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Characterizing COVID-19 waves in urban and rural
districts of India
Bhartendu Pandey 1✉, Jianyu Gu1,2 and Anu Ramaswami 1

Understanding spatial determinants, i.e., social, infrastructural, and environmental features of a place, which shape infectious
disease is critically important for public health. We present an exploration of the spatial determinants of reported COVID-19
incidence across India’s 641 urban and rural districts, comparing two waves (2020–2021). Three key results emerge using three
COVID-19 incidence metrics: cumulative incidence proportion (aggregate risk), cumulative temporal incidence rate, and severity
ratio. First, in the same district, characteristics of COVID-19 incidences are similar across waves, with the second wave over four
times more severe than the first. Second, after controlling for state-level effects, urbanization (urban population share), living
standards, and population age emerge as positive determinants of both risk and rates across waves. Third, keeping all else constant,
lower shares of workers working from home correlate with greater infection risk during the second wave. While much attention has
focused on intra-urban disease spread, our findings suggest that understanding spatial determinants across human settlements is
also important for managing current and future pandemics.
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INTRODUCTION
With over 55% of the global population currently living in urban
areas1, understanding the urban disease burden is important. The
physical proximity of people, as well as infrastructure provision-
ing in urban areas (such as water and sanitation), have historically
shaped endemics, epidemics, and pandemics2. Increased physical
interactions between people due to higher mobility within and
across urban areas nationally and globally have furthered the
influence of these urban characteristics on infectious diseases3–5.
Against this backdrop, understanding the spatial determinants of
infectious diseases at urban and intra-urban scales becomes
particularly important. Recent scientific studies suggest a
significant role of urban infrastructure, socioeconomic stratifica-
tions, population density, and other key urban characteristics on
COVID-19 transmission6–8. Analyzing several types of human
settlements—populated places and regions—in a country can
yield insights into how human settlement variations shape
COVID-19 transmission.
This study focuses on COVID-19 incidence in India across its

urban and rural districts, motivated by three main reasons. First,
India is the second-most populous country in the world, with over
1.3 billion people. Second, India is at the cusp of urbanization, i.e.,
expected to significantly urbanize between now and the middle of
this century, with its demographic base rapidly shifting from rural
to urban via natural urban population growth, rural-to-urban
population migration, rural land reclassification, and urban land
expansion9,10. Significant spatial variations in population density,
infrastructure, built environments, and socioeconomic features
characterize the country’s transitory phase. Some of these
variations contribute to comorbidities and shape health disparities
within and across regions and urban areas. Third, COVID-19
transmission in India is particularly understudied from a sub-
national perspective, with most studies focusing on national- or
state-level data11–14. Some studies have reported significant
spatial and temporal heterogeneities underlying COVID-19

transmission in India, which necessitate understanding disease
progression and associated spatial determinants across human
settlements along the rural-urban continuum. COVID-19 transmis-
sion waves observed in India15 present a significant opportunity to
compare the two dominant waves in the context of their spatial
determinants. Such comparisons can advance our understanding
of how urbanization and associated variations shaped COVID-19
incidence across waves.
Recent studies conducted in India have highlighted place-based

characteristics, which may have made some parts of India more
vulnerable to COVID-19 transmission than others. The greater
relative severity of the second wave in India compared to the first
wave—in terms of reported incidences and mortalities—demon-
strated several additional vulnerabilities, such as a low level of
health care access and overall health care infrastructure defi-
cit16,17. Studies focusing on finer spatial scales (district-level)
identified several key determinants of, and vulnerabilities to,
COVID-19 transmission. For instance, population density is closely
associated with the spatial distribution of COVID-19 cases in
India18–20. This finding contrasted with the distribution of COVID-
19 cases in the United States, where population density had no
association with COVID-19 incidence rates in the initial phases of
disease spread when the size of the metropolitan areas had been
controlled for21. Besides density, urbanization rates (share of
urban population to the total population) also determine COVID-
19 transmission risk in India22, owing to greater social interactions
in more urbanized areas compared to others. Similarly, out-
migration from cities also explains the spread of COVID-1923.
These associations are consistent with basic predictions from
meta-population epidemiological models4,5.
The overarching goal of this paper is to examine if there are a

