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Projecting future populations of urban agglomerations around
the world and through the 21st century
Masanobu Kii 1✉

Future population projections of urban agglomerations furnish essential input for development policies and sustainability
strategies. Here, working within the Shared Socioeconomic Pathways (SSPs) and using a simple urban-growth model, we estimate
population trends throughout the 21st century for ~20,000 urban agglomerations in 151 countries. Our results suggest that urban
growth in this century will produce increasingly concentrated cities, some growing to enormous sizes. We also demonstrate that,
although detailed urbanization trajectories differ for different SSP scenarios, in all cases, the largest projected agglomerations of the
future are more populous than the largest agglomerations today. Our projection strategy advances urban-population research by
producing urban-size projections—for agglomerations around the world—that correctly obey empirically observed distribution
laws. Although our method is very simple and omits various aspects of urbanization, it nonetheless yields valuable insight into long-
term SSP-specific urbanization trends to inform discussion of sustainable urban policies.
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INTRODUCTION
Explosive growth in urban populations presents a wide range of
societal, environmental, and economic consequences; in devel-
oping nations, in particular, many aspects of urban infrastructure
are inadequate already for the needs of today’s population, and
accommodating rapid future growth will require major improve-
ments in urban planning1, for which accurate population
estimates are essential. As just one example, the 11th item in
the United Nations’ Sustainable Development Goals2 pledges to
“make cities and human settlements inclusive, safe, resilient and
sustainable,” and the associated 2030 objectives have spurred
cities to introduce a variety of initiatives—in areas such as
housing, transportation, public health, and environmental protec-
tion—whose implementation depends crucially on urban-
population projections; needless to say, urban-population growth
is projected to continue well beyond 20303, while the con-
sequences of climate change will affect the sustainability and
resilience of cities on even longer timescales4,5, and thus urban-
population projections must extend not only into the near term,
but ideally several decades into the future. Beyond their key role
in urban planning, long-term projections of the spatial distribution
of future populations have been used to assess risks associated
with phenomena such as climate-change-induced flooding6,7,
heat waves8, malaria epidemics9, food security10, biodiversity11,
and freshwater availability12, and have also been researched for
more general purposes13–15; in contrast to the regional scope of
urban-planning applications, the global scope of such research
studies often demands future projections of worldwide urban
populations, and this is the challenge we address in this study. Of
course, future projections of urban populations or any other
statistics necessarily entail uncertainties, and thus an additional
desideratum for population projections is an estimate of the
ranges over which a given projection may vary—due, for example,
to variations in future social, political, and environmental
conditions, such as those envisioned by the Shared Socio-
economic Pathways (SSPs)16.

To date, a wide variety of methods have been used to project
future urban populations. In particular, since Alonso-Muth-Mills17–20,
a vast number of studies have investigated urban morphology (for
reviews, see refs. 21–23), which estimates the spatially detailed
population distribution within a city. These studies clarified that the
spatial distribution of population and urban land use can be
modified by policies and technologies affecting land and transport,
but studies considering applications to realistic cities have typically
assumed given total populations for target urban agglomerations.
For individual nations or regions, these include cohort-component
methods24, which incorporate autoregressive integrated moving-
average models, and nationally averaged growth rates grounded in
past estimates25; such methods, while useful for localized modeling,
do not readily extend to the global scales of interest in this work
due to data limitations. Other authors have used grid-based
approaches based on heuristic functions15 to downscale the IPCC
Special Report on Emissions Scenarios26, gravity-type models13, or
cellular automata14. They are capable of yielding global-scale
projections, but such methods may be suboptimal for some
purposes: the grid-based populations they predict may not map
readily onto population projections for actual cities, and—more
disturbingly—the resulting distribution of urban populations may
fail to reproduce the well-known power-law (Pareto) distribution
observed for actual cities (Zipf’s law)27. An additional drawback of
some methods is a failure to evaluate uncertainties in the model
itself: while uncertainties in future input conditions can be
evaluated with these models, most global-scale grid-based popula-
tion models have not been validated to represent historical trends
or to incorporate SSP-like variations in background conditions,
preventing accurate estimates of uncertainty ranges in projection
results. Thus, at present, there are few if any population-projection
methods capable simultaneously of (a) operating on global scales,
(b) furnishing predictions for individual cities, (c) guaranteeing a
realistic distribution of urban populations and successfully reprodu-
cing historical data as validation, and (d) incorporating SSP-like
scenarios to quantify uncertainties.
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In this study, we propose a method that satisfies all of these
criteria. As discussed in more detail in “Methods” below, our
technique is global in scope, but eschews the use of territorial
grids in favor of estimating populations of individual cities—or,
more precisely, individual urban agglomerations. The notion of an
urban agglomeration—defined by the United Nations to be “a
type of urban settlement defined by the de facto population
contained within the contours of a contiguous territory inhabited
at urban density levels without regard to administrative bound-
aries”3—offers a more intuitive image than grid-level population
distributions and is frequently chosen as the appropriate spatial
unit for understanding urban activity and planning or assessing
infrastructure installations. As a specific technique for estimating
populations of urban agglomerations, we use an urban-growth
model28 that we have previously developed to guarantee proper
power-law scaling of urban-population distributions, in accor-
dance with Zipf’s law. In essence, this model is based on reasoning
similar to that of the Simon model29, which assesses changes in
city populations using a proportional distribution based on urban
scale; thus, our model assumes that the population of an
agglomeration itself acts as the driver of further population
growth. Zipf’s law for cities is by now the subject of an extensive
and growing literature (for a review, see ref. 30), with power-law
distributions observed not only for urban populations but also for
urban geographical footprints; among studies of the latter, we
note in particular refs. 31,32, which proposed a stochastic
simulation model designed to yield power-law scaling for the
sizes of urban land clusters, similar to what we do here for urban
populations. Our approach and that of refs. 31,32 are thus
complementary; however, despite the obvious correlation
between the populations and geographical sizes of cities, urban
land clusters and agglomerations are defined in different ways,
and it is not clear that the stochastic simulation approach is
applicable to population projection. Indeed, to our knowledge, no
previous study has used deterministic power-law methods to
project future populations of individual urban agglomerations.
The original models of Simon29 (quoted by33) and Gibrat (quoted
by34) employ random processes to assign growing urban
populations to individual cities, thus yielding power-law popula-
tion distributions. However, this randomness produces nondeter-
ministic estimates for both past and future populations of
individual urban agglomerations, complicating the task of
validating population estimates for individual cities. Our approach
yields deterministic projections by assigning populations to urban
agglomerations based on the expected preferential attachment
share. An advantage of focusing on populations of actual cities is
that we can validate our method by comparison to observed
historical data, which we do quite successfully, as described
below. Finally, to account for variations in background conditions
and accurately estimate uncertainties, we formulate our model in
a manner consistent with the SSPs—a long-term (extending to
2100) projection of socioeconomic trends, established to advance
research on methods for addressing climate change, comprising 5
distinct scenarios encompassing a wide variety of conceivable
patterns for future development35.
In attempting to identify initial data to seed our model—as well

