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An assessment of urbanization sustainability in China between
1990 and 2015 using land use efficiency indicators
Huiping Jiang 1,5, Zhongchang Sun 1,2,5, Huadong Guo 1✉, Qihao Weng 3✉, Wenjie Du1, Qiang Xing1 and Guoyin Cai4

The sustainability of China’s rapid urbanization is of significance in the implementation of the 2030 Agenda for Sustainable
Development. Here we integrated Earth observation and census data to estimate the relationship between land, population and
economic domains of urbanization in 433 cities over 25 years using land use efficiency indicators. We find that the rise in ratio of
land consumption to population growth rates (LCRPGR) was paralleled by a decline in ratio of economic growth to land
consumption rates (EGRLCR). LCRPGR and EGRLCR of cities in Northeast China showed an abnormal and intense dynamics
compared to other regions, suggesting that the northeastern region is more vulnerable to socioeconomic and environmental
changes. The spatial expansion of superlarge cities in Central China may be unrestrained and should be the focus of strengthened
regulations now and in the near future. The resource-dependent cities faced severe challenges for more effective actions of both
economic transformation and population migration. Nonetheless, the gap of land use efficiency indicators between different
income groups of the cities has been narrowed between 1990 and 2015, indicating that the evolution of urbanization in China is
heading toward a more sustainable and coordinated process.
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INTRODUCTION
The 2030 Agenda for Sustainable Development (2030 Agenda)
adopted by the United Nations (UN) General Assembly on 25
September 2015, presents a blueprint for all countries to achieve
sustainable development over the next 15 years1. Any successful
path to achieving the 2030 Agenda will have to consider the
development of sustainable urban and peri-urban environments2,
as highlighted in six entry points for pursuing transformational
change towards sustainable development3. The 2030 Agenda goal
devoted to cities (‘SDG 11: Make cities and human settlements
inclusive, safe, resilient and sustainable’), lists many indicators
requiring fine-scale local data. These indicators are categorized
into three tiers according to the availability of assessment method
and monitoring data. Although SDG 11.3.1—‘ratio of land
consumption rate to population growth rate (LCRPGR)’—is
classified as a Tier II indicator (methods established but with poor
data), the Earth observations allow to make up for data deficits
using multisource data over a broader geographical area4,5.
Nowadays, multiple datasets are available to estimate urban

spatial expansion, e.g., the Global Human Settlement Layer
(GHSL)6, Global Urban Land7, and Global Artificial Impervious
Area (GAIA)8. However, the literature related to SDG 11.3.1 still
remains scarce, except for some local studies from China9,
Portugal10, and South Africa11, and a few global researches from
UN12 and European Commission-Joint Research Centre13,14,
because calculating the land consumption rate (LCR) needs
conversion of built-up area15, and the estimation of population
growth rate (PGR) requires spatial disaggregation of population
data16, both of which are challenging tasks.
The UN stressed that the goals and targets of the 2030 Agenda

should balance the three indivisible dimensions of sustainable
development, i.e., economic, social, and environmental, but the

coordination between spatial expansion and economic growth
has not yet been established under the assessment framework of
SDG 11. Similarly to the 2030 Agenda, the urbanization process is
also characterized by three integrated dimensions, namely spatial,
demographic, and economic (land, population, and economic
urbanization). Existing research on urbanization is mainly focused
on the spatial expansion at local17, regional18,19, national20–22, and
global scales23,24. There are also many studies that investigate the
correlation25–28 and causality29–31 between land, population and
economic urbanization. However, not enough attention has been
paid to the relationship between these three dimensions in the
context of rapid spatial expansion, since this has frequently been
disproportionate to population and economic growth over the
past several decades32. Moreover, many of these studies are only
based on census data, in most cases, neglecting the spatial
harmonization of different sources, and thus have limited
spatiotemporal coverage and accuracy.
To address the lack of economic dimension, we proposed a

supplementary indicator—ratio of economic growth rate to land
consumption rate (EGRLCR)—which enables the quantitative
estimation of coordination between LCR and economic growth
rate (EGR). With LCRPGR and EGRLCR combined, we could
uniformly define and determine the relationship between land,
population and economic urbanization under the assessment
framework of SDG 11. To address the discrepancy between
different data sources, urban impervious surface was converted to
built-up area to provide a measure of urban agglomeration area
adopted by the World Urbanization Prospects33. In this way, we
could allocate the exact population within the corresponding
extent of built-up area defined in SDG 11.3.1, avoiding the spatial
disaggregation of population data. Furthermore, the products of
urban impervious surface could be consistently updated and
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refined to ensure the quality of its spatiotemporal coverage and
accuracy.
China has been experiencing an unprecedented pace of

urbanization34. The proportion of urban population in China is
projected to reach 73% by 2030, with ~0.2 billion people expected
to be added to its urban areas33. During this historical process, all
cities of various population sizes, with diverse income levels and in
different socioeconomic zones are facing a quickened urbaniza-
tion shock and showing a relatively significant heterogeneity of
land use efficiency. An uneven and unbalanced urbanization is
widespread among large, medium and small cities, as well as
across the eastern, central and western regions25,26,35,36. Particu-
larly, the sustainability of cities with monotonous industrial
structure, such as resource-dependent cities, are subject to
socioeconomic and environment changes. For those resource-
dependent cities, whose economic development depends heavily
on the exploitation and processing of natural resources, once the
natural resources are exhausted, they would be confronted with
enormous challenges for green transformation and sustainable
development37. However, little is known to us as to how the
evolution in terms of spatial, demographic, and economic
dimensions and the differentiation at multiple aggregation scales
had proceeded. To bridge this knowledge gap, it is necessary to
conduct a multi-view analysis, with socioeconomic zones,
population sizes, urban functions, and income levels included, to
draw a big picture of urbanization in China.
Here we used multisource remote sensing imagery (Landsat

