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Multi-purpose RNA language modelling with 
motif-aware pretraining and type-guided 
fine-tuning

Ning Wang    1,2,6, Jiang Bian1,6, Yuchen Li1,3, Xuhong Li1, Shahid Mumtaz    4,5, 
Linghe Kong    3  & Haoyi Xiong    1,6 

Pretrained language models have shown promise in analysing nucleotide 
sequences, yet a versatile model excelling across diverse tasks with a single 
pretrained weight set remains elusive. Here we introduce RNAErnie, an 
RNA-focused pretrained model built upon the transformer architecture, 
employing two simple yet effective strategies. First, RNAErnie enhances 
pretraining by incorporating RNA motifs as biological priors and introducing 
motif-level random masking in addition to masked language modelling at 
base/subsequence levels. It also tokenizes RNA types (for example, miRNA, 
lnRNA) as stop words, appending them to sequences during pretraining. 
Second, subject to out-of-distribution tasks with RNA sequences not seen 
during the pretraining phase, RNAErnie proposes a type-guided fine-tuning 
strategy that first predicts possible RNA types using an RNA sequence and 
then appends the predicted type to the tail of sequence to refine feature 
embedding in a post hoc way. Our extensive evaluation across seven datasets 
and five tasks demonstrates the superiority of RNAErnie in both supervised 
and unsupervised learning. It surpasses baselines with up to 1.8% higher 
accuracy in classification, 2.2% greater accuracy in interaction prediction and 
3.3% improved F1 score in structure prediction, showcasing its robustness 
and adaptability with a unified pretrained foundation.

RNA is a critical molecule in the central dogma of molecular biology, 
which describes the flow of genetic information from DNA to RNA to 
protein.

RNA molecules play a crucial role in various cellular processes, 
including gene expression, regulation and catalysis. Given the impor-
tance of RNA in biological systems, there is a growing demand for 
efficient and accurate methods to analyse RNA sequences. The analysis 
of RNA sequences has traditionally been performed using experimen-
tal techniques such as RNA sequencing and microarrays1,2. However, 
these methods are often expensive and time-consuming and require 

large amounts of input RNA. In recent years, there has been increasing 
interest in using computational methods based on machine learning 
models to analyse RNA sequences.

Pretrained language models, on the other hand, have shown 
great success in various natural language processing tasks, including 
text classification3, question answering4 and language translation5. 
Advancements in the field of natural language processing have led to 
the successful adoption of pretrained language models like BERT6 to 
model and analyse nucleotides (nts) and ribonucleotides from trillions 
of DNA/RNA sequences. For example, preMLI7 employs rna2vec to 
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effectively captures both subsequence and motif-level knowledge17–19, 
enriching the representation of RNA sequences as illustrated in Fig. 2a. 
Additionally, RNAErnie tokenizes coarse-grained RNA types as special 
vocabularies and appends the tokens of coarse-grained RNA types at the 
end of every RNA sequence during pretraining. By doing so, the model 
gains the potential to discern the distinct characteristics of various 
RNA types, facilitating domain adaption to various downstream tasks.

Specifically, a type-guided fine-tuning strategy is employed, incor-
porating the predicted RNA types as ‘auxiliary information’ within 
a stacking architecture, as shown in Fig. 2b. Upon receiving an RNA 
sequence as input, the model first employs a pretrained RNAErnie 
block to generate output embeddings. Subsequently, it predicts the 
potential coarse-grained RNA types based on these embeddings. The 
sequence and the predicted RNA types are then fed into a downstream 
network, which consists of RNAErnie blocks and task-specific heads. 
This approach enables the model to accommodate a diverse range of 
RNA types and enhances its utility in a broad spectrum of RNA analytical 
tasks. More specifically, to adapt the distribution shifts between pre-
training datasets and target domains, RNAErnie leverages domain adap-
tation20 that composites the pretrained backbone with downstream 
modules in three neural architectures: frozen backbone with trainable 
head (FBTH), trainable backbone with trainable head (TBTH) and stack-
ing for type-guided fine-tuning (STACK). In this way, the proposed 
method can either end-to-end optimize the backbone and task-specific 
heads or fine-tune task-specific heads with embeddings extracted from 
the frozen backbone, subject to the downstream applications.

The conducted experiments highlight the immense potential of 
RNAErnie in advancing RNA analysis. The model demonstrates strong 

produce RNA word vector representations. The RNA sequence fea-
tures are then mined independently, and the two feature vectors are 
concatenated as the input for the prediction task. DNABERT8 has been 
proposed to extract features from DNA sequences via the pretrained 
language model BERT-alike, and its derivatives9,10 with task-agnostic 
extensions have been studied to solve DNA analytical tasks in an ad 
hoc manner11. Moreover, based on T5 (ref. 12), Rm-LR13 integrates two 
large-scale RNA language pretrained models to learn local key features 
and collect discriminative sequential information. A bilinear attention 
network is then used to integrate the learned features. However, there 
is still some work focusing on generic models that performs well on 
varying downstream tasks derived from one set of pretrained weights. 
RNA-FM14 trains a foundation model for the community to fit all the 
ncRNA sequences, although it only uses naive token masking as a pre-
training strategy, which may lose high-density information hidden in 
continuous RNA subsequences. This problem is further compounded 
by the fact that RNA is a more complex molecule than DNA15, due to the 
presence of additional modifications and higher-order structures, and 
existing pretrained models are not optimized for RNA analysis.

In response to this challenge, we have developed a pretrained RNA 
language model: RNAErnie. As shown in Fig. 1, this model is built upon 
the Enhanced Representation through Knowledge Integration (ERNIE) 
framework and incorporates multilayer and multihead transformer 
blocks, each having a hidden state dimension of 768. Pretraining is 
conducted using an extensive corpus consisting of approximately 
23 million RNA sequences meticulously curated from RNAcentral16. The 
proposed motif-aware pretraining strategy involves base-level masking, 
subsequence-level masking and motif-level random masking, which 
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Fig. 1 | Overview of the design of the proposed model and its applications. The 
RNAErnie model consists of 12 transformer layers. In the motif-aware pretraining 
phase, RNAErnie is trained on a dataset of approximately 23 million sequences 
extracted from the RNAcentral database using self-supervised learning with 
motif-aware multilevel random masking. In the type-guided fine-tuning phase, 

RNAErnie first predicts the possible coarse-grained RNA types using output 
embeddings and then leverages the predicted types as auxiliary information 
for fine-tuning the model with task-specific heads. w/, with; w/o, without; MLM, 
masked language modelling; norm., normalization.
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performance across diverse downstream tasks, showcasing its versatil-
ity and effectiveness as a generic solution. Additionally, the innovative 
strategies employed in RNAErnie show promise in enhancing the per-
formance of other pretrained models in RNA analysis. These findings 
position RNAErnie as a valuable asset, empowering researchers with a 
powerful tool to unravel the complexities of RNA-related investigations.