common set of spatial determinants, i.e., characteristics of a place,
whose variations across districts shaped disease incidence across
the two waves of COVID-19 transmission in India. Specifically, we
focus on urbanization and attendant spatial variations in
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social-infrastructural-environmental dimensions, as a determinant
of COVID-19 incidence characteristics across districts in India.
Furthermore, we examine COVID-19 incidence severity during the
second wave relative to the first wave across districts (Table 1). To
accomplish these goals, we assembled a dataset that brings
together social, ecological, infrastructural, and urban form
characteristics along with data on COVID-19 incidences across
641 districts (the administrative equivalent of counties in the US)
spanning the entire rural-to-urban continuum in India. Such
integrative data frameworks incorporate multiple social determi-
nants of health and have been applied in public health24 and
sustainability science25.
Our analysis complements compartmental models—such as the

Susceptible, Exposed, Infected, and Recovered (SEIR) model—that
focus on epidemic curves under different model parameters.
These compartmental models focus primarily on temporal
dynamics but can be integrated with spatially explicit demo-
graphic, socioeconomic, infrastructural, and environmental data to
understand disease progression across space and time. This
requires an understanding of the key determinants of disease
incidence, which can complement, inform, and help validate such
integrative models. This study seeks to evaluate whether there are
spatial determinants whose variations across districts shape
cumulative incidence patterns based on four metrics (Table 1).
We explore the spatial determinants of COVID-19 cumulative
incidence proportion (CIP), and their overall impacts on disease
risk across waves. In addition, to explore the spatial determinants
underlying rapid COVID-19 transmission, we use cumulative
temporal incidence rate (CIR) as a second metric. Lastly, we
evaluate severity ratios (SR) comparing these metrics between the

second (more severe) wave relative to the first wave: SRCIP and
SRCIR. We control for state-level effects (such as mask mandates,
data collection capacities, and other relevant policies) that might
impact CIP, CIR, and SR at the district level.

RESULTS
COVID-19 metrics across waves
Our results suggest that COVID-19 transmission across waves in
India may be associated with a common set of spatial
determinants, whose variations across districts shape disease
incidence. Results show that the spatial variations of cumulative
incidence proportions and rates are consistent across waves, on
average (Fig. 1). For instance, compared to other districts, a district
with a higher incidence (in terms of incidence proportion or rate)
in the first wave also had a higher incidence in the second wave.
Spearman’s correlation coefficient between cumulative incidence
proportions (rates) for the first and second wave is 0.87 (0.86) and
significant at the 0.01 level. This spatial consistency suggests
similar infection drivers across waves in India.
Analysis of starting dates for each wave suggests two leading

centers during the second wave. Such specific centers do not
appear in the first wave (Fig. 2a). We estimate the initial onset
timing of April 2020 in 243 districts (of 639 districts) during the
first wave, suggesting multiple COVID-19 leading centers in the
first wave. In contrast, we identify 27 districts (of 638 districts) with
an initial onset timing of February 2021 during the second wave
located predominantly in the state of Maharashtra and Punjab
(Fig. 2b). These second wave leading centers encompass two tier-1
cities (Mumbai and Pune) and several tier-2 cities (Amritsar,

Table 1. Cumulative COVID-19 metrics analyzed in this study using COVID-19 incidence data across the two dominant waves.