and Sentinel time series data) to map urban impervious surface
and then convert it to urban agglomeration area. After that, we
calculated and tested the land use efficiency indicators by
studying the spatiotemporal evolution of urbanization in China
from 1990 to 2015 at 5-years intervals. Specifically, we integrated
Earth observation and census data to explore a total of 433 cities
with Mainland China, Hong Kong, Macao, and Taiwan included
from various perspectives of socioeconomic zones, population
sizes, urban functions, and income levels. Finally, we highlighted
several important findings about spatiotemporal evolution of
urbanization in China and elucidated the corresponding policy
implications to promote sustainable development in urban areas.

RESULTS
Overall trends in land use efficiency indicators
The spatially explicit change in LCRPGR from 1990 to 2015 in
China is shown in Fig. 1a–f. For the sake of comparison to other
cities in international context, 433 county-level or higher cities
with 300 thousand inhabitants or more adopted by the 2018
Revision of World Urbanization Prospects were sampled for this
research. Here we calculated the averages by following the
formulae of LCR, PGR, and LCRPGR based on aggregation of land
area and number of persons for each year rather than used the
statistical mean. As shown in Fig. 1g, the average of LCRPGR first
dropped from 1.34 during 1990–1995 to 0.85 during 1995–2000
and then increased to 1.82 during 2000–2005 and to 1.59 during
2005–2010. The peak of average of LCRPGR (2.15) was observed
during 2010–2015. However, the peak of average of LCR was
observed during 1990–1995 and that of PGR was observed during
1995–2000. Here we found that LCR overwhelmed PGR for most
cities in China since 2000 by comparing the distribution of LCR
with that of PGR (for details, refer to Supplementary Fig. 2).
As shown in Fig. 1h, during the period of 1990–1995, the

proportions of numbers of cities with 0 < LCRPGR ≤ 1 (47%), 1 <
LCRPGR≤ 2 (38%), and LCRPGR > 2 (14%) occupied the top three
positions. While during the period of 2010–2015, the top three
positions were replaced by those with LCRPGR > 2 (52%), 1 <
LCRPGR≤ 2 (30%), and 0 < LCRPGR ≤ 1 (18%), respectively. In terms
of dynamic change, the proportions of numbers of cities with

LCRPGR > 2 experienced a significant upward trend while those with
LCRPGR≤ 0 remained below 1% throughout the whole process. It
was worth noting that before 2000, the proportion of numbers of
cities with 1 < LCRPGR ≤ 2 first declined and then increased while
those with 0 < LCRPGR ≤ 1 first increased and then declined, and
after 2000, these two classes were slightly decreasing but relatively
stable. Moreover, during the time period of 1990–2015, the
proportions of numbers of cities with LCRPGR > 2, 1 < EGRLCR ≤ 2,
and 0 < LCRPGR ≤ 1 were 16, 60, and 24%, respectively, (for details,
refer to Supplementary Fig. 4-5).
The spatially explicit change of EGRLCR from 1990 to 2015 in

China is shown in Fig. 2a–f. Due to the incompleteness of time
series, we could only use a Gross Domestic Product (GDP) dataset
at current prices of 313 cities in the time range of 1990–2015.
Likewise, we calculated the averages by following the formulae of
EGR, LCR, and EGRLCR based on aggregation of GDP and land area
for each year rather than used the statistical mean. As shown in
Fig. 2g, the average of EGRLCR firstly dropped from 2.81 during
1990–1995 to 1.77 during 1995–2000, and it then increased to
2.38 during 2000–2005 and 2.85 during 2005–2010. A trough in
average of EGRLCR (1.69) was observed during 2010–2015.
However, the trough in average of LCR was observed during the
2005–2010 and that of EGR was observed during 1995–2000. It
was worth noting that the change of average of LCR remained
relatively small compared to those of EGR and PGR, which both
showed a general downward trend. By illustrating the scatter plot
of LCR versus EGR for each period spanning 1990–2015, we could
conclude that the coordination between land and economic
urbanization showed significant improvement thanks to the
speedup of spatial expansion coupled with slowdown of
economic growth during 2010–2015 (for details, refer to
Supplementary Fig. 3).
As shown in Fig. 2h, during the period of 1990–1995, the

proportions of numbers of cities with EGRLCR > 4 (46%), 2 <
EGRLCR ≤ 4 (44%), and 1 < EGRLCR ≤ 2 (8%) occupied the top
three positions, while during the time period of 2010–2015, the
top three positions were replaced by those with 1 < EGRLCR ≤ 2
(37%), 2 < EGRLCR ≤ 4 (25%), and 0 < EGRLCR ≤ 1 (19%), respec-
tively. In terms of dynamic change, the proportions of numbers of
cities with EGRLCR > 4 and 2 < EGRLCR ≤ 4 both experienced a
general declining trend while those with 1 < EGRLCR ≤ 2 and 0 <
EGRLCR ≤ 1 both expressed a general increasing trend. It is worth
noting that the proportion of numbers of cities with 0 < EGRLCR ≤
1 showed a significant rise during the periods of 1995–2000 and
2010–2015. Moreover, during the period of 1990–2015, the
proportion of numbers of cities with EGRLCR > 4, 2 < EGRLCR ≤ 4,
1 < EGRLCR ≤ 2, and 0 < EGRLCR ≤ 1 were 12%, 66%, 21%, and 1%,
respectively, (for details, refer to Supplementary Figs. 6-7).