Results
In this section, we present the experiment results for RNAErnie evalu-
ation on both unsupervised learning (RNA grouping) and supervised 
learning (RNA sequence classification, RNA–RNA interaction predic-
tion and RNA secondary structure prediction) tasks. For additional 
experiment settings and results (such as long-sequence classification, 
SARS-CoV-2 variant evolutionary path visualization and so on), please 
refer to Supplementary Information Section C.

Unsupervised clustering of RNAErnie-extracted features
Various types of RNA exhibit distinct functions and structures, and it 
is expected that these characteristics are captured within the embed-
dings generated by our proposed model (RNAErnie) using raw RNA 
sequences. To examine the patterns within the known RNA repertoire, 
we utilize the suggested encoder to establish scatter plots of RNA 
sequences. Dimension reduction using PHATE21 is then employed to 
map the embeddings onto a two-dimensional plane. We evaluate the 
impact of the learning process by considering both pretrained and 
randomly initialized RNAErnie embeddings, as well as 3mer statistical 
embeddings22 for visualization.

Figure 3a shows the results, where the pretrained RNAErnie 
embedding space effectively organizes RNA types into distinct clus-
ters based on their structural and functional properties. We also use 
a random model for comparing encoding effects, establishing a base-
line for comparison with other encoding methods. This comparison 
allows us to evaluate the effectiveness of each method in enhancing the 
encoding process. The random model exhibits a less-defined clustering 
structure, and the 3mer embeddings lack distinguishable features. This 
indicates that RNAErnie captures structural and functional informa-
tion beyond the primary structure of RNA, enabling grouping based 
on similar properties. To investigate the diversity of non-coding RNAs 
(ncRNAs), we categorize them using sequence ontology at various lev-
els. Figure 3b illustrates selected classes of ncRNA, such as ribosomal 
RNA (rRNA), long ncRNA (lncRNA) and small ncRNA (sncRNA). Figure 3c 
shows the high-level ontology relationships between ncRNA, tran-
script, messenger RNA (mRNA) and intron RNA. Figure 3d represents 
the low-level ontology of small regulatory ncRNA. RNAErnie effectively 
discriminates between classes at different ontology levels, while the 
3mer statistical embeddings struggle to separate them. This suggests 
that RNAErnie captures structural or functional similarities rather than 
relying solely on the length of ncRNAs. Note that the random approach 
seems to outperform RNAErnie in differentiating between classes 
across various ontology levels. This finding suggests that RNAErnie 
might be less effective in capturing the ontology patterns of low-level, 
small regulatory ncRNA classes. We believe that this limitation in iden-
tifying low-level ontology patterns may stem from several factors, 
including the complexity and heterogeneity of classes at this level or 
potential biases in our training dataset. Further research and detailed 
analysis are needed to identify the specific causes behind RNAErnie’s 
reduced efficacy in discerning patterns in low-level ontology.

In total, these findings demonstrate that RNAErnie constructs 
scatter plots by capturing the structural and functional characteristics 
of ncRNAs, going beyond nucleic acid statistics alone.

Supervised domain adaptation on downstream tasks
In this section, we demonstrate the effectiveness of RNAErnie in three 
essential supervised learning tasks: RNA sequence classification, RNA–
RNA interaction and RNA secondary structure prediction.

To reveal the effectiveness of the designs in RNAErnie, we con-
ducted a series of ablation studies using variant models derived 
from RNAErnie. These models vary in complexity, beginning with 
Ernie-base, which lacks RNA-specific pretraining and includes standard 
fine-tuning. RNAErnie−− employs base-level masking during pretrain-
ing, and RNAErnie− adds subsequence-level masking to the mix. The 
complete RNAErnie model further integrates motif-level masking 
and is fine-tuned using either TBTH or FBTH architectures. Extending 
this, RNAErnie+ represents the apogee of complexity within this fam-
ily, including all three levels of masking and a STACK architecture for 
pretraining. Lastly, the RNAErnie without chunk model is tailored for 
long RNA sequences by truncating and discarding segments to contend 
with computational constraints, aimed at the efficient classification of 
long non-coding and protein-encoding transcripts.

In addition, we also bring pretrained models from existing litera-
ture, including RNABERT23, RNA-MSM24 and RNA-FM14 for comparison.

RNA sequence classification. We evaluate the performance of our 
proposed sequence-classification models on the benchmark nRC25. 
This dataset consists of ncRNA sequences selected from the Rfam 
database release 12 (ref. 26). nRC is composed of a balanced collec-
tion of sequences, with 20% non-redundant samples for each of the 13 
classes. It has 6,320 training sequences and 2,600 testing sequences 
labelled with 13 classes.

Table 1 presents the sequence-classification results for RNAErnie 
on the nRC dataset. The table includes several baseline methods as well 
as different variants of the RNAErnie models. The baseline values are 
all taken from cited literature except the pretrained models: RNABERT, 
RNA-MSM and RNA-FM. Analysing the performance of the models, we 
observe that the baseline methods achieve varying levels of accuracy. 
Notably, ncRDense demonstrates decent performance, achieving high 
accuracy, recall, precision, F1 score and Matthews correlation coef-
ficient (MCC) values. Turning our attention to the RNAErnie variants, 
we can see that they consistently outperform most of the baseline 
models across all evaluation metrics. Although ncRDense can beat the 
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Fig. 2 | Motif-aware pretraining and type-guided fine-tuning strategies.  
a, Motif-aware multilevel masking strategy for RNAErnie pretraining. Built upon 
ERNIE transformer blocks, the design incorporates three levels of masking: base, 
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first two (that is, Ernie-base and RNAErnie−−), RNAErnie−, RNAErnie and 
RNAErnie+ show better performance in all five dimensions.

In the hierarchy of the RNAErnie model family, performance met-
rics improve incrementally with complexity of design. The foundational 
model, Ernie-base, establishes a baseline that is modestly surpassed by 
RNAErnie−− through the introduction of base-level masking in pretrain-
ing. Furthermore, RNAErnie− incorporates subsequence-level masking 
and delivers notably enhanced accuracy, recall, precision, F1 score and 
MCC values, endorsing the value of a more comprehensive masking 
strategy. The full RNAErnie model integrates base, subsequence and 
motif-level masking, achieving superior performance over its pre-
decessors across all metrics and illustrating the cumulative benefits 
of multilevel masking. The apex model, RNAErnie+, which employs 

an exhaustive masking regimen in conjunction with a two-stage 
fine-tuning architecture, outperforms all variants in our experiments.

RNA–RNA interaction. We evaluate the performance of our model on 
one of the most representative benchmark datasets, DeepMirTar27,28, 
which is used for predicting the interaction between microRNAs (miR-
NAs) and mRNAs. This dataset consists of 13,860 positive pairs and 
13,860 negative pairs. The miRNA sequences in DeepMirTar are all 
shorter than 26 nts, and the mRNA sequences are shorter than 53 nts. 
Because most of the target sites are believed to be located at the 3′ 
untranslated region, DeepMirTar only considers them. Furthermore, 
two seeds were taken into consideration: the non-canonical seed, 
which pairs at position 2-7 or 3-8, permitting G-U couplings and up 
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to one bulged or mismatched nt; and the canonical seed, which is the 
precise W-C pairing of 2-7 or 3-8 nts of the miRNA. Given that RNA types 
(miRNA, mRNA) are fixed here, we do not test RNAErnie+ version which 
uses a two-stage pipeline here.