as reference data to use for validation tests—we encounter the
difficulty that there exists no comprehensive database encom-
passing the full set of urban agglomerations around the world. For

this reason, we used the data sources World Urbanization
Prospects (WUP) 2018, Gridded Population of the World (GPW)
v. 436, and OpenStreetMap to construct a dataset containing
population and location information, for the year 2010, for 21,424
urban agglomerations in 151 countries. We also extracted
population and coordinates, as of 2010, for 68,196 nonurban
human settlements. With our model thus seeded by empirical
data for 2010, we may run the model backward to obtain
postdictions of urban populations prior to 2010, or forward to
project future populations, and we use both of these possibilities
to validate the accuracy of our model, as discussed in the
“Validation” section below.
Having constructed, seeded, and validated our model, we next

use it to project future populations for the full set of 89,620
worldwide urban agglomerations and nonurban settlements,
throughout the remainder of this century, for each of the five
SSP scenarios. We emphasize that this dataset includes both urban
and rural populations, and that our projections cover both of
these, as described in the “Methods” section. As discussed in more
detail in the section “Projection of global urban agglomerations”,
our results reveal a number of intriguing trends, including that
populations will continue to concentrate in larger agglomerations,
with the largest urban agglomerations in 2100 swelling to
populations of at least 40 million and possibly significantly greater
(with precise details differing for distinct SSPs).
Finally, the construction, validation, and results of our model

entail a number of points worthy of further comment, including
the implications for sustainable policies under the SSPs, which we
address in “Discussion” below.

RESULTS
Model validation and error estimation
In this section, we validate the accuracy of our model by
comparing its postdictions and projections with WUP data, then
use the results of this comparison to estimate expected errors in
our urban-growth model.
To validate the accuracy of the model, we first use Eqs. (7) and

(8) in “Methods” below to obtain postdictions, based on year 2010
and extending as far back as 1950, for the populations of 1794
urban agglomerations for which historical data are available in
WUP. Table 1 lists the mean absolute percent errors (MAPEs) by
year for all agglomerations and for agglomerations with popula-
tions of 100,000 or more. Past estimates are calculated sequen-
tially backward in time, so naturally the MAPE increases as time
goes back. MAPEs for all cities grow extremely large at long times
in the past—for 1950, for example, the MAPE is 1281%. This is due
to the right-skewed distribution of absolute percent errors (APE) in
subnational population forecasts37. When observed populations
are small, APEs for some cities tend to extreme values. The
minimum population in the 2010 WUP data is 137,000, while that
for 1950 is just 5. If we restrict attention to cities with populations
of 100,000 or more in all years, the MAPEs fall in a reasonable
range. These MAPEs are comparable to those of empirical
prediction models for United States county data38–40. More
sophisticated approaches, such as cohort change with an
autoregressive integrated moving-average model, have been
reported to estimate subregional populations more accurately25;

Table 1. Mean absolute percent errors of past estimates for all urban agglomerations and those with population >100,000.

1950 1960 1970 1980 1990 2000 2010

All agglomerations MAPE 1281% 579% 232% 63% 34% 11% 0%

Agglomerations >100,000 MAPE 37% 35% 33% 28% 24% 11% 0%

Number of agglomerations 764 960 1186 1412 1634 1785 1794
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however, such models require detailed panel data by age group
that is not practical to obtain for all agglomerations worldwide.
Supplementary Fig. 1 in the Supplementary Information shows

population trajectories for some selected urban agglomerations
from 1950 to 2010 as observed by the United Nations and as
estimated by our method. Our estimates for some urban
agglomerations reproduce observed data quite well, while
estimates for other cities diverge widely from observations. As
discussed above, the population blooming of certain small cities is
a major source of inaccuracy in population forecasts39. For
instance, the APE of Shenzhen, China, is 31600% in 1950 where
the statistical population is 3148 and postdicted population is 1
million. Shenzhen was designated as a special economic zone in
1980, after which it attracted huge amounts of foreign investment
that spurred explosive migration in the 1990s. Another example in
which our estimation model fails is Glasgow, UK, which has
negative correlation between observed and postdicted popula-
tion. The population of Glasgow decreased almost monotonically
from 1960 to 2000 due to the decline of the ship-building industry;
such political and socioeconomic factors clearly affect future
populations, but are not taken into account by our projections.
Nonetheless, overall estimation errors and prominent failures for
some cities notwithstanding, we find significant positive correla-
tion between observed data and the postdictions produced by
our model for 98% of agglomerations.
As a second validation of our model, we compare its projections