Urbanization sustainability of different regions and sizes
Figure 3a-f shows the LCRPGR changes in various socioeconomic
zones across 433 study cities of different urban sizes throughout
the past 25 years. During the 1990–1995 period, the average of
LCRPGR in the northeastern region (1.81) was the highest,
followed by eastern region (1.38), western region (1.11), and
central region (1.00). During the 2010–2015 period, the average of
LCRPGR in all regions peaked with northeastern region reaching
3.70, western region reaching 2.51, eastern region reaching 1.99,
and the central region reaching 1.89, respectively. In terms of
dynamic change, the LCRPGR changes in the northeastern region
faced an upsurge while those in other regions showed a stable
and slight upward trend. Besides, we could see that the averages
of LCRPGR in the northeastern region remained above those
across the entire country throughout the whole evolution and the
averages of LCRPGR of superlarge cities in the central region far
exceed those of all cities in China since 2000. It was not difficult to
determine that cities of different urban sizes in Northeast China
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Fig. 1 Changes in ratio of land consumption rate to population growth rate (LCRPGR) of 433 cities in China. a Changes for period
1990–1995. b Changes for period 1995–2000. c Changes for period 2000–2005. d Changes for period 2005–2010. e Changes for period
2010–2015. f Changes for period 1990–2015. g Changes of averages of land consumption rate (LCR), population growth rate (PGR) and
LCRPGR for sample cities spanning 1990–2015. h Proportions of numbers of cities grouped by different LCRPGR classes spanning 1990 to
2015. The relief background of map is an ArcGIS online basemap (World Hillshade (WGS84)) obtained from the ArcMap software by Esri
(http://goto.arcgisonline.com/maps/Elevation/World_Hillshade).
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Fig. 2 Changes in ratio of economic growth rate to land consumption rate (EGRLCR) of 313 cities in China. a Changes for period
1990–1995. b Changes for period 1995–2000. c Changes for period 2000–2005. d Changes for period 2005–2010. e Changes for period
2010–2015. f Changes for period 1990–2015. g Changes of averages of economic growth rate (EGR), land consumption rate (LCR) and EGRLCR
for sample cities spanning 1990–2015. h Proportions of numbers of cities grouped by different EGRLCR classes spanning 1990–2015. The relief
background of map is an ArcGIS online basemap (World Hillshade (WGS84)) obtained from the ArcMap software by Esri (http://goto.
arcgisonline.com/maps/Elevation/World_Hillshade).
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would have to deal with the unbalanced situation between land
and population urbanization, and the spatial expansion of
superlarge cities in the central region may get out of control.
Figure 4a–f shows the EGRLCR changes in four regions across

313 sample cities of different urban sizes spanning 1990–2015.
During the 1990–1995 period, the average of EGRLCR in the
northeastern region (4.64) was the highest, followed by central
region (4.47), western region (3.83), and eastern region (2.25).
During the 2010–2015 period, the average of EGRLCR in all
regions hit a low with northeastern region reaching 0.79,
western region reaching 1.68, eastern region reaching 1.81,
and central region reaching 1.96, respectively. In terms of
dynamic change, the EGRLCR changes in all regions experienced
a significant downward trend from 1990 to 2015. Moreover, we
found that the averages of EGRLCR in the northeastern region
remained above those across China throughout the whole
evolution except for the 2010–2015 period. On that account, it
could be concluded that cities of different urban sizes in

Northeast China may have suffered a more severe economic
downturn than other regions during the 2010–2015 period,
triggering an imbalance between urban land consumption and
economic growth since 2010.
In this study, we assumed that any urban land identified as

built-up area would remain unchanged in the later periods, and
employed the postprocessing of overlap to ensure LCR indicator
as a positive value. For the cities with a negative value of
calculated LCRPGR or EGRLCR, they could be classified into the
category where the demographic decline or negative economic
growth is simultaneous to spatial expansion. The cities with
demographic decline were often located in eastern (Taiwan) and
northeastern (Heilongjiang, Jilin, and Liaoning) regions, while
the cities with negative economic growth were usually of
medium or small population size (e.g., Anshan, Daqing, and
Karamay) falling within the category of resource-dependent
cities.
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Urbanization sustainability of different function types
The LCRPGR change among cities of different urban functions
from 1990 to 2015 is shown in Fig. 5a. The average LCRPGR of
resource-dependent cities was slightly higher during the
1995–2000, 2005–2010, and 2010–2015 periods than that of
nonresource-dependent cities, which was much closer to the
general level in China. Although the average LCRPGR of resource-
dependent cities expressed a lower value than the national
general level during the 1990–1995 period, the LCRPGR change
among resource-dependent cities experienced a more apparent
upward trend than nonresource-dependent cities throughout the
whole evolution. The differences of LCRPGR among cities within
resource-dependent and nonresource-dependent categories both
tended to get larger. It was not difficult to determine that the
resource-dependent cities were facing a challenge for more
effective actions of spatial regulation and population migration in
the context of high land consumption rate together with low
population growth rate.
As shown in Fig. 5b, the EGRLCR change among resource-

dependent cities demonstrated a more intense downward trend
than that among nonresource-dependent cities. However, the
average EGRLCR of resource-dependent cities expressed a lower
value than the national general level during the 2010–2015
period, which was contrary to the different situation during other
time periods. Besides, the differences of EGRLCR among cities of
the same urban functions tended to turn smaller. On that account,
the resource-dependent cities were more vulnerable and could be
easily influenced by economic downturns in terms of coordination
between urban land consumption and economic growth. It is

worth noting that the values with EGRLCR ≤ 0 were not observed
throughout the whole evolution, indicating that the mutual
promotion of land urbanization and economic urbanization would
have potential to be enhanced38.