Table 2 presents the performance comparison between the pro-
posed RNAErnie models and baseline methods from existing literature, 
such as Miranda29, RNAhybrid30, PITA31, TargetScan v.7.0 (ref. 32), TarP-
miR33 and DeepMirTar27. The baseline values are all taken from cited 
literature except the pretrained models: RNABERT, RNA-MSM and 
RNA-FM. These are evaluated on the RNA–RNA interaction prediction 
task using the DeepMirTar dataset. DeepMirTar emerges as a strong 
baseline, exhibiting high scores across all metrics. The Ernie-base 
model and the RNAErnie variations are then assessed, with the RNAEr-
nie model demonstrating superior performance and particularly 
excelling in accuracy, precision, F1 score and area under the curve 
(AUC). This variation achieves an impressive accuracy score of 0.9872, 
a competitive precision score of 0.9901, an F1 score of 0.9873 and the 
highest AUC score of 0.9976, indicating excellent overall performance 
and discriminative power.

Overall, the results suggest that the RNAErnie model, particularly 
the RNAErnie variation, outperforms the existing methods and the 
Ernie-base model in the RNA–RNA interaction prediction task. These 
findings highlight the potential of the RNAErnie model in accurately 
predicting RNA–RNA interactions.

RNA secondary structure prediction. This section presents a com-
prehensive comparison between our pretrained RNAErnie model and 
several baseline models, including the state-of-the-art UFold model34, 
in the context of RNA secondary structure prediction tasks. The experi-
ments are conducted using commonly used benchmarks employed in 
state-of-the-art models. These benchmarks include:

•	 RNAStralign35: This dataset comprises 37,149 RNA structures from 
eight RNA families, with lengths ranging from approximately 100 
to 3,000 base pairs (bp).

•	 ArchiveII36: This dataset consists of 3,975 RNA structures from 
ten RNA families, with lengths ranging from approximately 100 
to 2,000 bp.

•	 bpRNA-1m37: This dataset contains 13,419 RNA structures from 
2,588 RNA families, with sequence similarity removed using an 

80% sequence-identity cut-off. The lengths of the sequences  
range from approximately 100 to 500 bp. The dataset is randomly 
split into three subsets: TR0 (10,814 structures) for training, TV0 
(1,300 structures) for validation and TS0 (1,305 structures) for 
testing.

We train our model on the entire RNAStralign dataset, as well as 
the TR0 subset and other augmented mutated datasets, following the 
approach used in UFold. Subsequently, we evaluate performance on 
the ArchiveII600 dataset, which is a subset of ArchiveII with lengths 
less than 600 bp, and the TS0 dataset.

Table 3 presents a comparative analysis of the performance of 
various methods on the RNA secondary structure prediction task 
using the ArchiveII and TS0 datasets. The table presents the results 
of several baseline methods, including RNAstructure, RNAsoft, RNA-
fold, MXfold2, Mfold, LinearFold, Eternafold, E2Efold, Contrafold 
and Contextfold. Each method is assessed based on its precision,  
recall and F1 score for both the ArchiveII600 and TS0 datasets. 
The baseline values are all taken from cited literature except the 
pretrained models: RNABERT, RNA-MSM and RNA-FM. Among the 
RNAErnie variations, RNAErnie+ achieves the highest scores in pre-
cision, recall and F1 score, indicating its superior performance in 
RNA secondary structure prediction. Notably, RNAErnie+ achieves a 
remarkable precision score of 0.886, a high recall score of 0.870 and 
an impressive F1 score of 0.875 on the ArchiveII600 dataset. These 
results highlight the effectiveness of RNAErnie+ in accurately predict-
ing RNA secondary structures.

Discussion
Our method, RNAErnie, outperforms existing advanced techniques 
across seven RNA sequence datasets encompassing over 17,000 major 
RNA motifs, 20 RNA classes/types and 50,000 RNA sequences. Evalu-
ation using 30 mainstream RNA sequence technologies confirms the 
generalization and robustness of RNAErnie. We employed accuracy, 
precision, recall, F1 score, MCC and AUC as evaluation metrics to ensure 
a fair comparison of RNA sequence-analysis methods. Currently, little 
research exists on applying transformer architectures with enhanced 
external knowledge to RNA sequence data analysis. Our from-scratch 
RNAErnie framework integrates RNA sequence embedding and a 
self-supervised learning strategy, resulting in superior performance, 

Table 1 | Performance of RNAErnie on sequence 
classification for the nRC dataset

Method Accuracy Recall Precision F1 MCC

RNAcon53 0.3737 0.3732 0.4497 0.3505 0.3341

nRC25 0.6960 0.6889 0.6878 0.6878 0.6627

ncRFP54 0.7972 0.7878 0.7904 0.7883 0.7714

RNAGCN55 0.8573 0.8609 0.9882 0.8561 0.8459

ncRDeep56 0.8804 0.8842 0.8913 0.8858 0.8801

ncRDense57 0.9510 0.9510 0.9529 0.9512 0.9470

RNABERT23 0.7142 0.7142 0.7155 0.7155 0.6911

RNA-MSM24 0.9027 0.9027 0.9045 0.9023 0.8948

RNA-FM14 0.9656 0.9656 0.9672 0.9664 0.9635

Ernie-base 0.9262 0.9257 0.9371 0.9314 0.9214

RNAErnie−− 0.9354 0.9354 0.9367 0.9352 0.9301

RNAErnie− 0.9604 0.9604 0.9611 0.9605 0.9571

RNAErnie 0.9638 0.9638 0.9641 0.9639 0.9608

RNAErnie+ 0.9688 0.9688 0.9691 0.9687 0.9662

Bold formatting indicates the best results on the metrics.

Table 2 | Performance of RNAErnie on RNA–RNA interaction 
prediction task using the DeepMirTar dataset

Method Accuracy Recall Precision F1 AUC

Miranda29 0.6592 0.6522 0.6662 0.6591 0.6874

RNAhybrid30 0.6988 0.6446 0.7535 0.6948 0.7585

PITA31 0.4981 0.5872 0.4082 0.4816 –

TargetScan v.7.032 0.5801 0.6023 0.5922 0.5972 0.6725

TarPmiR33 0.7446 0.7368 0.7656 0.7509 0.8021

DeepMirTar27 0.9348 0.9235 0.9479 0.9245 0.9793

RNABERT23 0.8375 0.8372 0.8378 0.8373 0.9160

RNA-MSM24 0.8205 0.8203 0.8207 0.8204 0.9048

RNA-FM14 0.9208 0.9208 0.9208 0.9208 0.9741

Ernie-base 0.9262 0.9257 0.9371 0.9314 0.9674

RNAErnie−− 0.9537 0.9547 0.9533 0.9540 0.9801

RNAErnie− 0.9524 0.9539 0.9514 0.9526 0.9811

RNAErnie 0.9570 0.9576 0.9571 0.9573 0.9876

Bold formatting indicates the best results on the metrics. The AUC value for the PITA model 
has been omitted, as it was not available in ref. 31.
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interpretability and generalization potential for downstream RNA tasks. 
Additionally, RNAErnie is adaptable to other tasks through modifica-
tion of the output and supervision signals. RNAErnie is publicly avail-
able and serves as an effective tool for understanding type-guided RNA 
analysis and advanced applications.