S. No. Cumulative COVID-19 metrics Description

1. Cumulative Incidence Proportion A measure of aggregate incidence risk in each wave

2. Cumulative Temporal Incidence Rate A measure of the rapidity of COVID-19 incidence in each wave

3. Severity Ratio (cumulative proportion) A measure of incidence risk severity in wave 1 compared to wave 2

4. Severity Ratio (cumulative rate) A measure of incidence rate severity in wave 1 compared to wave 2

y = 3000 + 1.6 x
R2 = 0.77

Severity Ratio: 2.45
95% CI: 2.32  2.62

Line of Equality

0

25000

50000

75000

100000

125000

0 25000 50000 75000 100000

Cases (Million−1): First Wave

C
as

es
(M

ill
io

n−1
): 

S
ec

on
d 

W
av

e

a. Incidence Proportion

n = 636

y = 28 + 2.9 x
R2 = 0.7

Severity Ratio: 4.52
95% CI: 4.3  4.85

Line of Equality

0

250

500

750

1000

0 250 500 750 1000

Cases (Million − Day)−1: First Wave

C
as

es
( M

ill
io

n
−

D
ay

)−1
: S

ec
on

d 
W

av
e

b. Incidence Rate

n = 636

125000

Fig. 1 Higher COVID-19 incidences in the second wave compared to the first wave, on average. Comparing COVID-19 (a) cumulative
incidence proportion (per one million people) and (b) cumulative incidence rate (per one million person-day), between the first (x axis) and
the second (y axis) wave. The dashed line indicates the line of equality, and the solid blue line represents linear regression fit. COVID-19
incidence proportions and rates were on average higher in the second wave than in the first wave. The panels also show the estimated
average severity ratio and 95% confidence interval based on bootstrap estimations with 100,000 replications. Spearman’s correlation
coefficients between the first and second wave are 0.87 and 0.86, for cumulative incidence proportions and rates, respectively, and significant
at the 0.01 level.
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Aurangabad, Chandigarh, Indore, and Jalandhar Jalgaon, Nagpur,
and Patiala). Reports from India corroborate these findings.
Comparing COVID-19 cumulative temporal incidence rates

between the two dominant waves and across districts, we find
that the second COVID-19 wave was over four times more severe
than the first wave, on average. We estimate an average SR metric
of 4.52 across districts with a 95% confidence interval of 4.3–4.85
(Fig. 1b). Furthermore, we find significant (P value < 0.01) spatial
autocorrelation in relative second-wave severity across districts
with a Moran’s I index of 0.31, suggesting an underlying spatial
structuring. The severity ratios also emphasize the role of
geography in infection spread at the regional scale (Supplemen-
tary Figs. 1 and 2). We estimate ~37% (of 636) districts with SR
greater than the average but with the greatest second-wave
severity in four northeastern states (Meghalaya, Mizoram, Manipur,
and Sikkim). The lower physical access in northeastern states and
associated limited inter-district population movement in relation
to other states can explain the lower COVID-19 incidence during

the first wave and delayed COVID-19 spread, i.e., higher infections
in the second wave.
Consistent with reports of greater infection risk in the second wave

than the first wave due to the Delta variant, we find that R0 Rμtð Þ was
1.2 (1.22) times higher in the second wave than the first wave,
suggesting greater contagiousness (Supplementary Fig. 3). However,
our results show insignificant spatial consistency (across districts)
between the two waves in R0 and Rμt estimates (P value > 0.1).

Correlation and regression analysis
After accounting for state-level differences, results underscore
aggregate development, based on urbanization and wealth, as a
determinant of COVID-19 infection risk and spread. Urbanization rate
and wealth (a measure of living standards) correlate positively with
COVID-19 incidence proportion and rate. Global Moran’s I indices
indicate significant (P value < 0.01) spatial autocorrelation in COVID-
19 incidence proportions (Ip1 ¼ 0:53 and Ip2 ¼ 0:50) and rates (Ir1 ¼
0:47 and Ir2 ¼ 0:52), across the two waves. This makes OLS estimates
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Fig. 2 COVID-19 onset timing across districts. Estimated COVID-19 wave onset month for the first (a) and the second (b) wave across
districts. Districts with no data are filled with gray color. Spatial patterns of onset months for the first wave (left) highlight multiple leading
districts, whereas the second-wave (right) patterns emphasize a few concentrated leading districts.

Table 2. Regression estimates of the effect size of varied spatial characteristics on cumulative incidence proportions (CIP) and incidence rates (CIR).