Urbanization sustainability of different income groups
The LCRPGR change among cities of different income groups from
1990 to 2015 is shown in Fig. 6a. The average LCRPGR of high-
income cities was significantly higher than that of other cities
during the 1990–1995, 1995–2000, and 2000–2005 periods, and
the gaps among cities of different income groups had narrowed
markedly during the 2005–2010 and 2010–2015 periods. After
2000, there were no low-income cities according to the standards
of division based on per capital GDP in urban areas. However, the
differences among cities within the upper-middle and the lower-
middle-income city groups both turned larger, suggesting that the
balance between land and population urbanization for those cities
with lower per capital GDP may need a more detailed analysis
from other socioeconomic perspectives. It could be concluded
that LCR overwhelmed PGR for the high-income cities at the early
stages and their compactness was increased over time.
As shown in Fig. 6b, the average EGRLCR appeared to be

inversely proportional to per capital GDP during the 1990–1995
period, but the gaps among cities of different income groups
tended to narrow throughout the whole evolution. During the
2010–2015 period, the average EGRLCR of the high, upper-middle
and lower-middle-income cities were 1.04, 1.15, and 1.12,
respectively, indicating that the land use efficiency among cities
of different income groups reached stabilization and
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Fig. 5 Changes in land use efficiency indicators of different function types in China. a Changes in ratio of land consumption rate to
population growth rate (LCRPGR). b Changes in ratio of economic growth rate to land consumption rate (EGRLCR). T signifies resource-
dependent cities; F denotes nonresource-dependent cities; G represents the general level of sample cities in China. Average is the calculated
output following the corresponding formulae of land use efficiency indicators based on aggregation of land area, number of persons and
Gross Domestic Product (GDP) within the same urban functions. Mean is the sum of all the numbers divided by the total amount of numbers,
and 95% CI is the range between the upper and lower 95% confidence intervals of mean. Among the 433 samples, there are 113 resource-
dependent cities and 320 nonresource-dependent cities widely scattering in China.
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homogenization in terms of the economic dimension. In addition,
the EGRLCR change of the higher middle and the lower-middle-
income cities experienced a more apparent downward trend than
the high-income cities spanning 1990–2015. Nonetheless, the
evolution of urbanization for cities of different income levels in
China is heading toward a more sustainable and coordinated
process.

DISCUSSION
The indicator of LCRPGR measures how compact cities are at any
given time and assesses whether they are becoming more or less
compact over time. If the value is below one it implies land use
with a higher degree of compactness, while a value above one
implies land use with a lower degree of compactness. An accepted
value of LCRPGR should level off to one, indicating the living
density in urban areas is tending towards stability. Similarly, the
indicator of EGRLCR measures how productive cities are at any
given time and evaluates the production density for cities. Ideally,
a higher value implies land use with a better economic
performance in terms of per unit GDP. Cities require a reasonable
expansion of built-up areas that makes the land use more efficient
because they need to plan orderly for future population and
economic growth as they expand. If the physical growth of urban
areas is disproportionate in relation to population and economic
growth, it may lead to decline in land use efficiency with
increasing spatial inequalities and lessening of economies of
agglomeration included. Land use efficiency as currently formu-
lated is only a measure of change at a macroscopic scale. The
indicators of LCRPGR and EGRLCR are scattered dispersedly from

the perspective of spatial autocorrelation (Moran’s I is insignif-
icant). As an alternative, there are plenty of options for measuring
external economic linkages and testing the spatial effects of land
use efficiency in urban areas39–41, which are mostly issue-specific
designed. Our method, albeit not so ideal, could still monitor the
spatiotemporal evolution for the sustainability of urbanization
using such simple but useful land use efficiency indicators.
According to the UN, the calculation of the LCRPGR indicator

requires globally comparable information to analyze the inter-
dependence between urban spatial expansion and corresponding
demographic changes. Unfortunately, most of the existing
geospatial data cannot be used to estimate LCRPGR because they
are not sufficiently harmonized13. After converting the urban
impervious surface to urban agglomeration area, as per the widely
adopted UN recommendations, we acquired comparable informa-
tion on spatial expansion and urban demographic change using
the UN population data together with the derived built-up area
product. As mentioned above, we also considered the harmoniza-
tion between spatial expansion and corresponding economic
changes and minimized their discrepancy by integrating the
reliable and authoritative data of GDP in the urban areas. This
allowed us to identify the relationship between land, population,
and economic urbanization using land use efficiency indicators,
including LCRPGR and EGRLCR.
These three dimensions of urbanization process are to some