The RNAErnie model, despite its innovations in RNA sequence 
analysis, confronts several challenges. First, the model is constrained 
by the size of the RNA sequences it can analyse, as sequences longer 
than 512 nts are dropped, potentially omitting vital structural and 
functional information. The chunking method developed to han-
dle longer sequences might result in the further loss of information 
about long-range interactions. Second, the focus of this study is nar-
row, centred only on the RNA domain and not extending to tasks like 
RNA-protein prediction or binding-site identification. Additionally, the 
model encounters difficulties in considering three-dimensional struc-
tural motifs of RNAs, such as loops and junctions, which are essential 
for understanding RNA functions.

More importantly, the existing post hoc architectural design has 
potential limitations, including heightened inference overhead. An 
alternative approach involves designing a specialized loss function 
that incorporates RNA type information and pretraining the model 
in an end-to-end fashion. We have experimented with this concept 
and engaged in preliminary pretraining. Our findings indicate that 
although this method proves beneficial for discriminative tasks such 
as sequence classification, it unfortunately leads to suboptimal token 
representations with performance degradation in reconstruction of 
structures. Detailed information is provided Supplementary Informa-
tion Section C.6. Our future work will go deeper into this issue and 
explore solutions.

Methods
This section provides a comprehensive overview of the design features 
associated with each component of RNAErnie. We will explore the spe-
cific characteristics of each element and discuss their collaborative func-
tionality in enabling the accomplishment of diverse downstream tasks.

Overall design
In this work, we present RNAErnie, an approach for large-scale pre-
training of RNA sequences based on the ERNIE framework38, which 
incorporates multilayer and multihead transformer blocks39.

RNAErnie transformer. The basic block of the RNAErnie transformer 
shares the same architectural configuration as ERNIE38, employing a 
12-layer transformer and a hidden state dimension of Dh = 768. Consider 
an input RNA sequence denoted as x = (x1, x2, ⋯ , xL), where each ele-
ment xi ∈ {‘A’, ‘U’, ‘C’, ‘G’} and L represents the length of the sequence. 
An RNAErnie block first tokenizes RNA bases in the sequence and 
subsequently feeds them into the transformer. This process enables 
us to extract token embeddings h = (h1,h2,⋯ ,hL) ∈ ℝL×Dh , where Dh 
represents the dimension of the hidden representations for the tokens. 
Given the embeddings for every token in the RNA sequence, the RNAEr-
nie basic block transforms the series of token embeddings into a 
lower-dimensional vector (that is, 768 dimensions) using trainable 
parameters38 and then outputs the embedding of the RNA sequence. 
The total number of trainable parameters in RNAErnie is approximately 
105 million.

Pretraining datasets. Basically, like many other pretraining based 
approaches, the RNAErnie approach is structured into two main phases: 
pretraining and fine-tuning. In the pretraining phase, which is agnostic 
to any specific task, RNAErnie is meticulously trained on a vast corpus 
of 23 million ncRNA sequences obtained from the RNAcentral data-
base16. This self-supervised autoregressive training phase allows RNAEr-
nie to capture sequential distributions and patterns within the RNA 
sequences, thereby acquiring a comprehensive understanding of their 
structural and functional information. In the subsequent task-specific 
fine-tuning phase, the pretrained RNAErnie model is either fine-tuned 
with downstream modules or used to generate sequence embeddings 
(features) that complement a lightweight prediction layer. Regarding 
the tokenization of RNA bases, the sequences are tokenized to represent 
‘A’, ‘T/U’, ‘C’ and ‘G’, with the initial token of each sequence reserved for 

Table 3 | Performance of RNAErnie on RNA secondary structure prediction task using the ArchiveII600 and TS0 datasets

Methods
ArchiveII600 TS0

Precision Recall F1 Precision Recall F1

RNAstructure58 0.563 0.615 0.585 0.494 0.622 0.533

RNAsoft59 0.665 0.594 0.622 0.497 0.626 0.535

RNAfold60 0.565 0.627 0.592 0.494 0.631 0.536

MXfold247 0.788 0.760 0.768 0.519 0.646 0.558

Mfold61 0.428 0.383 0.401 0.501 0.627 0.538

LinearFold62 0.641 0.617 0.621 0.561 0.581 0.550

Eternafold63 0.667 0.622 0.636 0.516 0.666 0.563

E2Efold64 0.738 0.665 0.690 0.140 0.129 0.130

Contrafold65 0.607 0.679 0.638 0.528 0.655 0.567

Contextfold66 0.873 0.821 0.842 0.529 0.607 0.546

RNABERT23 0.634 0.649 0.641 0.435 0.527 0.477

RNA-MSM24 0.664 0.648 0.656 0.448 0.540 0.490

RNA-FM14 0.752 0.737 0.744 0.518 0.620 0.564

Ernie-base 0.875 0.839 0.851 0.582 0.666 0.607

RNAErnie−− 0.855 0.844 0.846 0.569 0.666 0.602

RNAErnie− 0.848 0.854 0.848 0.579 0.667 0.607

RNAErnie 0.884 0.869 0.873 0.576 0.668 0.608

RNAErnie+ 0.886 0.870 0.875 0.575 0.678 0.622

Bold formatting indicates the best results on the metrics.
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the special classification embedding ([CLS]). Additionally, an indication 
embedding ([IND]) is appended to each RNA sequence, followed by indi-
cation classes (for example, ‘miRNA’, ‘mRNA’, ‘lnRNA’) derived from the 
RNAcentral database, as depicted in Extended Data Fig. 1. The inclusion 
of the indication embedding encourages the model to cluster similar 
RNA sequences in a latent space, facilitating retrieval-based learning40.

Motif-aware pretraining strategies
To integrate both subsequence and motif-level knowledge into the 
representation of RNA sequences, we introduce a motif-ware multilevel 
masking strategy to pretrain the RNAErnie basic block, as opposed to 
directly incorporating motif embedding. In addition, the RNAErnie 
approach follows the standard routine of pretraining with all three 
levels of masking tasks, learning to predict the masked tokens and also 
capture contextualized representations of the input RNA sequence. 
Specifically, the procedure of RNAErnie pretraining with motif-aware 
multilevel masking strategies is as follows.