Variable Log(CIP) first wave Log(CIP) second wave Log(CIR) first wave Log(CIR) second wave

Urbanization 0.012*** (0.002) 0.014*** (0.002) 0.012*** (0.002) 0.013*** (0.002)

Wealth 0.703*** (0.100) 0.460*** (0.095) 0.631*** (0.095) 0.436*** (0.096)

Log (population density) −0.116** (0.055) −0.151*** (0.039) −0.134** (0.052) −0.160*** (0.038)

Population age 0.056*** (0.019) 0.083*** (0.016) 0.045** (0.019) 0.081*** (0.016)

Log (no travel) −0.198* (0.116) −0.318*** (0.105) −0.152 (0.117) −0.274*** (0.106)

Log (distance) −0.082 (0.106) 0.029 (0.087) −0.101 (0.101) 0.019 (0.088)

Log (1+in-degree (1st wave)) 0.023* (0.012) 0.019 (0.012)

Log (1+in-degree (2nd wave)) 0.006 (0.010) 0.004 (0.009)

Constant 8.014*** (0.715) 7.012*** (0.627) 2.206*** (0.630)

λ 0.28*** 0.25*** 0.31*** 0.29***

Observations 636 639 636 639

State fixed-effects Yes Yes Yes Yes

Log-likelihood −420.830 −364.894 −405.872 −368.335

Akaike information Criterion 927.660 815.788 897.743 822.670

Pseudo-R2 0.784 0.797 0.784 0.790

*P, **P, ***P < 0.01; standard errors are heteroskedasticity-corrected.
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biased and inconsistent. Based on spatial lag and spatial error models
and accounting for state-level differences, we find that a unit
increase in urbanization is associated with a 1.2% (1.4%) increase in
incidence proportion in the first (second) wave across districts (Table
2 and Supplementary Tables 1 and 3). Similarly, we find a 1.2% (1.3%)
increase in incidence rate in the first (second) wave across districts
(Table 2 and Supplementary Tables 2 and 3). Regression estimates
also show significant positive associations for wealth with incidence
proportions and rates across the two waves. Urbanization rate and
wealth, in many ways, can be considered a measure of aggregate
development. By extension, COVID-19 incidence proportion and
temporal incidence rate tend to increase with increasing aggregate
development levels across districts in India.
Results suggest a greater risk of disease spread in districts with

a lower share of the population working from home, but only
during the second wave. Ceteris paribus, a 1% increase in the
percentage share of workers working from home is associated
with a 0.32% (0.27%) decrease in incidence proportion (rate)
during the second wave. We find this association insignificant for
the first wave, at 0.05 significance level, suggesting the role of
strict nationwide lockdown during the first wave in shaping these
associations as well as differences between the waves. Further-
more, we consistently find insignificant associations with average
commute distance and inter-district population movement (based
on the in-degree metric; see “Methods”). These results align with
weak (ρ ≤ 0.2) or insignificant correlations (P value > 0.01) between
incidence metrics and in-degree metrics (Supplementary Table 4),
even after the in-degree metrics were normalized by the length of
the associated wave.
Results also show a consistent positive association between

incidence proportions and rates and average population age,
across waves. We estimate that a 1-year increase in average

population age is associated with 5.6% (8.3%) increase in
incidence proportion and 4.5% (8.1%) increase in incidence rates,
during the first (second) wave (Table 2 and Supplementary Tables
1–3). Greater elasticity for the second wave compared to the first
wave emphasizes that districts with a greater older population
were more vulnerable to COVID-19 transmission than other
districts, especially in the second wave.
Between population density and incidence proportions, and

incidence rates across waves, we find a small and consistently
negative association, ceteris paribus. Our correlation analysis
suggests a weak (during the second wave) and insignificant
(during the first wave) association between population density
and incidence proportion and rates (Fig. 3). However, our
regression estimates suggest a negative association once other
variables are held constant (Table 2). We find that a 1% increase in
population density incidence proportions (rates) decreased by
0.16% (0.13%) during the first wave and by 0.15% (0.16%) during
the second wave (Table 2). These findings are counter-intuitive but
contribute to the debate surrounding the relevance of population
density in contributing to greater incidence risk.
Regression models also suggest that districts with lower wealth