for future urban populations to the projections recorded in the UN
WUP database, which extend to 2035. Table 2 lists MAPEs and
mean algebraic percent errors (MALPEs) for this comparison; note
that these MAPEs—10% for 10-year projections and 16% for 25-
year projections—are lower than those of our model’s postdic-
tions. Indeed, most agglomerations grow in population during the
period covered by UN WUP data, whereupon the right skew of
MAPE distribution is lower than those of postdictions. The positive
values observed for MALPEs indicate that our model tends to
underestimate urban populations on average compared to UN
WUP projections. One possible reason for this is that our estimates
assume that the spatial extent of urban agglomerations remains
fixed; in fact, of course, urban areas typically expand geographi-
cally as their population grows. In this study, we fix the spatial
boundaries of urban agglomerations at 2010 values, and the
positive values observed for MALPEs suggest that the accuracy of
our model could be improved by accounting for geographic
expansion accompanying population increase—a possibility we
consider in “Discussion”.
As discussed above, APEs tend to be higher for lower-

population agglomerations and projections further into the future.
Referring to Tayman et al.39, we adopt a model in which APEs are
explained by population and temporal distance (years past base
year); according to this model, the APEs expected for a city of 1
million are 5% for 10-year projections and 24% at 90 years, or 1.7%
and 8.6%, respectively, for a city of 10 million. Using this model,
we can estimate the uncertainty of our estimates. Details of this
APE estimation model are described in “Methods” and “Data
availability” sections below.

Projection of global urban agglomerations
Using this model, with input values for urban populations and
GDP taken from nation-specific SSP data from the International

Institute for Applied Systems Analysis (IIASA), we project future
populations for individual cities through the year 2100. According
to the narratives of SSPs35 and associated national urbanization
prospects41, SSP1 describes a sustainable future and assumes fast
urbanization in all countries, SSP2 is intermediate between other
pathways with a moderate pace of urbanization, SSP3 assumes a
regionalized world and slow urbanization, and SSP4 describes
inequal, stratified economies with moderate urbanization in high-
income countries and rapid urbanization in medium- and low-
income countries. SSP5 describes rapid growth of the global
economy and fast urbanization in all countries. Fertility declines
with increasing economic growth, so the total populations of SSPs
reflect economic-growth narratives (see Supplementary Fig. 2).
The urban-population scenarios in the SSPs also contain
uncertainties. Details of country-level population scenarios can
be found in KC and Lutz42.
Segregating cities by population scale for cities with popula-

tions of 100,000 or above, Table 3 shows the number of cities in
each of several population classes (A), and the total population of
those cities (B) as projected for 2050 and 2100. This subset
consists primarily of urban populations, but also includes some
rural populations depending on nation-specific definitions of
minimum urban population, as explained in “Methods”. Under all
SSPs, the total number of cities with projected populations of
100,000 or more in 2050 is greater than in the base year 2010.
From 2050 to 2100, this number decreases in all scenarios except
SSP3. Considering the class of cities with populations more than
500,000, we find that the number of cities in this population range
increases from 2010 to 2050 in all scenarios; however, only for
SSPs two, three, and four does this number continue to grow from
2050 to 2100, instead declining for SSPs one and five. Meanwhile,
in all scenarios except SSP1, we find that the number of
megacities—with populations of 10 million or more—remains
on a trajectory of steady growth throughout the century to 2100.
SSP1 and SSP5 have similar trajectories for the total urban-
population share (Supplementary Fig. 2) but different trajectories
for the number of cities. The storylines of these SSPs describe
different trends in fertility rates and migration patterns: SSP1
assumes moderate fertility levels for rich OECD countries and
moderate migration levels for all countries, while SSP5 assumes
high levels of both fertility and migration. The primary impact of
this difference is seen in the number of cities in rich OECD
countries.
Among all SSPs, SSP3 sees the largest number of cities with

populations above 500,000, but the smallest fraction of the overall
population accounted for by urban dwellers. SSP3 is also the only
pathway to exhibit growth in the number of cities with
populations below 500,000 toward 2100. Nonetheless, despite
the increasing number of smaller cities in SSP3, the share of the
overall population living in larger agglomerations increases as
2100 approaches. In summary, the urban population is expected
to reside in larger agglomerations. This trend is most significant
in SSP5.
Figures 1 and 2 plot the worldwide spatial distribution of urban

agglomerations—of population 100,000 or above—as observed in
2010 and as projected for 2100 within the five SSP scenarios. All
scenarios predict prominent urban expansion in South Asia and
sub-Saharan Africa. In India—particularly in the Ganges basin—
both megacities and slightly smaller cities of 1–5 million exhibit
significant growth. Meanwhile, smaller cities—of populations
below 1 million—decrease in number for all scenarios except
SSP3. These trends imply that large-scale migration from rural
areas to large cities is to be expected. In Africa, all scenarios
predict prominent growth of cities with population 1–5 million in
Nigeria and Democratic Republic of the Congo. SSP4 sees a
significant emergence of megacities in sub-Saharan Africa. SSP5
projects the formation of numerous megacities in North America

Table 2. Mean absolute percent errors of future estimates.