Base-level masking. In the initial stage of the learning process, we 
employ base-level masking as a crucial component. Specifically, we 
randomly mask 15% of the nucleobases within an RNA sequence. Among 
the masked positions, 10% are preserved without any alterations, and 
the remaining 10% are replaced with other nucleobases. The model 
takes the remaining nucleobases as input and is tasked with predict-
ing the masked positions. This stage primarily focuses on acquiring 
fundamental token representations; capturing intricate higher-level 
biological insights proves to be a challenging endeavour.

Subsequence-level masking. Next, we incorporate the masking of 
random subsequences, which are short and contiguous segments of 
nucleobases within an RNA sequence. Previous studies, such as refs. 41 
and 42, have demonstrated the efficacy of contiguous token masking 
in enhancing pretrained models for span-selection tasks. Additionally, 
it is important to consider that the functionality of nucleobases often 
manifests within the context of sequential arrangements. By predicting 
these subsequences as a whole, we encourage the model to capture a 
deeper understanding of the biological information inherent in the 
relationships between consecutive nucleobases. In our research, we 
specifically mask subsequences with lengths ranging from 4 to 8 bp.

Motif-level masking. In the final stage of pretraining, we employ 
motif-level masking as part of our approach. RNA motifs, character-
ized as recurrent structural elements with a high concentration of 
information, have been extensively observed in atomic-resolution 
RNA structures17. These motifs are widely recognized for their crucial 
involvement in various biological activities, such as the formation of 
RNA tertiary structures19, interaction with dsRNA-binding proteins 
(RBPs) and participation in complex formation with proteins18. To 
incorporate these motifs into our model as so-called biological priors, 
we gather them from multiple sources:

•	 ATtRACT43: This resource provides comprehensive information 
on 370 RBPs and 1,583 RBP consensus binding motifs. The data 
is extracted and carefully curated from experimentally validated 
sources such as CISBP-RNA, SpliceAid-F and RBPDB databases.

•	 SpliceAid44: We gather information from SpliceAid, which 
encompasses 2,220 target sites associated with 62 human splic-
ing proteins. Additionally, it includes expression data from 320 
tissues per cell.

•	 We also extract the most frequently occurring contiguous 
nucleobase sequences, ranging from 4 to 8 bp, by scanning the 
entirety of the RNAcentral database.

By incorporating motifs from these diverse sources, we aim to capture 
a comprehensive representation of RNA structural elements for our 
analysis.

Type-guided fine-tuning strategy
Given the RNAErnie basic block pretrained with motif-aware mul-
tilevel masking strategies, we need to combine the basic blocks of 
the RNAErnie transformer with task-specific heads—for example, a 
fully connected layer for RNA classification—into a neural network 
for the downstream task and further train the neural network sub-
ject to labelled datasets for the downstream application in a super-
vised learning manner. Here, we introduce our proposed type-guided 
fine-tuning strategy in two parts: neural architectures for tasks and 
domain-adaptation strategies.

Neural architectures for fine-tuning. To adapt various downstream 
tasks, the RNAErnie approach follows the surgical fine-tuning strate-
gies20 and offers three sets of neural network architectures as follows.

FBTH. In the FBTH architecture, given RNA sequences and their 
labels for a downstream task, the RNAErnie approach simply extracts 
embeddings of RNA sequences from a pretrained RNAErnie basic 
block and then leverages the embeddings as inputs to train a separate 
task-specific head subject to the downstream tasks. In this way, the 
parameters in the RNAErnie backbone are frozen, while the head is 
trainable. According to ref. 20, this architecture would work well when 
the downstream tasks are out-of-distribution of pretraining datasets.

TBTH. In the TBTH architecture, the RNAErnie approach directly com-
bines the RNAErnie basic block and the task-specific head to construct 
an end-to-end neural network for downstream tasks and then trains 
the neural network using the labelled datasets in a supervised learning 
manner. In this way, the parameters in both the RNAErnie backbone and 
the head are trainable. According to ref. 20, this architecture would 
work well when the downstream tasks and pretraining datasets are in 
the same distribution.

STACK. In the STACK architecture, the RNAErnie approach first lev-
erages an RNAErnie basic block to predict the top-K most possible 
coarse-grained RNA types (that is, the K coarse-grained RNA types with 
the highest probabilities) using the input RNA sequence. Then it stacks 
an additional layer of K downstream modules with shared parameters 
for fine-tuning, where every downstream module refers to a TBTH/
FBTH network and is fed with the RNA sequence and a predicted RNA 
type for the downstream task. The K downstream modules output K 
prediction results, and the RNAErnie approach outputs the ensemble 
of K results as the final outcome.

More specifically, in the STACK architecture, the RNAErnie basic 
block first predicts the indication of an RNA sequence following the [IND] 
marker by estimating the probability of the masked indication token, 
denoted as p(xIND∣x; θ). From these predictions, the RNAErnie approach 
selects the top-K indications, denoted as Ik ∈ ℐ for k = 1, ⋯ , K, along with 
their corresponding probabilities σ1, …, σK. Each selected indication is 
then appended to the end of the RNA sequence, resulting in K parallel 
inputs to the downstream module. Then the downstream module takes 
the K parallel inputs simultaneously, enabling ensemble learning through 
soft majority voting. Specifically, the RNAErnie approach calculates the 
weighted sum for soft majority voting as follows:

̄q =
K
∑
k=1
σkqk, (1)

where qk could be either scalar, vector or matrix outputs from the 
downstream module for various downstream tasks (for example, logit 
vectors for classification tasks or pair-wise feature maps for structural 
analysis), while ̄q refers to the weight sum.

Note that although we consider the stacking architecture part 
of our key contributions, FBTH and TBTH sometimes deliver better 
performance.
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Domain adaptation to downstream tasks. Upon completion of the 
pretraining phase, the RNAErnie basic block is prepared for type-guided 
fine-tuning, enabling its application to various downstream tasks. It is 
important to emphasize that RNAErnie has the potential to accommo-
date a diverse array of tasks, extending beyond the examples provided 
below, through appropriate FBTH, TBTH and STACK architectures.

RNA sequence classification. RNA sequence classification is a pivotal 
task that assigns RNA sequences to specific categories. In other words, 
it maps an RNA sequence x of length L to scalar labels, which refer to 
different categories. RNA sequence classification is crucial for under-
standing their functions and their roles in various biological processes. 
Accurate classification of RNA sequences enables researchers to iden-
tify ontology and predict functions, which facilitates the development 
of new therapies and treatments for RNA-related diseases.

Our work leverages STACK with TBTH to classify RNA sequences. 
It stacks K classification modules: the RNAErnie basic block combined 
with a trainable MLP as a prediction head. However, the computational 
complexity of transformers, which exhibit a quadratic time complexity 
of 𝒪𝒪(n2d), where n denotes the sequence length, posed challenges when 
processing excessively long RNA sequences. To discern lncRNA amidst 
protein-coding transcripts, we employed a chunk strategy. This strat-
egy entails the division of lengthy RNA sequences into more manage-
able segments, which are independently fed into the RNAErnie 
approach. Subsequently, we aggregate the segment-level logits to 
obtain the sequence-level logit and employ an MLP for classification 
purposes.