levels had greater incidence severity in the second wave
compared to the first (Supplementary Table 5). Similarly, districts
with older population, on average, had greater second-wave
severity. Our estimates show that a 1-year increase in average
population age was associated with a 3.6% increase in second-
wave incidence severity relative to the first, based on incidence
rates. These results corroborate with our findings from comparing
the associations between individual waves. Overall, they highlight
that the second wave was more severe in underserved districts as
well as districts with older population.
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Fig. 3 Correlations between COVID-19 incidence metrics and relevant social, ecological, infrastructural, and urban form characteristics.
Correlation matrix denoting Spearman’s correlation coefficients estimated for COVID incidence proportions and rates, severity ratio,
urbanization, wealth (denoting living standards), population density, average age, commute to work variables, and in-degree estimates across
districts (n= 636).
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DISCUSSION
As highlighted in a recent United Nations report26, COVID-19 has
(re)emphasized rethinking urban form and function. Statistically
significant associations between the spatial determinants and
COVID-19 incidence identified in the present study underscore the
importance of urbanization and associated spatial characteristics
vis-à-vis public health in India. Here, our results suggest that
planning a pandemic-proof urban transition in India will require a
spatial understanding of its inter-urban characteristics (across
human settlements) in addition to an intra-urban focus.
Consistent with the first law of geography, results show a

significant spatial structuring across districts in India, i.e., COVID-19
cumulative incidence in each district is associated with the
incidence in adjoining districts. This finding is consistent with
previous reports concerning cumulative COVID-19 cases and
mortalities across districts27,28. However, our results show spatial
structuring in incidence proportions and temporal incidence rates
across the two waves and in relative second-wave severity. This
significant spatial structuring underscores COVID-19 transmission
as also a regional process in India.
In the context of spatial determinants, we find similar COVID-19

incidence characteristics between waves and across districts. This
suggests that some geographies are inherently more vulnerable to
COVID-19 incidences than others, which has implications for future
COVID-19 waves and other infectious diseases of similar character-
istics. Prioritizing these geographies for disease control and
prevention can reduce the disease burden more effectively. To this
end, our findings put forth urbanization, wealth, population age,
and population density as the significant spatial determinants of
COVID-19 incidence. Disease control and prevention nationally, as a
result, can be more effective by prioritizing districts based on these
characteristics. With the impending urban transition, our results
suggest that such prioritization may become even more critical in
the context of future epidemics and pandemics of similar
characteristics. In the contemporary context, results suggest that
advancing epidemiological modeling on COVID-19 in India can
benefit from incorporating geographic variations in social,
economic, and infrastructural dimensions. In this direction, a shift
from aspatial to spatial modeling will be necessary. However, our
findings with respect to the negative association of population
density need further investigation, considering proxies of super
spreader events or population activity densities.
Our results also highlight some differences in incidence

characteristics across waves. First, the second wave in India was
over four times more severe on average than the first wave, based
on temporal incidence rate-based severity ratio. This greater
second-wave severity can be attributed to less-stringent lockdown
in the second wave than the first wave12,29 and more transmissible
viral variants30. Across districts, we find significant differences in
the severity ratio between states, but only average wealth and
population age explained district-level variations. Second, we find
characteristic differences in the leading centers of disease spread
across the two waves. These differences suggest that the spatial
patterns of disease onset tend to be less predictable and
emphasize the importance of continued disease surveillance
across districts in India. Third, we find that % workers working
from home only explain spatial variations in COVID-19 incidence
proportions and rates during the second wave, when lockdowns
were less stringent compared to those imposed during the first
wave. In contrast, commute distance had an insignificant
association once other factors were controlled for. Existing studies
have reported associations between the temporal patterns of
human mobility and COVID-19 outcomes31–33. However, our
analysis did not find inter-district population movement as a key
spatial determinant of incidence proportion and rate.
Our study highlights several areas that need further investigation.