2010 2015 2020 2025 2030 2035

MAPE 0% 5% 10% 13% 14% 16%

MALPE 0% 4% 7% 9% 11% 13%
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and a greater prevalence of megacities in the developed nations
of Europe and Oceania as compared to the other SSPs.
From these results, we see that SSPs 1 and 5 predict that,

although the total worldwide urban-population peaks and
subsequently declines, the trend toward increasing urban
concentration continues apace. For SSP3, on the other hand,
mid-size and small cities are relatively numerous. For SSP4, the
urban population increases, mainly in high-fertility-rate countries.
This spurs urban-population growth in sub-Saharan Africa and a
dramatic increase in the numbers of megacities and cities of 1–5
million residents. For SSP2, projections for numbers of cities and
urban-population distributions lie intermediate between those of
SSPs 3 and 5. Although SSPs do not give insight into the
circumstances of individual cities, one plausible narrative that
might explain this outcome is that cities in SSP3 become less
attractive due to limited interregional mobility and imperfections
in urban planning35; this contrasts with the case of SSP5, in which
—according to this interpretation—large-scale urban initiatives
enhance the attractiveness of cities. These storylines are
consistent with the results of this study. On the other hand, the
narrative underlying SSP1 assumes that compact spatial footprints
produce efficient cities. Our results indicate increasing urban
populations residing in fewer cities, implying an increase in the
average population of agglomerations by 2100. However, this
study does not account for variations in the geographical extent of
cities, and further analysis is required to evaluate the consistency
of our results with the SSP1 storyline.
Table 4 lists the population of the world’s ten most populous

cities, as observed in 2010 and as projected for 2050 and for 2100
within the various SSP scenarios. As is clear from the table, the
cities with the highest populations differ from year to year and
from scenario to scenario, but in most cases, they are large cities in
developing countries. Delhi is ranked as the largest city in most
cases, with other Indian cities also ranking among the top ten in
many cases. In SSP5, two US cities, New York and Los Angeles, are
among the top ten in 2100, with the former approaching 50
million residents.
Note that, while the world’s highest-population city in 2010 was

Tokyo with 36.86 million, projections for all scenarios except SSP3
indicate that the most populous urban agglomerations in 2050
will be larger, and all the scenarios indicate that the largest urban

agglomerations in 2100 exceed 40 million. These results highlight
major challenges awaiting such growing cities, including enor-
mous increases in housing demand and the need to invest in key
infrastructure facilities supporting transport, water, sewage, waste
disposal, and other essential services.
Finally, we estimate MAPE values for our SSP-specific population

projections (Supplementary Fig. 3). For agglomerations of 100,000
or more, the MAPE is 24–25% in 2050 and 42–44% in 2100. As
mentioned in “Methods”, APEs tend to be larger for smaller
agglomerations. MAPEs for the various SSPs do not differ
significantly before 2050, but do vary slightly from one SSP to
another between 2050 and 2100. MAPE is the highest in SSP3 and
lowest in SSP4, a result attributable to differences in the sizes of
agglomerations; indeed, upon restricting consideration to agglom-
erations of 1 million or more, the differences between SSPs nearly
vanish, falling below the 1% level. The MAPE for agglomerations
above 1 million is about 10% in 2050 and 18% in 2100. We expect
our population projections contain substantial errors for smaller
cities, but are reasonably precise for large cities, giving an accurate
picture of long-term global trends in urbanization.

DISCUSSION
As noted in the Introduction, this study adopts a simplified
viewpoint in which urban agglomerations are defined solely by
population and geographical size, ignoring the multitude of other
factors—political, economic, technological, and environmental—
that affect real-world cities. Nonetheless, despite this minimal
framework, for most agglomerations in the UN dataset, our
method correctly reproduces key trends in population evolution,
suggesting that our approach successfully captures essential
drivers of urbanization at the level of global aggregation.
In our method, the dominant driver of urban growth is

population itself. Our approach is highly abstract, but implicitly
assumes the urbanization mechanisms of the knowledge-based
economy43, in which urban competitiveness depends on the scale
and variety of the labor market, which in turn is expected to
depend on population.
By focusing on the populations of urban agglomerations—as

opposed, for example, to grid-based modeling—we are necessa-
rily influenced by ambiguities present in the term “urban” itself44.

Table 3. Projected numbers of world agglomerations, and their total urban populations, in each of several population classes.

Urban population 2010 SSP1 SSP2 SSP3 SSP4 SSP5

2050 2100 2050 2100 2050 2100 2050 2100 2050 2100

(A) Numbers of urban agglomerations >100,000 population

100–500 K 10,061 8773 6025 9972 8356 12,083 12,570 9275 7738 8815 6508

500 K–1M 1087 1954 1190 2051 1916 1842 2473 2068 1800 1953 1181

1–5M 614 1258 1144 1175 1354 1016 1468 1326 1526 1258 1182

5–10M 53 91 97 88 109 73 112 104 139 93 94

More than 10M 28 61 51 58 63 52 66 63 67 62 67

Total 11,843 12,137 8507 13,344 11,798 15,066 16,689 12,836 11,270 12,181 9032

(B) Population (million residents)

100–500 K 2100 1868 1400 2257 1820 2662 2824 2005 1776 1872 1476

500 K–1M 745 1364 839 1405 1365 1256 1708 1440 1272 1368 841

1–5M 1159 2340 2147 2181 2502 1912 2676 2446 2833 2346 2227

5–10M 383 632 692 604 747 502 758 703 960 657 649

More than 10M 428 1110 950 1028 1168 877 1260 1155 1270 1131 1204

Above total 2716 5445 4628 5218 5781 4547 6402 5744 6335 5502 4921

World totala 6888 8476 6892 9183 9013 9976 12,657 9138 9279 8570 7369

a
“World total” includes both urban and rural population.
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This is a notion that admits multiple framings and may vary
considerably from one era to another; indeed, by the end of this
century, the nature of urban existence will have changed in crucial
ways due to technological, economic, and lifestyle progress. For
instance, in an SSP5 future with globally averaged GDP per capita
surging above $100,000, the day-to-day activities of citizens—for
work, travel, and leisure—may bear little or no resemblance to

anything we would recognize today; for the urban planners and
policymakers tasked with facilitating large-scale urbanization
amidst such a transformed future landscape, perhaps, the most
valuable asset will be a firm grasp of challenges likely to arise. This
will require reframing notions of urbanity—but in ways that
remain hotly contested among experts. Our projections are
based on the United Nation’s traditional definition of urban