RNA–RNA interaction prediction. RNA–RNA interaction prediction 
refers to the estimation of interactions between two RNA sequences, 
such as miRNA and mRNA, circular RNA and lncRNA. This task maps 
two RNA sequences, xa of length L1 and xb of length L2, to binary labels 
0/1, where 0 indicates no interaction between the two RNA sequences 
and 1 indicates interaction. Accurate prediction of RNA–RNA interac-
tions can provide valuable insights into RNA-mediated regulatory 
mechanisms and enhance our understanding of biological processes, 
including gene expression, splicing and translation45.

Our work employs a TBTH architecture, which combines the 
RNAErnie basic block with a hybrid neural network inspired by ref. 46. 
This hybrid neural network acts as the interaction prediction head, 
sequentially incorporating several components: a convolutional neural 
network, a bidirectional long short-term memory network and a MLP. 
Because the types of interacting RNA are fixed, it is unnecessary to 
employ the STACK architecture for the purpose of RNA–RNA interac-
tion analysis.

RNA secondary structure prediction. RNA secondary structure pre-
diction determines the probable arrangement of bp within an RNA 
sequence, which can fold back onto itself and form specific pairings. 
It maps an RNA sequence x of length L to a 0/1 matrix with shape L × L, 
where element i, j means whether nt i forms bp with nt j. The secondary 
structure of RNA plays a critical role in understanding its interactions 
with other molecules and its functional importance. This prediction 
technique is a valuable tool in molecular biology, aiding in the identi-
fication of potential targets for drug design and enhancing our under-
standing of gene expression and regulation mechanisms.

Our work utilizes the STACK architecture with FBTH to fold RNA 
sequences. We combined the RNAErnie basic block with a folding neural 
network inspired by the methodology described in ref. 47. It computes 
four distinct folding scores—helix stacking, unpaired region, helix 
opening and helix closing—for each pair of nt bases. Subsequently, we 
utilize a Zuker-style dynamic programming approach48 to predict the 
most favourable secondary structure. This is achieved by maximizing 
the cumulative scores of adjacent loops, following a systematic and 
rigorous computational procedure. To facilitate the training of our 

deep neural network, we adopt the max-margin framework. Within this 
framework, the network minimizes the structured hinge loss function 
while incorporating thermodynamic regularization.

Hyperparameters and configurations
During the pretraining phase, our model underwent approximately 
2,580,000 steps of training, with a batch size set to 50 and a maxi-
mum sequence length for ERNIE limited to 512. We utilized the AdamW 
optimizer, which was regulated by a learning-rate schedule involving 
anneal warm-up and decay. The initial learning rate was set at 1 × 10−4, 
with a minimum learning rate of 5 × 10−5. The learning-rate scheduler 
was designed to warm up during the first 5% of the steps and then 
decay in the final 5% of the steps. In terms of masking strategies, we 
maintained a proportion of 1:1:1 across the three different masking 
levels, with the training algorithm randomly selecting one strategy for 
each training session. The pretraining was conducted on four Nvidia 
Tesla V100 32 GB graphics processing units, taking around 250 hours 
to reach convergence.

Here, in additional to the hyperparameters for pretraining, we 
introduce the configurations of variant pretrained models derived 
from RNAErnie and used in experiments:

•	 Ernie-base: this model represents the vanilla ERNIE architecture 
without any pretraining on RNA sequence datasets. It under-
went standard fine-tuning.

•	 RNAErnie−−: in this model, only base-level masking was 
employed during the pretraining phase of the RNAErnie family. 
It was then fine-tuned using the standard approach.

•	 RNAErnie−: the RNAErnie family model with both base and 
subsequence-level masking during pretraining, followed by 
standard fine-tuning.

•	 RNAErnie: this model encompasses the complete set of masking 
strategies, including base, subsequence and motif-level masking 
during pretraining. It was fine-tuned using the TBTH or FBTH 
architecture.

•	 RNAErnie+: the most comprehensive model in the RNAErnie fam-
ily, incorporating all three levels of masking during pretraining 
and the STACK architecture.

•	 RNAErnie without chunk: this model truncates RNA sequences 
and discards any remaining segments when classifying long 
RNA sequences, specifically lncRNA (for example, in lnRC_H and 
lnRC_M datasets) alongside protein-encoding transcripts.

Data availability
The datasets used for pretraining and fine-tuning are all derived from 
previous studies. Here we include the official links. Note that the 
lncRNA_H and lncRNA_M datasets are used for long-sequence classifica-
tion in the Supplementary Information. RNAcentral16: https://ftp.ebi.
ac.uk/pub/databases/RNAcentral/releases/21.0/; ATtRACT43: https://
attract.cnic.es/download; SpliceAid44: http://193.206.120.249/cgi-bin/
SpliceAid.pl?sites=Download; nRC25: http://tblab.pa.icar.cnr.it/public/
nRC/paper_dataset/; lncRNA_H49: https://www.gencodegenes.org/
human/release_25.html; lncRNA_M49: https://www.gencodegenes.org/
mouse/; DeepMirTar27: https://github.com/tjgu/miTAR/tree/master/
scripts_data_models; ArchiveII36: https://rna.urmc.rochester.edu/pub-
lications.html; RNAStrAlign35: https://github.com/mxfold/mxfold2/
releases/tag/v0.1.0; bpRNA37: https://bprna.cgrb.oregonstate.edu/
download.php#bpRNA. Source data are provided with this paper.

Code availability
We built RNAErnie using Python and the PaddlePaddle deep learning 
framework. The code repository of RNAErnie, readme files and tutorials 
are all available at ref. 50. A docker image with configured environments 
and dependent libraries is available for download at ref. 51. To compare 
pretrained RNA language baselines, see the code repository at ref. 52.

http://www.nature.com/natmachintell
https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/21.0/
https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/21.0/
https://attract.cnic.es/download
https://attract.cnic.es/download
http://193.206.120.249/cgi-bin/SpliceAid.pl?sites=Download
http://193.206.120.249/cgi-bin/SpliceAid.pl?sites=Download
http://tblab.pa.icar.cnr.it/public/nRC/paper_dataset/
http://tblab.pa.icar.cnr.it/public/nRC/paper_dataset/
https://www.gencodegenes.org/human/release_25.html
https://www.gencodegenes.org/human/release_25.html
https://www.gencodegenes.org/mouse/
https://www.gencodegenes.org/mouse/
https://github.com/tjgu/miTAR/tree/master/scripts_data_models
https://github.com/tjgu/miTAR/tree/master/scripts_data_models
https://rna.urmc.rochester.edu/publications.html
https://rna.urmc.rochester.edu/publications.html
https://github.com/mxfold/mxfold2/releases/tag/v0.1.0
https://github.com/mxfold/mxfold2/releases/tag/v0.1.0
https://bprna.cgrb.oregonstate.edu/download.php#bpRNA
https://bprna.cgrb.oregonstate.edu/download.php#bpRNA


Nature Machine Intelligence | Volume 6 | May 2024 | 548–557 556

Article https://doi.org/10.1038/s42256-024-00836-4

References
1. Kukurba, K. & Montgomery, S. RNA sequencing and analysis. Cold 

Spring Harb. Protoc. 2015, pdb–top084970 (2015).
2. Conesa, A. et al. A survey of best practices for RNA-seq data 

analysis. Genome Biol. 17, 1–19 (2016).
3. Dharmadhikari, S., Ingle, M. & Kulkarni, P. Empirical studies on 

machine learning based text classification algorithms. Adv. 
Comput. 2, 161 (2011).