First, our study design is sensitive to baseline population data. In

the absence of a recent census dataset, future studies can analyze
the implications of using different population data sources, each
generated with a unique set of assumptions, on incidence risk
assessment. Second, our interpretation of the associations assumes
that state-level differences control for potential bias in COVID-19
incidence reporting. Although this assumption is consistent with
significant disparities in data quality across states in India34, it is yet
unclear how data quality varies across districts. Third, while we
limited the scope of the present study to reported COVID-19
incidences owing to reporting concerns with respect to mortal-
ity35,36, it is unclear whether similar associations exist with COVID-
related mortalities in India. Fourth, our study shows an insignificant
association between social media platform-derived inter-district
population movement data and COVID-19 incidences, suggesting
inter-district population movement as an insignificant spatial
determinant across districts in India. Still, these datasets could help
us understand COVID-19 incidences vis-à-vis human mobility within
districts and across time37, requiring an in-depth spatiotemporal
analysis of movement data vis-à-vis COVID-19 incidences. Fifth, our
study focuses on basic epidemiological metrics that capture
patterns of disease incidence but contributes little towards a
detailed understanding of transmission dynamics over time and
under different COVID-19 variants.
Overall, our study emphasizes that our understanding of the

spatial determinants of COVID-19 incidence will benefit substan-
tially from investigations into the geographic characteristics and
scale of human settlements. While much attention has focused on
intra-urban disease spread, our findings suggest that under-
standing spatial determinants across human settlements is also
important in managing current and future pandemics. Databases
such as the one developed and analyzed here can advance a
foundational understanding of the spatial determinants of human
health relevant for future pandemics.

METHODS
Data
COVID-19 data. We use daily district-level COVID-19 reported
incidence data (until July 31, 2021, based on the waning of the
second wave) from the COVID19India.org platform, a citizen-
science-based data collection and validation effort, which has
compiled incidences, recoveries, deaths, and vaccination data
from various government and media reports. We preprocess the
data to ensure nationwide coverage and spatial consistency with
Census data. District-level data is unavailable for a few States and
Union Territories (Assam, Sikkim, Manipur, Telangana, Delhi, Goa,
and Andaman & Nicobar Islands). Consequently, we disaggregate
the data for these regions using a population-weighted allocation
of daily incidence, informed by our observation of significant
correlations between (log) cumulative incidence and (log)
population size (Pearson’s correlation coefficient= 0.73) and
recent scaling analyses applied to COVID-19 incidences38–40.

Demographic and urban boundaries data. We use the population
dataset for 2020 from WorldPop with age groupings, owing to the
absence of a recent Census dataset and given higher spatial
resolution (~100m)41 compared to other candidate datasets such
as, Landscan42 and GPW43. We aggregate this dataset (using zonal
statistics) to estimate total population, population density, and
average population age, at the district level. In addition, we use
2018 Global Human Settlement Layer Dataset (https://
ghsl.jrc.ec.europa.eu/, at 10 m) to identify urban areas (probability
threshold= 0.1) and derive urban population shares (% urban) by
combining with the WorldPop dataset.

Census data. We use the 2011 Census (https://censusindia.gov.in)
as the data source for modes of travel to work (as a share of the
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working population commuting by a specific mode of transporta-
tion) and commuting patterns across districts in India. We focus
on two variables for commuting patterns: the share of the
working population with no commute. We calculate % workers
working from home for each district as a percentage share of
the number of workers with “No Travel” to the total working
population. For the average commuting distance to work, we take
the mid-point of the distance bins with maximum distance of
60 km). Owing to the absence of a recent dataset, we assume that
the cross-sectional distributions of these characteristics remain
invariant between 2011 and the temporal coverage of the
COVID-19 time series.