extent interactive and indivisible42. The imbalance between land
and population urbanization is basically accompanied by a
corresponding imbalance between land and economic urbaniza-
tion. For example, resource-dependent cities in the northeastern
region showed the highest LCRPGR together with the lowest
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Fig. 6 Changes in land use efficiency indicators of different income groups in China. a Changes in ratio of land consumption rate to
population growth rate (LCRPGR). b Changes in ratio of economic growth rate to land consumption rate (EGRLCR). H signifies high-income
cities; UM denotes upper-middle-income cities; LM represents lower-middle-income cities; L stands for low-income cities. Average is the
calculated output following the corresponding formulae of land use efficiency indicators based on aggregation of land area, number of
persons and GDP within the same income groups. Mean is the sum of all the numbers divided by the total amount of numbers, and 95% CI is
the range between the upper and lower 95% confidence intervals of mean.
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EGRLCR during the 2010–2015 period, indicating that an
uncontrolled spatial expansion was accompanied by a stall in
population and economic growth. It is worth noting that the
calculation of LCR, PGR, and EGR frequently result in outliers for
those cities with little change or negative growth, which may
hinder the comparison and visualization of indicators among
various cities and during different periods. Furthermore, if a
statistical mean is used to aggregate the measure for a specific
group of cities, the interpretation might be ambiguous and
misleading due to the impacts of urban sizes in terms of land,
populatio, and economy among various cities. We thus redefined
and calculated the aggregation average by following the
corresponding formulae of land use efficiency indicators after
adding up land area, number of persons and GDP for sample cities
within a certain classification scheme.
A global study based on stratified sample of 194 cities around

the world shows that East Asia and Oceania had the highest
LCRPGR and the developed regions were becoming more densely
populated than developing regions12. Specifically, the average for
developed regions dropped from 2.1 in 1990–2000 to 1.9 in
2000–2015, while the value of developing regions increased from
1.5 in 1990–2000 to 1.7 in 2000–2015. As the world saw an overall
rise of LCRPGR from 1.68 in 1990–2000 to 1.74 in 2000–2015,
meeting SDG Target 11.3 by 2030 required slowing down the
decline in compactness. That is, the compactness of cities should
be maintained or increased over time43. There was much evidence
from China9, Portugal10, and South Africa11 corroborating the
general pattern, together with more detailed analyses based on
circa 10,000 urban samples13,14. The information derived in this
study could reflect the urbanization trends in cities of different
socioeconomic zones, population sizes, function types, and
income levels in China, not only creating a baseline for nationwide
sustainability assessment but also providing a comparative case
for international implementation of Target 11.3.
Compared to other studies with respect to urbanization in

China, we complemented the perspective of urban functions and
income levels to deeply explore the urbanization pattern. We
found that resource-dependent cities in the central and north-
eastern regions deserved more attention due to their explosive
spatial expansion and lasting slowdown in population and
economic growth. In the long run, these cities will face severe
challenges in terms of balancing between land, population and
economic urbanization. In addition, the analysis also highlighted
several findings. For example, during the 2010–2015 period, the
LCR indicator, a proxy for spatial expansion, showed a slightly
increasing trend, which was not consistent with a previous
study36. It is worth noting that superlarge cities rather than small
or medium cities showed the fastest growth trends during the
2010–2015 period, indicating that the spatial expansion of
superlarge cities may lose control and should be the focus of
strengthened regulations. At the same time, the average LCRPGR
of cities in the northeastern region was notably higher than that in
other regions, indicating that the policy emphasis should be
placed there rather than in the western region. Moreover, the gap
of land use efficiency indicators between different income groups
has been narrowed between 1990 and 2015, indicating that the
evolution of urbanization in China is heading toward a more
sustainable and coordinated process.
China’s urban land use is closely related to its socioeconomic

development. Over the past 25 years, the economic production
had, based on 313 samples, grown 2.33 times as much as the
built-up areas in urban areas from 1990 to 2015. Meanwhile, the
built-up areas experienced a more intense expansion than
population growth did, with the average LCRPGR of 1.42. The
calculations suggested that cities had been becoming less
compact in living density and performed much better in
production density. Specific policies towards more efficient land
use should be designed and implemented, particularly in terms of

strictly controlling transferred construction land use44. The new
examination and approval of land for construction land between
2000 and 2017 derived from the China Land & Resources Almanac
(1987–2012) and China Land and Resources Statistical Yearbook
(2005–2018) is shown in Fig. 7. The cultivated land, noncultivated
agricultural land, and other nonagricultural land occupied by
construction were on the increase, especially between 2009 and
2013. That is why we observed the peak of average of LCRPGR
(2.15) during 2010–2015. Fortunately, the construction land area
growth had weakened to below its trend rate after its heyday.
In order to reverse the drastic reduction of agricultural land, the

General Land Use Plan and Annual Land Use Plan have been
carried out to further ensure the effectiveness of land use
management. To date, Chinese government has implemented
three General Land Use Plans (1986–2000, 1996–2010, and
2006–2020), whose targets focused on arable land protection
and construction land control. To some extent, these policies have
alleviated the rampant sprawl of construction land in urban areas,
but the efficiency of urban built-up areas in China needs to be
further improved45. Besides, the urban land use efficiency varies
from region to region46, even between urban core areas and
suburban districts47. Because of the regional disparities, formulat-
ing specific region-oriented land use planning and promoting
coordinated development may be more urgent in the context of
disproportionate spatial expansion violating the premise of
sustainability by causing adverse environmental consequences.
Governmental planning guidelines for urban development in

China dated back to the early 1990s when the policy foci were
mainly put on promoting small and medium cities and controlling
the size of large cities. Since 2000, China’s urban development
policies began to emphasize the harmonious development of
large, medium, and small cities as well as the development
priorities of urban agglomerations. The most recent governmental
planning guidelines, such as the National New-Style Urbanization
Plan and China’s 13th Five-Year Plan, are expected to have major
influences on the urbanization progress over the next several
years. Until now, the Chinese government has introduced a series
of legislation to broadly regulate sustainable development for
cities, but their effects are not obvious at the local government
level due to the dependency of economic development on land
inputs26.
To cope with the regional disparities, Chinese government has

also developed many macro strategies in support of the
sustainable and coordinated transformation, including: China
Western Development Plan (1999), Northeast Area Revitalization
plan (2004), and Rise of Central China Plan (2016). As mentioned
before, we found that the average LCRPGR of superlarge cities in