Fig. 1 Spatial distribution of urban agglomerations by the population scale. a Data for 2010. b, c Projections for 2100 under scenarios SSP1,
2, respectively.
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agglomeration throughout the period covered by our projections;
we hope our results will be useful as referential cases to compare
with future figures under new urbanization contexts.
A final point of note is that, in the simple model used in this

study, future population changes are allocated on the basis of
present-day urban populations; strictly speaking, the relative
rankings of cities cannot change in such an approach. Batty45

considered this point and concluded, based on long-term

observational data on the past evolution of urban populations,
that the actual situation was in fact entirely different. However, as
this study shows, even this simple-minded approach suffices to
reproduce, with impressive accuracy, historical population trajec-
tories for individual urban agglomerations over the past 50 years,
suggesting that the model correctly captures the mechanisms of
urban-population growth to a significant extent. Moreover, pairing
this model with a model describing the expansion of urban spatial

Fig. 2 Spatial distribution of urban agglomerations by the population scale. a–c Projections for 2100 under scenarios SSP3, 4, 5,
respectively.
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footprints allows us to consider mergers between cities, where-
upon we can predict changes in the domestic rankings of cities
within nations; similarly, by considering variations in SSPs from
one nation to another, we can predict future changes in the
international ranking of cities as well. Because the circumstances
of urbanization in different countries are influenced by a wide

variety of factors, our estimates and projections do not depend
solely on a systematic model-based methodology; instead, by
basing our analysis on a range of scenarios—such as those
encompassed by the SSPs—we obtain results that reflect multiple
possible future outcomes, a property of great value to long-term
studies of urban policy. As for the decay of urban populations, in

Table 4. Populations for the ten largest cities by population.

Rank Observed SSP1

2010 2050 2100

City Pop. City Pop. City Pop.

(A) Observed data for 2010 and SSP1 projections for 2050 and 2100

1 Tokyo 36.86 Delhi 42.97 Delhi 42.81

2 Delhi 21.99 Mumbai 37.10 Mumbai 36.96

3 Shanghai 20.31 Tokyo 36.52 Dhaka 33.64

4 Mexico City 20.14 Dhaka 34.93 New York 32.22

5 Sao Paulo 19.66 Cairo 30.40 Cairo 30.39

6 Osaka 19.31 Shanghai 28.35 Kolkata 27.26

7 Mumbai 18.98 Mexico City 27.80 Tokyo 25.47

8 New York 18.37 Kolkata 27.36 Lagos 25.15

9 Guangzhou 16.93 New York 26.81 Kinshasa 25.09

10 Cairo 16.90 Gunnaur 24.26 Manila 24.92

Rank SSP2 SSP3

2050 2100 2050 2100

City Pop. City Pop. City City Pop. City

(B) SSP2 and SSP3 projections for 2050 and 2100

1 Delhi 39.59 Delhi 46.57 Delhi 33.97 Mexico City 47.31

2 Tokyo 35.00 Mumbai 40.21 Mexico City 32.46 Delhi 47.06

3 Mumbai 34.19 Dhaka 34.81 Tokyo 29.79 Mumbai 40.63

4 Dhaka 30.91 Cairo 33.71 Mumbai 29.33 Dhaka 38.07

5 Cairo 29.18 New York 31.68 Sao Paulo 27.24 Manila 34.20

6 Mexico City 28.84 Kolkata 29.66 Dhaka 26.97 Cairo 34.14

7 New York 26.24 Mexico City 29.61 Cairo 26.11 Lagos 32.27

8 Shanghai 26.08 Manila 28.44 Shanghai 23.41 Sao Paulo 30.40

9 Kolkata 25.22 Lagos 28.35 Manila 23.19 Kolkata 29.97

10 Sao Paulo 24.90 Karachi 27.05 New York 21.80 Karachi 29.73

Rank SSP4 SSP5

2050 2100 2050 2100

Pop. City Pop. City Pop. City Pop. City

(C) SSP4 and SSP5 projections for 2050 and 2100

1 Delhi 43.81 Manila 46.36 Delhi 42.87 New York 49.26

2 Mumbai 37.83 Lagos 44.77 Tokyo 39.10 Delhi 42.66

3 Dhaka 34.81 Karachi 44.41 Mumbai 37.02 Mumbai 36.83

4 Tokyo 33.45 Delhi 43.49 Dhaka 34.21 Tokyo 34.07

5 Cairo 30.25 Mumbai 37.55 New York 31.02 Los Angeles 33.32

6 Manila 29.55 Kinshasa 36.33 Cairo 29.87 Dhaka 31.92

7 Mexico City 28.21 Dhaka 31.83 Shanghai 28.35 Cairo 29.99

8 Kolkata 27.90 Baghdad 30.14 Kolkata 27.30 Kolkata 27.17

9 Shanghai 27.68 Lahore 29.69 Mexico City 26.33 Kinshasa 24.92

10 Karachi 26.95 Cairo 29.12 Gunnaur 24.20 Lagos 24.91

Note: Populations are in units of millions.
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many cases, such events are precipitated by industrial decline—as
exemplified by the example of ship-building town—but to make
accurate long-term predictions of declining industrial or economic
activity in a given city is itself an extremely challenging task. Of
course, urban growth is not determined solely by present-day
values of urban-population ratios, but is rather influenced by a
broad array of societal, economic, and environmental factors,
whose full consideration will require more detailed models;
needless to say, more complicated models have more input
parameters, whose validation alone can be extremely labor-
intensive. Meanwhile, the model of this paper, despite its extreme
simplicity, nonetheless reproduces past urban-growth trajectories
with considerable accuracy, suggesting that it correctly captures
key aspects of the mechanisms governing urban growth.
One topic for future research on urban-population projection is

the question of how best to account for variations in the
geographical extent of cities. As discussed above, in this study,
we bypassed this question by assuming fixed geographical
footprints for all urban agglomerations at all future times; in
reality, of course, cities typically expand geographically as their
populations grow, occasionally merging with neighboring cities to
consolidate labor and housing markets. If the model of this paper
were extended to incorporate such phenomena, the occurrence of
such mergers might produce truly enormous agglomerations—
larger, both in population and geography, than the largest cities
found in the projections of our model. Technically, one way to
incorporate spatial expansion in a projection model would be to
use a road-travel-distance model prepared to reproduce the base-
year dataset; this would require that the model accounts for
various factors affecting the geographic extent of cities, such as
progress in transportation policy and technology.
Our findings revealed the distinct possibility that the 21st

century will witness an urbanization—primarily in developing
countries—that proceeds on a scale more massive than has ever
been seen before. We also found that the appropriate perspec-
tives needed to accommodate the needs of future cities, differ
significantly in different SSPs, suggesting that alternative urban-
policy strategies may be needed for long-term sustainability.
The variation of projected populations by SSPs, as described in