Social media data. We use Facebook’s population movement
data44 available at the district level and an 8-h frequency to
estimate the size of the incoming population during the duration
of the wave, based on in-degree metric (in_degreej) for each edge,
i.e., district (j), of the network with V vertices (Eq. (1)).

in degreej ¼
X

v2V wj iðvj iÞ (1)

Wealth data. District-level income or wealth data in India has
limited availability. The existing national consumer expenditure
surveys (CES) measure consumption-expenditure as an income
proxy, which is less reliable at the district level due to the limited
sample size. This study uses a household assets-based measure of
wealth or living standards from the 2015–16 demographic and
health survey (DHS) with an approximated six times greater
sample size than CES, with 601,509 sampled households.
Available as a composite index at the household level (https://
dhsprogram.com/), we estimate weighted district-level average
wealth index, using sampling weights.

COVID-19 metrics across waves
COVID wave characterization. Before characterizing the waves,
we use two data processing steps: preprocessing and wave
metrics estimation. Preprocessing detects outliers, interpolates
missing values, and filters the time series. Outlier detection
identifies anomalous values within a 14-day window based on a
10% (P1) and 90% (P2) percentile range (PR): PR= P2 – P1. We
define outliers as values falling below P1 – 3PR or above P2+ 3PR
and linearly interpolate the outliers and other missing values
within the 14-day window (Fig. 4). To further reduce noise, we use

a Savitzky–Golay (SG) filter, which filters the time series while
preserving the shape and height of the curve based on least-
squares polynomial approximation. SG filter has two critical
parameters: window size and order of the polynomial. After trial
and testing, we note that using small temporal window sizes and
large polynomial order retains noise in the time series. Conse-
quently, we select 14 days as the optimal window size and a
second-order polynomial in the SG filter. During the wave metrics
estimation, we focus on three metrics: peak date (PDi), start date
(SDi), and end date (EDi) across i waves. We detect PDi based on
the following criterion: a peak’s amplitude is greater than the third
quartile of the incidence time series and any two local peaks are
three months apart. Following the peak date detection, we
estimate the starting and ending dates for the waves. For the first
wave, we identify the start date as to when the changes in the
number of confirmed cases turn to a positive integer. For the
subsequent waves, we identify the start date such that its
amplitude h2 meets the following condition (Eq. (2)).

h2 � 5% ´ ðH2 � hÞ þ h (2)

h1 � 5% ´ ðH1 � hÞ þ h (3)

H2 is the peak’s amplitude of the non-first wave (Fig. 4). h is the
lowest amplitude between this peak and the previous peak (Fig. 4).
The start date of this non-first wave is defined as the first date on
which the value for (h2–h) is equal to or less than 5% of (H2–h)
searching backward from this wave’s peak. The end date of any
wave was determined using the same heuristic as the starting date
of a non-first wave (Eq. 3). The difference was that an end date was
the first date whose value (h1–h) is equal to or less than 5% of
(H1–h) searching forward in time from this wave’s peak.
Our wave detection and characterization algorithm yielded two

(three) COVID-19 waves for 610 (26) districts, out of 639 districts
(Supplementary Fig. 4). Of the 26 districts, we find districts
encompassing two cities—Delhi and Ahmedabad—and others
relatively rural, i.e., urbanization rates less than 50%. As the
national- and state-level aggregated data stress two COVID-19
waves, our algorithm underscore the importance of understanding
patterns at finer spatial scales, where novel dynamics can be at
play. For example, in Delhi, we estimate three waves but with a bi-
modal distribution during the first wave period of the country. In
other districts, we observe that a relatively lower number of cases,

Fig. 4 COVID-19 wave characterization. Illustrating COVID-19 data processing and waves characterization.
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with a speckle signature, during the beginning of the pandemic led
to anomalous wave detection. Consequently, we assume the first
wave comprises the estimated first two waves in districts with
estimated three waves.
Building on the outputs of our algorithm, we focus on three

metrics45: (1) cumulative incidence proportion, (2) temporal
incidence rate, and (3) severity ratio. Cumulative incidence
proportion (CIPij) is a measure of disease risk defined here as a
ratio of cumulative COVID-19 incidence (Iij) during a wave (i) over
total population (Popj) for a district (j) (Eq. (4)).