Construction land area (10,000 ha) 

Fig. 7 Changes in the land occupied by construction in Mainland
China from 2000 to 2017. TCL transferred cultivated land, TAL
transferred noncultivated agricultural land, TOL transferred other
nonagricultural land.
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the central region far exceed the general level, indicating that the
impact of the policies on urban expansion was most apparent in
the central region48. However, regional divergences of urban
sustainability were also caused by various regional development
policies at different times49. For cities in the Northeast China, the
trend of land use efficiency indicators showed an abnormal and
intense dynamics compared to other regions. A more integrated
policy should be implemented to stop the slowdown of economic
growth while maintaining a stable population there. Other
comprehensive national policies, including ecological protection
redlines (EPRs) and major function-oriented zoning (MFZ), have
facilitated the land use sustainability based on the principle of
ecosystems50,51, but the evidence should be supported in
combination with more detailed data using different assessment
framework rather than SDG 11.
In conclusion, policies have played an important role in shaping

urbanization patterns in China during the past several decades52–54.
To formulate effective regulatory policies, decision-makers should
seriously consider differences in cities based on their resources and
the environment in which they are located55. This decision-making
process may lead to the end of ineffective ‘one size fits all’ policies56.
Targeted regulations aiming at quality rather than quantity are
required to make urban areas more sustainable and turn around the
disproportionate development between land, population, and
economic urbanization.

METHODS
Workflow and data
The method involved three main steps: (1) generation of urban impervious
surface and conversion to urban agglomeration area; (2) quantitative

measurement of land consumption, population, and economic growth
using land use efficiency indicators; (3) assessment of urbanization
sustainability in China from multiple perspectives: socioeconomic zones,
population sizes, function types, and income groups. Specifically, during
the processes of mapping urban impervious surface and calculating land
use efficiency indicators, we used four types of data: (1) multisource
remote sensing data from Landsat 5/7 TM/ETM+ surface reflectance
(1990–2010), Sentinel-1 SAR backscatter (2015), and Sentinel-2 surface
reflectance (2015) time series acquired from the Google Earth Engine (GEE)
platform; (2) population data derived from the 2018 Revision of World
Urbanization Prospects (United Nations, 2018); (3) GDP data derived from
the Chinese Urban Statistical Yearbook (1990–2015) and China Statistical
Yearbook (1990–2015); (4) auxiliary data such as the Shuttle Radar
Topography Mission (SRTM) digital elevation data, urban extent polygons
and administrative areas provided by the NASA/CGIAR, the Global Rural-
Urban Mapping Project, Version 1 (GRUMPv1)57, and the Database of
Global Administrative Areas, version 3.6 (GADMv3.6), respectively. Accord-
ing to the 2018 revision of World Urbanization Prospects, in China there
were 433 county-level or higher cities with 300 thousand inhabitants or
more in 2018, and due to data incompleteness, we used a GDP dataset at
current prices of only 313 cities in the time range of 1990–2015.

Algorithms to map urban impervious surface
The flowchart for deriving the 1990–2010 urban impervious surface
products is shown in Fig. 8. Time series of the Normalized Difference
Building Index (NDBI)58, Perpendicular Impervious Index (PII)59, Modified
Normalized Difference Water Index (MNDWI)60, and Normalized Difference
Vegetation Index (NDVI)61 were derived from the Landsat 5/7 TM/ETM+
surface reflectance time series on the GEE platform. We applied the mean
reducer to the time series of NDBI to obtain the yearly average value of
NDBI (i.e., NDBI_mean) and then generated the potential impervious
surface (PIS) through the bimodal method62. To map bare areas, we
applied the mean reducer to the time series of PII to obtain the yearly
average PII (i.e., PII_mean) and then generated the potential impervious

Fig. 8 The flowchart for mapping urban impervious surfaces. NDBI Normalized Difference Building Index, PII Perpendicular Impervious
Index, MNDWI Modified Normalized Difference Water Index, NDVI Normalized Difference Vegetation Index.
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surface in bare areas (i.e., IS_bare) using the empirical threshold. Next, the
mean reducer was applied to the time series of MNDWI to obtain the
yearly average MNDWI, namely the MNDWI_mean; the maximum
composite of NDVI (i.e., NDVI_max) was generated from the time series
of NDVI. Masks of water, vegetation, and mountain pixels were obtained by
applying thresholds to MNDWI_mean, NDVI_max and slope images,
respectively. Then, PIS or IS_bare generated from the Landsat images
were utilized to extract the target impervious surface (TIS) after masking
water, vegetation and mountains regions. Urban impervious surface (UIS)
was delineated explicitly using urban extent polygons and administrative
areas. Finally, a modified urban impervious surface (MUIS) was obtained by
applying a three-by-three majority filter on the UIS. It should be noted that
we adopted a different strategy of parameter configuration for the urban
areas with different geographical characteristics by partitioning them into
arid and semi-arid, densely vegetated, and common regions. The detailed
parametrization for mapping urban impervious surface is shown in
Supplementary Table 2.
For the 2015 urban impervious surface products, the basic steps for

using the Sentinel-1 SAR scenes and Sentinel-2 surface reflectance images
from the GEE platform could be found in Sun et al.63. The method
demonstrated the effectiveness of fusing optical and SAR data for large
area urban land extraction, especially in areas where optical data fail to
distinguish urban land from spectrally similar objects.