“Projection of global urban agglomerations” above, may stimulate
further discussion of anticipated urban problems and possible
countermeasures toward their solution. Of the various scenarios,
SSP4 has the most significant urban concentration in Africa, as
shown in Figs. 1 and 2 (more detailed maps can be found in the
links indicated in the data availability statement). The storyline
assuming inequal and stratified economies in this scenario may
cause the most severe urban crises and may require international
cooperation to solve the urban problems in these countries. On
the other hand, SSP5 has more megacities in current developed
nations—especially the United States—reflecting the storyline of a
high level of migration. In this case, for example, New York grows
to a population of almost 50 million at the end of this century
(Table 4). In combination with the exponential economic growth
of this scenario, these megacities may see high-density develop-
ment. Meanwhile, the SSP1 storyline assumes that global
population peaks around 2070, as shown in Supplementary Fig.
2b, and thus that urbanization approaches saturation levels after
2050. The storyline of SSP1 describes a sustainable future, and this
is reflected in our projections of relatively moderate population
concentration in megacities. These results are among the most
significant differences between SSPs. On the other hand, India is
expected to have extensive urbanization in all SSPs. For instance,
the population of Delhi is projected to exceed 40 million by 2100
for all scenarios (Table 4). Therefore, urban management studies
to address the unprecedented size of megacities will be needed—
at least for India—under the range of all SSPs.
These urban-growth scenarios raise concerns regarding the

achievement of sustainable development goals (SDGs)2. Even if

the SDGs are temporarily achieved by 2030, continuous urbaniza-
tion may degrade indices in subsequent years. Goal 11 is the goal
most closely related to urban population, covering issues, such as
affordable housing, accessible transport systems, disaster preven-
tion, and reduced environmental impact. Rapid population
increase often causes housing demand in excess of supply, as
well as severe transportation congestion that degrades the service
level and reliability of transportation systems. In rapidly growing
cities, residential areas may be developed at sites vulnerable to
natural hazards or anthropogenic pollutants. Housing in such
vulnerable locations is usually occupied by poor people. Conges-
tion and unplanned development cause inefficiency and increase
environmental impacts. In addition, management of water and
sanitation (Goal 6), facilitation of sustainable and resilient
infrastructure development (Goal 9), and climate-change adapta-
tion (Goal 13) are directly affected by urban population. Other
targets, such as ensuring healthy lives, preventing marine
pollution, and protecting ecosystems and biodiversity, are
indirectly affected by population. Although a full discussion of
SDGs and their achievement under projected urban populations is
beyond the scope of this paper, we expect that our global
projections of urban agglomerations will provide perspectives
illuminating possible risks of urban problems.
Regarding infectious diseases, we note that COVID-19 has had

devastating impacts on urban activities throughout the world.
Indeed, 90% of reported COVID-19 cases are estimated to have
occurred in urban areas, where population density and high
interaction levels increase the chances of transmitting the virus46.
Clearly, planning is required to rebuild urban systems for post-
COVID-19 recovery47. However, it is far too soon to assess the
impact on urban-population distributions of initiatives currently
underway to combat the pandemic and rethink post-pandemic
urban planning. One of the major centripetal forces gathering
people in cities is the agglomeration economy48,49. Locating in
large cities saves transaction and transportation costs, increases
access to other businesses and other entities, and probably entails
benefits from knowledge or technological spillovers. Before
COVID-19, most of these activities were based on face-to-face
communications. During the pandemic period, remote work has
replaced a substantial portion of face-to-face business activities,
except for essential jobs such as medical care, retail, and
transportation. If the agglomeration economy is realized through
this kind of online communication, then some aspects of the
centripetal force to cities would disappear, and city-size distribu-
tions might be altered drastically. In contrast, if people still prefer
face-to-face communication, then urban-growth trajectories may
largely return to their original course before COVID-19. Looking at
historical data for city-size distributions in the United States and
the United Kingdom (Supplementary Fig. 5), we see remarkable
stability during the past 60 years, despite tremendous technolo-
gical progress and considerable fluctuations of risks in cities. This
observation regarding city-size distributions may reflect deep-
rooted principles of urban-system formation. If city-size distribu-
tions change drastically post COVID-19, this would mean that key
principles of urban-system formation have shifted—in which case
alternative models to explain the distorted size distribution must
be developed. Clearly, global urban trends in the post-COVID-19
era will demand careful monitoring. Although further research is
needed to incorporate various additional factors—including the
impact of infrastructural, environmental, economic, and societal
factors on urban-system growth, as well as the appropriate
reframing of “urban” concepts in a sustainability context—
nonetheless we believe that this study, yielding long-term
projections of urban futures supported by a substantial eviden-
tiary basis, will furnish valuable input to discussions of urban
planning, infrastructure design, energy and environmental policy,
and sustainability.
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METHODS
Data
For raw data on populations and coordinates, we used the resources
“Population of Urban Agglomerations with 300,000 Inhabitants or More in
2018”3 from the UN’s World Urbanization Prospects 2018 (referred to
below as WUP), “Population Count v4.11 (referred to below as PC)”, and
“Administrative Unit Center Points with Population Estimates v4.11
(referred to below as AUCP)” from Gridded Population of the World, v436