CIPij ¼
Pt

t¼1 Iij
Popj

(4)

Cumulative temporal incidence rate (CIRij) is a measure of the
rapidity of disease incidence amongst a population and over a
fixed time period (t days) per wave (i) (Eq. (5)).

CIRij ¼
Pt

t¼1 Iij
t � Popj

(5)

Finally, we introduce a severity ratio metric (SRj) to measure the
severity of the second COVID-19 wave in India compared to the
first wave (Eq. (6)).

SRj ¼ CIR2j
CIR1j

(6)

As a preliminary analysis, we analyze spatial variations in CIPij,
CIRij, and SRj. First, we compare CIPij, and CIRij, between the two
dominant waves and across districts to examine spatial consis-
tency in disease risk and rates of disease spread. Next, we analyze
the spatial patterns of COVID-19 wave start date for the two waves
to identify leading centers. Finally, we analyze SRj metric across
districts and estimate the average second-wave severity (relative
to the first wave) and associated 95% confidence intervals based
on bootstrap estimation with 100,000 replications46. We noted a
significant correlation between severity ratio metrics calculated
with incidence proportions and incidence rates with a Pearson’s
correlation coefficient of 0.91. Consequently, we use incidence
rates to examine second-wave severity here and in our
subsequent correlation and regression analysis.
Beyond these metrics, we estimate R0 based on exponential

growth rate47,48, with a gamma distribution for the serial
interval, assuming a mean and standard deviation of 4.4 and
3 days, respectively, for the generation time49. Using the same
serial interval assumptions, we estimate Rt using a maximum-
likelihood estimation50, but based on incidence curves based
on start and peak dates of the wave, yielding an average
estimate per wave Rμtð Þ. We also report district-level average
severity ratios based on estimated R0 and Rt, computed with a
functional form consistent with Eq. (6). However, owing to data
quality concerns, assumptions underlying R0 and Rt estima-
tions, and our focus on COVID-19 incidences in India, we
restrict our detailed analysis to CIPij, CIRij, and SRj (Supplemen-
tary Fig. 5 and Supplementary Table 6).

Correlation and regression analysis
We use correlation and regression analysis to characterize general
features of COVID-19 incidence across districts, spanning the entire
rural-to-urban gradient. Specifically, we focus on the associations
between COVID-19 incidence metrics and related key spatial
characteristics, i.e., urbanization, population density, wealth, and
mobility (Supplementary Table 6 and Supplementary Fig. 6). First, we
explore non-linear monotonic associations between COVID-19
incidence metrics and spatial characteristics by examining Spear-
man’s correlations. In the process, we identify key urban features
relevant for COVID-19 incidences. We further examine these

associations using ordinary least squares (OLS) and, after examining
the presence of spatial autocorrelation, using spatial regression
models (estimated with spatialreg package51 in R), i.e., spatial lag
models (SLM) and spatial error models (SEM). These spatial models
account for potential bias and inconsistencies in OLS estimates due
to spatial autocorrelations52 (Eqs. (7) and (8)). In our analysis, we
control for state-level differences, to account for reporting bias34,
and interpret the model with the largest log-likelihood estimate and
lowest Akaike Information Criterion (AIC) metric between OLS, SLM,
and SEM. Finally, we report Bayesian Markov Chain Monte Carlo
estimates51 for the selected spatial models, as a robustness check.

Y ¼ ρ Wð Þy þ β Xð Þ þ ε (7)

Where, Wy spatially lagged outcome variable for spatial weights
matrix W, ε is the error term, and ρ and β are the model
parameters.

Y ¼ β Xð Þ þ λ Wð Þεþ υ (8)

Where, ε is the spatial autocorrelated error terms, υ are
independently and identically distributed errors, and λ and β are
the model parameters.
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