Validation of urban impervious surface product
The validation process was carried out based on the visual interpretation of
Google Earth images and a uniform interpretation rule was formulated to
determine how to judge whether a surface was impervious or pervious.
Standard accuracy assessment measures, i.e., overall accuracy (OA),
producer’s accuracy (PA), and user’s accuracy (UA) were computed to
assess the extracted accuracy. Since we did not adopt the same methods
to map urban impervious surface products during different time periods,
the validation process varied slightly. For the 1990–2010 urban impervious
surface products, 4000 validation points were randomly generated for each
year, with a total of 20,000 for five years (1990, 1995, 2000, 2005, and 2010).
For the 2015 urban impervious surface products, 224,000 validation points
were randomly selected throughout China’s major socioeconomic zones63.
As shown in Table 1, the average OA, PA and UA were 91.24%, 92.58%, and
89.65%, respectively. After the process of urban impervious surface
mapping, we used the 1990–2015 products to derive the built-up area (i.e.,
urban agglomeration area).

Conversion from urban impervious surface to built-up area
Urban agglomeration area (UAA), also known as built-up area, is required
for calculating the indicator of land consumption rate43. Therefore, the
conversion from UIS to UAA is needed when calculating the land use
efficiency indicators. Generally, UAA does not relate directly to UIS, and the
public spaces considered as part of UAA such as parks or greenbelts
cannot be derived from UIS. Besides, the extent of UAA does not overlap
with the administrative divisions, and for example, some peri-urban
settlements should be considered as part of UAA. On that account, we
must delineate urban agglomeration area based on impervious surface by
means of spatial data processing. The criteria included:

(1) a minimum urban land size and distance between urban lands. As
recommended by the UN, areas of urban land of 20 or more hectares
that are less than 200 meters apart should be considered as part of the

built-up area43. With this consideration, we linked all eligible patches
of impervious surfaces to form a continuous city proper.

(2) a minimum mapping unit (MMU) of urban land. A rule adopted by the
National Geomatics Center of China is that artificial surfaces should
occupy more than 8 × 8 pixels based on satellite images with a spatial
resolution of 30 × 30m64. Consequently, any polygon with an area of
less than 57600 square meters was eliminated in the vector products
derived from urban impervious surface, and holes with areas of less
than 57,600 square meters lying inside the main urban areas were
filled to maintain the continuous distribution pattern.

(3) the peri-urban impervious areas with close functional relations to be
considered as part of the built-up area. Some free-standing rural
settlements lay outside the main urban areas, but they may
functionally depend on the main urban areas via well-connected
roads to provide employment and services. In the process of
conversion, we preserved such patches of peri-urban settlements to
improve the extent accuracy of built-up area.

(4) the pervious areas used as public spaces to be considered as part of
the built-up area. Aided by the Google Earth high-resolution images,
we manually supplemented and adjusted patches of parks and
greenbelts with artificial structures, and merged the newly-added
polygons into the main urban area to generate the built-up area that
meets such pre-defined criteria.

Overall, the extraction results delineated a complete boundary of urban
impervious surface without loss of spatial details and the conversion
results retained the continuous pattern of main urban area distribution
that was consistent with the visual interpretation of Google Earth images.
As an example, the spatial expansions of urban impervious surface and
built-up area compared with Google Earth images in 2015 for Baiyin City

Table 1. Accuracy assessment result of urban impervious surface
extraction.

Periods OA/% PA/% UA/%

1990 89.95 92.36 87.10

1995 89.25 91.80 86.20

2000 92.88 92.77 93.00

2005 92.58 93.03 92.05

2010 91.53 92.92 89.90

2015 88.03 94.50 82.22

Average 91.24 92.58 89.65

Table 2. Classification of cities in China according to population size.

Categories Standards of division

Megacity Population size ≥ 10 million

Superlarge city 5 million ≤ population size < 10 million

Large city 1 million ≤ population size < 5 million

Medium city 500 thousand ≤ population size < 1 million

Small city Population size < 500 thousand

Table 3. Classification of cities in China based on a measure of per
capita Gross Domestic Product (GDP).

Year Categories Threshold (Current U.S. dollar)

1990 Upper middle/high 7620

1995 Upper middle/high 9385

2000 Upper middle/high 9265

2005 Upper middle/high 10725

2010 Upper middle/high 12275

2015 Upper middle/high 12475

1990 Lower middle/upper middle 2465

1995 Lower middle/upper middle 3035

2000 Lower middle/upper middle 2995

2005 Lower middle/upper middle 3465

2010 Lower middle/upper middle 3975

2015 Lower middle/upper middle 4035

1990 Low/lower middle 610

1995 Low/lower middle 765

2000 Low/lower middle 755

2005 Low/lower middle 875

2010 Low/lower middle 1005

2015 Low/lower middle 1025
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(Gansu Province), Hefei City (Anhui Province), and Shanghai City are shown
in Supplementary Fig. 1.

