions, A the urban area, p the
population density (persons per unit area) and e the per capita
CO2 emissions (tons carbon per person). We use upper case for
extensive and lower case for intensive variables. Following
Raupach et al.,13 we use a logarithmic transformation to
decompose the proportional trend in CO2 emissions as

δE ¼ δAþ δpþ δe (6)

where δ represents a proportional trend defined by

δx ¼ dx=dt
x

(7)

and is usually expressed as a percentage per year. For a quantity x
we calculate δx as follows:

1. We start with a time-series x(t) which is often sparse since
some years lack urban boundary data (see Luqman et al.,49

for an explanation).
2. Fit a linear regression L(t) = a+ bt to x(t)
3. Calculate x as LðtrefÞ where tref midpoint of our study period.

x is hence an estimate of the average assuming linearity
with time.

4. We repeat this procedure for E, A, p and e.

We stress that while expressions like Eq. 5 are mathematical
identities they are not statement of causality but may elucidate
underlying causes. We apply the modified Kaya identity to our 91
cities.

M. Luqman et al.

6

npj Urban Sustainability (2023)     6 Published in partnership with RMIT University



Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
We used the data from the following sources in our analysis. The city boundary data
(BUNTUS) is available at http://thebuntus.com/paper_page.html. The gridded
population data (LandScan) is available at ref. 51 and gridded fossil fuel CO2 emission
dataset (ODIAC) is available at ref. 53. All the calculated values are provided as
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