4. Zheng, S., Li, Y., Chen, S., Xu, J. & Yang, Y. Predicting drug-protein 
interaction using quasi-visual question answering system. Nat. 
Mach. Intell. 2, 134–140 (2020).

5. Min, B. et al. Recent advances in natural language processing via 
large pre-trained language models: a survey. ACM Comput. Surv. 
56, 1–40 (2021).

6. Kenton, J. & Toutanova, L. BERT: pre-training of deep bidirectional 
transformers for language understanding. In Proc. 2019 
Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies 
(eds Burstein, J. et al.) 4171–4186 (Association for Computational 
Linguistics, 2019).

7. Yu, X., Jiang, L., Jin, S., Zeng, X. & Liu, X. preMLI: a pre-trained 
method to uncover microRNA-lncRNA potential interactions. 
Brief. Bioinform. 23, bbab470 (2022).

8. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. DNABERT: pre-trained 
bidirectional encoder representations from transformers model 
for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).

9. Leksono, M. & Purwarianti, A. Sequential labelling and DNABERT 
For splice site prediction in Homo Sapiens DNA. Preprint at 
https://arXiv.org/quant-ph/2212.07638 (2022).

10. Zhou, Z. et al. DNABERT-2: efficient foundation model and 
benchmark for multi-species genome. In Twelfth International 
Conference on Learning Representations (2024).

11. Altenburg, T., Giese, S., Wang, S., Muth, T. & Renard, B. Ad hoc 
learning of peptide fragmentation from mass spectra enables 
an interpretable detection of phosphorylated and cross-linked 
peptides. Nat. Mach. Intell. 4, 378–388 (2022).

12. Raffel, C. et al. Exploring the limits of transfer learning with a 
unified text-to-text transformer. J. Mach. Learn. Res. 21, 5485–5551 
(2020).

13. Liang, S. et al. Rm-LR: a long-range-based deep learning model 
for predicting multiple types of RNA modifications. Comput. Biol. 
Med. 164, 107238 (2023).

14. Chen, J. et al. Interpretable RNA foundation model from 
unannotated data for highly accurate RNA structure 
and function predictions. Preprint at bioRxiv https://doi.
org/10.1101/2022.08.06.503062 (2022).

15. Holbrook, S. RNA structure: the long and the short of it. Curr. 
Opin. Struct. Biol. 15, 302–308 (2005).

16. Sweeney, B. et al. RNAcentral 2021: secondary structure 
integration, improved sequence search and new member 
databases. Nucleic Acids Res. 49, D212–D220 (2021).

17. Leontis, N., Lescoute, A. & Westhof, E. The building blocks and motifs 
of RNA architecture. Curr. Opin. Struct. Biol. 16, 279–287 (2006).

18. Fierro-Monti, I. & Mathews, M. Proteins binding to duplexed RNA: 
one motif, multiple functions. Trends Biochem. Sci. 25, 241–246 
(2000).

19. Butcher, S. & Pyle, A. The molecular interactions that stabilize 
RNA tertiary structure: RNA motifs, patterns, and networks. Acc. 
Chem. Res. 44, 1302–1311 (2011).

20. Lee, Y. et al. Surgical fine-tuning improves adaptation to 
distribution shifts. In Eleventh International Conference on 
Learning Representations (2023).

21. Moon, K. et al. Visualizing structure and transitions in 
high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 
(2019).

22. Kirk, J. et al. Functional classification of long non-coding RNAs by 
k-mer content. Nat. Genet. 50, 1474–1482 (2018).

23. Akiyama, M. & Sakakibara, Y. Informative RNA base embedding for 
RNA structural alignment and clustering by deep representation 
learning. NAR Genom. Bioinform. 4, lqac012 (2022).

24. Zhang, Y. et al. Multiple sequence alignment-based RNA language 
model and its application to structural inference. Nucleic Acids 
Res. 52, e3–e3 (2024).

25. Fiannaca, A., La Rosa, M., La Paglia, L., Rizzo, R. & Urso, A. nRC: 
non-coding RNA classifier based on structural features. BioData 
Min. 10, 1–18 (2017).

26. Nawrocki, E. et al. Rfam 12.0: updates to the RNA families 
database. Nucleic Acids Res. 43, D130–D137 (2015).

27. Wen, M., Cong, P., Zhang, Z., Lu, H. & Li, T. DeepMirTar: a 
deep-learning approach for predicting human miRNA targets. 
Bioinformatics 34, 3781–3787 (2018).

28. Pla, A., Zhong, X. & Rayner, S. miRAW: a deep learning-based 
approach to predict microRNA targets by analyzing whole 
microRNA transcripts. PLoS Comput. Biol. 14, e1006185 (2018).

29. Enright, A. et al. MicroRNA targets in Drosophila. Genome Biol. 4, 
1–27 (2003).

30. Krüger, J. & Rehmsmeier, M. RNAhybrid: microRNA target 
prediction easy, fast and flexible. Nucleic Acids Res. 34,  
W451–W454 (2006).

31. Pita, T., Feliciano, J. & Leitão, J. Identification of Burkholderia 
cenocepacia non-coding RNAs expressed during Caenorhabditis 
elegans infection. Appl. Microbiol. Biotechnol. 107, 3653–3671 
(2023).

32. Agarwal, V., Bell, G., Nam, J. & Bartel, D. Predicting effective 
microRNA target sites in mammalian mRNAs. eLife 4, e05005 
(2015).

33. Ding, J., Li, X. & Hu, H. TarPmiR: a new approach for microRNA 
target site prediction. Bioinformatics 32, 2768–2775 (2016).

34. Fu, L. et al. UFold: fast and accurate RNA secondary structure 
prediction with deep learning. Nucleic Acids Res. 50, e14–e14 
(2022).

35. Tan, Z., Fu, Y., Sharma, G. & Mathews, D. TurboFold II: RNA 
structural alignment and secondary structure prediction 
informed by multiple homologs. Nucleic Acids Res. 45, 11570–
11581 (2017).

36. Sloma, M. & Mathews, D. Exact calculation of loop formation 
probability identifies folding motifs in RNA secondary structures. 
RNA 22, 1808–1818 (2016).

37. Danaee, P. et al. bpRNA: large-scale automated annotation and 
analysis of RNA secondary structure. Nucleic Acids Res. 46, 
5381–5394 (2018).

38. Sun, Y. et al. Ernie 2.0: a continual pre-training framework for 
language understanding. In Proc. AAAI Conference on Artificial 
Intelligence 34 (eds Wooldridge, M., Dy, J. & Natarajan, S.) 
8968–8975 (AAAI, 2020).