(referred to below as GPW). WUP records urban populations and
geographical coordinates, at 5-year intervals between 1950 and 2035, for
1860 urban agglomerations spanning 154 nations or territories around the
world. GPW-PC is a global raster of population count at 30 arc-second
resolution. GPW-AUCP records coordinates for 8,342,421 worldwide sites,
spanning 241 nations or territories, and populations at 5-year intervals
from 2000 to 2020. We use World Gazetteer and GeoNames to provide
seeds of urban agglomeration. Each dataset contains 88,549 and 99,181
named locations with coordinates, respectively.
GDP per-capita data are compiled using OECD.stat and Global Metro

Monitor for data-available agglomerations and World Development Indica-
tors to set national average GDP per capita for the other agglomerations.
OpenStreetMap (referred to below as OSM) is used to determine major roads
in and around agglomerations to estimate urban extents. We extracted the
roads classified as motorways, trunk roads, and primary roads.
For SSP scenarios, we use the IIASA-SSP database16, which lists city

populations and per-capita GDP values, organized by nation, at 5-year
intervals from 2010 to 2100.

Workflow
Figure 3 shows the overall workflow used in this study to project future
populations for all agglomerations. First, we estimate the maximum road-
travel distance for each agglomeration in WUP to determine its spatial urban
boundaries (see Supplementary Fig. 4). We rasterize the OSMmajor road links
to 30 arc-second grid and assume travel speeds of 50 km/h for road-covered
and 10 km/h for nonroad meshes. We assume that each agglomeration is
centered at its WUP coordinates and map-travel times from agglomeration
centers to the surrounding grid. The maximum road-travel time of
agglomeration i is denoted as tmax,i, which we determine based on WUP
populations according to

P
g2Ωi

ng ¼ Ni , Ωi ¼ gjtig � tmax;i
� �

, where ng is
the population at grid point g, Ni is the population of agglomeration i, and tig
is the time required to reach grid point g from the center of agglomeration i.
For some agglomerations, the WUP location and GPW-CP grid are
inconsistent, in which case we arbitrarily assume a worst-case road-travel
time of 2 h.
Second, we estimate the model of the maximum road time explained by

population, GDP per capita, and major road-grid ratio in the urban extent.
Here, we select 151 countries for which these data are available. If the
center of an agglomeration is within the time contour of the other larger
agglomeration, we assume that the smaller agglomeration belongs to the

larger agglomeration and merge them in the dataset. Additional
explanation can be found in Supplementary Fig. 4. As a result, the original
WUP agglomerations are merged into 1794 agglomerations. We applied
the same procedure to GeoNames, World Gazetteer, and GPW-AUCP data
to merge agglomerations or human settlements. We obtained 415,886 set-
tlements. Among these, we select 89,620 settlements that have popula-
tions of 5000 or more to reduce calculation cost. These selected
agglomerations/settlements cover a total population of 6.6 billion, or
95% of the total 2010 population of the GPW-AUCP dataset. The observed
global urban-population share is 52% in 2010, with our dataset of course
including rural populations. Urban and rural settlements are distinguished
by population size, and we set the dividing thresholds to yield urban
populations consistent with 2010 observations for each country. These
dividing thresholds—the minimum population sizes of urban agglomera-
tions—are described in “Random-growth urban model” section below.
Third, we apply our random-growth model to these selected agglom-

erations/settlements to project future populations for each agglomeration
through the year 2100 under each SSP. The original projection assumes
fixed urban extent.

Models
In this study, we mainly use two models: a maximum road-travel time
model and a random-growth model. In addition, we model absolute
percentage errors (APEs) to assess uncertainty.
As noted in the workflow section, we estimate maximum road-travel

times for agglomerations in WUP. Following Makse et al.50, we quantify the
maximum road-travel time via the formula Ti ¼ α0N

αN
i � GαG

i � RαRi with Ti, Ni,
Gi, and Ri, respectively, denoting the maximum road time, population, per-
capita GDP, and major road-grid area ratio of urban agglomeration i; the
quantities α0, αN, αG, and αR are parameters. We determine parameter values
via linear regression analysis after applying a logarithmic transformation to
the model. Table 5 lists the results of our parameter-estimation procedure.
Signs of parameters indicate that, as expected, road-travel times increase
with increasing population and GDP per capita, and also increase with
decreasing road coverage of grid regions.
Using dynamical equations describing the temporal evolution of

urban populations, the Random-growth urban model29 asymptotically
approaches the Pareto distribution of city population scales. The original
model is described as follows:

∂Ni

∂t
¼ n

Ni þ μi � N0ð Þ
P

j2Ωt
ðNj þ μj � N0Þ (1)

Ωtj j ¼ ωt (2)

X

j2Ωt

Nj ¼ nt þ k0nt (3)

X

j2Ωt

μj ¼ Ωtj jm ¼ ωmt (4)

Here, Ni denotes the population of agglomeration i, n denotes the rate of
increase of the national urban population, μi is a geographical fitness
parameter, N0 is the minimum population of a city, m is the average
geographical fitness, and Ωt is the set of all cities in a nation at time t. This
model asymptotically approaches a Pareto distribution for urban popula-
tions. The probability that agglomeration’s population exceeds N is
expressed as follows:

Pr Nð Þ � N� 1þωm=nð Þ: (5)

Our primary interest is the upper tail of the size distribution, so we utilize
Eq. (1) to project future populations for each agglomeration. However, in
this study, we use scenarios describing the urban populations of individual
nations at 5-year intervals to estimate variations in the urban populations
of existing cities and geographical locations, taking the urban-population
distribution in 2010 as a basis of reference. Thus, we consider the following
discretized version of the model.
In cases where the urban population increases, we express the

population of urban agglomeration i at time t+ 1 in the form

Ntþ1
i ¼ Nt

i = Nt
Uc þ

Xrðtþ1Þ

j¼rðtÞþ1

Nt
j

0

@

1

ANtþ1
Uc ; (6)

where Nt
i and NUc

t denote the population of urban agglomeration i, and
the urban population of the nation as a whole, at time t. Here we