Modified land use efficiency indicators
In this study, we used SDG 11.3.1 (i.e., LCRPGR) to measure the relationship
between urban land consumption and population growth. The methodol-
ogy for SDG 11.3.1 is established and referenced in the SDG indicator
Metadata Repository (https://unstats.un.org/sdgs/metadata). The LCRPGR
is computed as follows:

LCRPGR ¼ LCR
PGR

¼ LN Urbtþn=Urbtð Þ
LN Poptþn=Popt

� � (1)

where Urbt and Urbt+n are the total areal extent of the land consumed
(extent of the urban agglomeration area, which is quantified as built-up
area) at the initial reference year t, and at the final reference year t+ n,
respectively; Popt and Popt+n are the total population of the specific spatial
unit at the initial reference year t, and at the final reference year t+ n,
respectively; and LN refers to the natural logarithm of the ratio.
SDG 11.3.1 captures the demographic pressure of urban expansion but

partially excludes the economic dimension. In this study, we proposed a
supplementary indicator to measure the relationship between urban land
consumption and economic growth, which is the ratio of economic growth
rate to land consumption rate, namely EGRLCR. The ratio could be
summarized as:

EGRLCR ¼ ECR
LCR

¼ LN GDPtþn=GDPtð Þ
LN Urbtþn=Urbtð Þ (2)

where GDPt and GDPt+n are the total amount of GDP within a certain spatial
unit at the initial reference year t, and at the final reference year t+ n,
respectively.
Both in the calculation of LCRPGR and EGRLCR, the periods for both land

consumption, population, and economic growth rates should be compar-
able. Here we used LCRPGR together with EGRLCR to estimate the land use
efficiency because of urban expansion pressure from demographic and
economic perspectives. For the accurate calculation of area, we used a
transverse Mercator map projection, and in order to minimize the
deformation, we accordingly divided China into zones six degrees wide.

Assessment of urbanization sustainability in China
The 433 county-level or higher cities in China could be classified into
diverse categories in terms of socioeconomic zones, population sizes and
function types. Here we assigned the sample cities to one of four
recognized socioeconomic zones, namely Eastern China, Central China,
Western China, and Northeast China. According to the China’s State
Council65, we divided them into five categories based on the resident
population scale of urban areas (Table 2). As the resource-dependent cities
accounted for a relatively large proportion of the 433 cities and their

sustainable development are an important area of research on regional
industrial development and urban sustainability, we partitioned them to
better distinguish the differences between resource-dependent cities and
other nonresource-dependent cities, whose distribution was retrieved from
Fan et al.66. In order to contextualize the evolution of Chinese urbanization
in an international classification scheme, we also split the 313 sample cities
with complete time series into four income groups, including high, upper-
middle, lower-middle, and low-income cities based on a measure of per
capita GDP (Table 3), which was first introduced by the World Bank’s World
Development Report in 1978 and has been adjusted for prices over time.
For details, the official exchange rates of China Yuan relative to the U.S.
dollar in the time range of 1990–2015 are shown in Supplementary Table 1.
Moreover, we clustered the sample cities into four classes based on

LCRPGR (Table 4) and reclassified them into five categories based on
EGRLCR (Table 5) to quantitatively determine the relationship between
land consumption, population and economic growth. The comparisons on
LCRPGR and EGRLCR changes among socioeconomic zones, population
sizes, function types, together with different levels of per capital GDP could
shed a light on differences in urbanization patterns in China over 25 years,
which may contribute to decision and policy-making in a spatially explicit
manner.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1429916367. The datasets used in
this study, including multisource remote sensing imagery, auxiliary geospatial data,
population, construction land, and GDP statistics, were all obtained from publicly
available data with free accesses. Available remote sensing data include Landsat 5/7
TM/ETM+ surface reflectance (https://earthexplorer.usgs.gov/), Sentinel-1 SAR back-
scatter and Sentinel-2 surface reflectance (https://scihub.copernicus.eu/). Available
geospatial data include digital elevation from SRTM (https://www2.jpl.nasa.gov/srtm/),
urban extent polygons from GRUMPv1 (http://sedac.ciesin.columbia.edu/) and
administrative areas from GADMv3.6 (http://www.gadm.org/). UN’s World Urbaniza-
tion Prospects 2018 is available at https://population.un.org/wup/. The satellite-
derived high-resolution urban impervious surface maps and the urban built-up area
products will be freely and publicly available at https://doi.org/10.11922/sciencedb.
j00076.00004. The official exchange rates of China Yuan relative to the U.S. dollar is
available at https://data.worldbank.org/indicator/PA.NUS.FCRF. The construction land
and GDP data of cities in China were searched and acquired at https://data.cnki.net/
Yearbook. Other data, which were derived from the original datasets but not
aforementioned, are elaborately illustrated in the part of Supplementary Information.

Table 4. Classification of cities in China by ratio of land consumption rate to population growth rate (LCRPGR) distribution.

Categories Standards of division

Cities where demographic decline is simultaneous to spatial expansion LCRPGR ≤ 0

Cities where population densification takes place 0 < LCRPGR ≤ 1

Cities where the rate of spatial expansion is greater than the demographic growth 1 < LCRPGR ≤ 2

Cities where spatial expansion takes place at a pace that is at least double the one of demographic growth LCRPGR > 2

Table 5. Classification of cities in China by ratio of economic growth rate to land consumption rate (EGRLCR) distribution.

Categories Standards of division

Cities where zero or negative economic growth is simultaneous to spatial expansion EGRLCR ≤ 0

Cities where economic growth rate is lower than spatial expansion 0 < EGRLCR ≤ 1

Cities where economic growth rate is greater than spatial expansion 1 < EGRLCR ≤ 2

Cities where economic growth takes place at a pace that is at least double but lower than quadruple the one
of spatial expansion

2 < EGRLCR ≤ 4

Cities where economic growth takes place at a pace that is at least quadruple the one of spatial expansion EGRLCR > 4
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CODE AVAILABILITY
The JavaScript scripts used for preprocessing the Landsat and Sentinel time series
data in the Google Earth Engine platform and the Python script for generating urban
built-up area products based on urban impervious surface maps using ArcGIS
Desktop 10.7 software are all available on reasonable request from H.J. or Z.S.
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