39. Vaswani, A. et al. Attention is all you need. In Proc. Advances in 
Information Processing Systems 30 (eds Guyon, I. et al.) 5999–
6009 (NeurIPS, 2017).

40. Karpicke, J. D., Lehman, M. & Aue, W. R. Retrieval-based learning: 
an episodic context account. In Psychology of Learning and 
Motivation Vol. 61, 237–284 (Academic Press, 2014).

41. Joshi, M. et al. SpanBERT: improving pre-training by representing 
and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 
(2020).

42. Wu, R. et al. High-resolution de novo structure prediction 
from primary sequence. Preprint at bioRxiv https://doi.
org/10.1101/2022.07.21.500999 (2022).

43. Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. 
ATtRACT—a database of RNA-binding proteins and associated 
motifs. Database 2016, baw035 (2016).

http://www.nature.com/natmachintell
https://arXiv.org/quant-ph/2212.07638
https://doi.org/10.1101/2022.08.06.503062
https://doi.org/10.1101/2022.08.06.503062
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.07.21.500999


Nature Machine Intelligence | Volume 6 | May 2024 | 548–557 557

Article https://doi.org/10.1038/s42256-024-00836-4

44. Piva, F., Giulietti, M., Burini, A. & Principato, G. SpliceAid 2: a 
database of human splicing factors expression data and RNA 
target motifs. Hum. Mutat. 33, 81–85 (2012).

45. Fang, Y., Pan, X. & Shen, H. Recent deep learning methodology 
development for RNA-RNA interaction prediction. Symmetry 14, 
1302 (2022).

46. Gu, T., Zhao, X., Barbazuk, W. & Lee, J. miTAR: a hybrid deep 
learning-based approach for predicting miRNA targets. BMC 
Bioinform. 22, 1–16 (2021).

47. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure 
prediction using deep learning with thermodynamic integration. 
Nat. Commun. 12, 1–9 (2021).

48. Zuker, M. & Stiegler, P. Optimal computer folding of large RNA 
sequences using thermodynamics and auxiliary information. 
Nucleic Acids Res. 9, 133–148 (1981).

49. Frankish, A. et al. GENCODE 2021. Nucleic Acids Res. 49, D916–
D923 (2021).

50. Ning, W. CatIIIIIIII/RNAErnie: v.1.0. Zenodo https://doi.org/10.5281/
zenodo.10847621 (2024).

51. Ning, W. RNAErnie docker. Zenodo https://doi.org/10.5281/
zenodo.10847856 (2024).

52. Ning, W. CatIIIIIIII/RNAErnie_baselines: v.1.0.0. Zenodo https://doi.
org/10.5281/zenodo.10851577 (2024).

53. Panwar, B., Arora, A. & Raghava, G. Prediction and classification 
of ncRNAs using structural information. BMC Genomics 15, 1–13 
(2014).

54. Wang, L. et al. ncRFP: a novel end-to-end method for non-coding 
RNAs family prediction based on deep learning. IEEE/ACM Trans. 
Comput. Biol. Bioinform. 18, 784–789 (2020).

55. Deng, C. et al. RNAGCN: RNA tertiary structure assessment with a 
graph convolutional network. Chin. Phys. B 31, 118702 (2022).

56. Chantsalnyam, T., Lim, D., Tayara, H. & Chong, K. ncRDeep: 
non-coding RNA classification with convolutional neural network. 
Comput. Biol. Chem. 88, 107364 (2020).

57. Chantsalnyam, T., Siraj, A., Tayara, H. & Chong, K. ncRDense: a 
novel computational approach for classification of non-coding 
RNA family by deep learning. Genomics 113, 3030–3038 (2021).

58. Reuter, J. & Mathews, D. RNAstructure: software for RNA secondary  
structure prediction and analysis. BMC Bioinform. 11, 1–9 (2010).

59. Andronescu, M., Aguirre-Hernandez, R., Condon, A. & Hoos, 
H. RNAsoft: a suite of RNA secondary structure prediction and 
design software tools. Nucleic Acids Res. 31, 3416–3422 (2003).

60. Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 
1–14 (2011).

61. Zuker, M. Mfold web server for nucleic acid folding and 
hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

62. Huang, L. et al. LinearFold: linear-time approximate RNA 
folding by 5′-to-3′ dynamic programming and beam search. 
Bioinformatics 35, i295–i304 (2019).

63. Wayment-Steele, H. K. et al. RNA secondary structure packages 
evaluated and improved by high-throughput experiments. Nat. 
Methods 19, 1234–1242 (2022).

64. Chen, X., Li, Y., Umarov, R., Gao, X. & Song, L. RNA secondary 
structure prediction by learning unrolled algorithms. In 
International Conference on Learning Representations (2020).

65. Do, C., Woods, D. & Batzoglou, S. CONTRAfold: RNA secondary 
structure prediction without physics-based models. 
Bioinformatics 22, e90–e98 (2006).

66. Zakov, S., Goldberg, Y., Elhadad, M. & Ziv-Ukelson, M. Rich 
parameterization improves RNA structure prediction. J. Comput. 
Biol. 18, 1525–1542 (2011).

Acknowledgements
This work is kindly supported by the National Science and Technology 
Major Project under grant no. 2021ZD0110303 (N.W., J.B., X.L. and 
H.X.) and the National Science Foundation of China under grant no. 
62141220 (Y.L. and L.K.).

Author contributions
All authors made contributions to this paper. N.W. and J.B. conducted 
experiments and wrote part of the paper. Y.L., X.L. and S.M. were 
involved in the discussion and wrote part of the paper. L.K. oversaw 
the research progress, was involved in the discussion and wrote part 
of the paper. H.X. oversaw the research progress, designed the study 
and experiments, was involved in the discussion and wrote the paper. 
H.X. is the senior author, and L.K. is the co-senior contributor.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s42256-024-00836-4.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s42256-024-00836-4.

Correspondence and requests for materials should be addressed to 
Linghe Kong or Haoyi Xiong.

Peer review information Nature Machine Intelligence thanks Xiangfu 
Zhong and the other, anonymous, reviewer(s) for their contribution to 
the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.10847621
https://doi.org/10.5281/zenodo.10847621
https://doi.org/10.5281/zenodo.10847856
https://doi.org/10.5281/zenodo.10847856
https://doi.org/10.5281/zenodo.10851577
https://doi.org/10.5281/zenodo.10851577
https://doi.org/10.1038/s42256-024-00836-4
https://doi.org/10.1038/s42256-024-00836-4
https://doi.org/10.1038/s42256-024-00836-4
https://doi.org/10.1038/s42256-024-00836-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00836-4

Extended Data Fig. 1 | The figure illustrates the use of a special ‘[IND]’ token followed by the RNAcentral instance type as an indicator. During the pre-training 
phase, the instance type is masked out and RNAErnie attempts to predict it. In downstream tasks, a two-stage pipeline is employed, which aggregates the top-K 
predicted indicators to improve performance.
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