 

Random growth model

Maximum road �me model

UN WUP GPW PC OpenStreetMap

Merge
Urban seeds:
geoNames, World gaze�eer

GPW AUCP

Urban agglomera�on dataset 
(89,620agglomera�ons@2010)

SSPs

Popula�on projec�on 
with fixed urban extent

GDP/capita

Data

Model

Output

Fig. 3 Analytical workflow for the population projection. The flow
consists of data (UN WUP, GPW-PC, GPW-AUCP, Urban seeds by
geoNames and World gazetteer, OpenStreetMap, GDP per capita by
OECD.stat, Global Metro Monitor, and World Development Indica-
tors), scenarios (shared socioeconomic pathways), models (max-
imum road-time model and random growth urban model), and
output (urban-population projections).
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assume μi � N0 � Ni and thus neglect this quantity in Eq. (1). In this
equation, the quantity r(t) that enters the summation limits is the rank
of the smallest city at time t, and we put Nt

Uc ¼
PrðtÞ

j¼1 N
t
j . If N

t
i in this

equation is Pareto-distributed, then Ni
t+ 1 will be as well. Here, the

increase in a nation’s total urban population is the sum of the
population increases in existing cities plus the populations of any newly
added cities; all cities with ranks between r(t)+ 1 and r(t+ 1) will be
newly added. In our estimation procedure, r(t+ 1) is not known in
advance; instead, we initially set r(t+ 1)= r(t)+ 1, use Eq. (6) to
compute Ntþ1

rðtþ1Þ, and then repeatedly increase the value of r(t+ 1) by

1 until we have Ntþ1
rðtþ1Þ < Nmc, where Nmc is the minimum population size

of urban agglomerations, which varies from nation to nation. If r(t+ 1)
> r(t), then r(t+ 1)− r(t) rural settlements become urban agglomera-
tions, as their populations now exceed Nmc. Thus, our method simulates
the emergence of new urban agglomerations from the seeds of rural
settlements, while the total number of urban and rural settlements
remains fixed through the analysis. The emergence of entirely new cities
—with no predecessors in 2010—is not simulated in this study. This
assumption will affect the lower tail of the population-size distribution,
which falls outside the scope of this study. If, at any time point, the sum
of the populations of the cities we include in our analysis exceeds the
total population of the nation given by the SSP scenario, we correct
the discrepancy by forcibly setting to zero the population of first the
smallest city, then that of the second smallest city, and so on until the
total population agrees with the SSP value.
In cases where the urban population decreases, we assume that the

number of cities decreases as well, and we put

Ntþ1
i ¼ Nt

i = Nt
Uc �

XrðtÞ

j¼rðtþ1Þþ1

Nt
j

0

@

1

ANtþ1
Uc :

Mirroring the procedure described above, as r(t+ 1) is not known in
advance, we initially put r(t+ 1)= r(t)− 1, then repeatedly decrease
r(t+ 1) by 1 until the condition Nr(t+1)

t+ 1 > Nmc is satisfied.
For postdiction, if NUc

t+ 1 > NUc
t we put

Nt
i ¼ Ntþ1

i = Ntþ1
Uc �

Xrðtþ1Þ

j¼rðtÞþ1

Ntþ1
j

0

@

1

ANt
Uc; (7)

while if NUc
t+ 1 < NUc

t we instead put

Nt
i ¼ Ntþ1

i = Ntþ1
Uc þ

XrðtÞ

j¼rðtþ1Þþ1

Ntþ1
j

0

@

1

ANt
Uc: (8)

Because r(t) is unknown, in the former case, we initialize r(t)= r(t+ 1)–1
and then repeatedly decrease r(t) by 1 until Nr(t)

t > Nmc; in the latter case,
we initialize r(t)= r(t+ 1)+1 and then repeatedly increase r(t) by 1 until
Nr(t)

t < Nmc.
We estimate absolute percentage errors (APEs) of our projections

by comparing them to UN-WUP data. APEs tend to larger values for
urban agglomerations of smaller populations and for projections
further into the future. Referring to Tayman et al.39, we model APEs
according to

log APEti
� � ¼ β0 þ βN log Nt

i

� �þ βT log Tð Þ; (9)

where Nt
i is the population of agglomeration i at time t and T is the temporal

distance from 2010 (i.e., T= | t− 2010 | ). Here we use APE and N values for
1736 agglomerations at 5-year intervals from 1950 to 2035, excluding
the base year 2010. Table 6 shows the estimated parameters, and Fig. 4 shows

the estimated APE for a range of population and time horizon. According to
the estimate, APEs are substantial for small cities, but decrease for larger
populations. For the year 2100 (time horizon 90 years), the APE for
agglomerations with populations of 1 million or more is 24%, while
that for agglomerations with populations of 10 million or more is estimated
at 8.7%.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Table 6. Absolute percentage error model parameters.

Estimate Std. error t value

ln(β0) 1.530 0.0955 16.02

βN −0.451 0.0058 −77.43

βT 0.728 0.0113 64.62

N 30,495

R2 0.386

Table 5. Maximum road-travel time model parameters.

Estimate Std. error t value

ln(α0) −6.167 0.0924 −66.7

αN 0.321 0.0080 40.3

αG 0.167 0.0074 22.7

αR −1.210 0.0140 −86.3

N 1,816

R2 0.820
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Fig. 4 Estimation of absolute percent errors (APEs). APEs are
estimated using population size and time horizon. The horizontal
axis indicates population, the vertical axis indicates APE, and curves
are depicted by the selected time horizon.
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