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A neural speech decoding framework 
leveraging deep learning and speech 
synthesis

Xupeng Chen1,5, Ran Wang1,5, Amirhossein Khalilian-Gourtani    2, Leyao Yu2,3, 
Patricia Dugan2, Daniel Friedman2, Werner Doyle4, Orrin Devinsky2, 
Yao Wang    1,3,6 & Adeen Flinker    2,3,6 

Decoding human speech from neural signals is essential for brain–computer 
interface (BCI) technologies that aim to restore speech in populations 
with neurological deficits. However, it remains a highly challenging task, 
compounded by the scarce availability of neural signals with corresponding 
speech, data complexity and high dimensionality. Here we present a novel 
deep learning-based neural speech decoding framework that includes an 
ECoG decoder that translates electrocorticographic (ECoG) signals from 
the cortex into interpretable speech parameters and a novel differentiable 
speech synthesizer that maps speech parameters to spectrograms. We 
have developed a companion speech-to-speech auto-encoder consisting 
of a speech encoder and the same speech synthesizer to generate reference 
speech parameters to facilitate the ECoG decoder training. This framework 
generates natural-sounding speech and is highly reproducible across a 
cohort of 48 participants. Our experimental results show that our models 
can decode speech with high correlation, even when limited to only causal 
operations, which is necessary for adoption by real-time neural prostheses. 
Finally, we successfully decode speech in participants with either left or 
right hemisphere coverage, which could lead to speech prostheses in 
patients with deficits resulting from left hemisphere damage.

Speech loss due to neurological deficits is a severe disability that limits 
both work life and social life. Advances in machine learning and brain–
computer interface (BCI) systems have pushed the envelope in the 
development of neural speech prostheses to enable people with speech 
loss to communicate1–5. An effective modality for acquiring data to 
develop such decoders involves electrocorticographic (ECoG) record-
ings obtained in patients undergoing epilepsy surgery4–10. Implanted 
electrodes in patients with epilepsy provide a rare opportunity to 
collect cortical data during speech with high spatial and temporal 

resolution, and such approaches have produced promising results in 
speech decoding4,5,8–11.

Two challenges are inherent to successfully carrying out speech 
decoding from neural signals. First, the data to train personalized 
neural-to-speech decoding models are limited in duration, and deep 
learning models require extensive training data. Second, speech pro-
duction varies in rate, intonation, pitch and so on, even within a sin-
gle speaker producing the same word, complicating the underlying 
model representation12,13. These challenges have led to diverse speech 
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framework with multiple deep architectures (convolutional, recurrent 
and transformer) as the ECoG decoder, and apply it to 48 neurosurgi-
cal patients. Our framework performs with high accuracy across the 
models, with the best performance obtained by the convolutional 
(ResNet) architecture (PCC of 0.806 between the original and decoded 
spectrograms). Our framework can achieve high accuracy using only 
causal processing and relatively low spatial sampling on the cortex. 
We also show comparable speech decoding from grid implants on the 
left and right hemispheres, providing a proof of concept for neural 
prosthetics in patients suffering from expressive aphasia (with dam-
age limited to the left hemisphere), although such an approach must 
be tested in patients with damage to the left hemisphere. Finally, we 
provide a publicly available neural decoding pipeline (https://github.
com/flinkerlab/neural_speech_decoding) that offers flexibility in ECoG 
decoding architectures to push forward research across the speech 
science and prostheses communities.

Results
ECoG-to-speech decoding framework
Our ECoG-to-speech framework consists of an ECoG decoder and a 
speech synthesizer (shown in the upper part of Fig. 1). The neural signals 
are fed into an ECoG decoder, which generates speech parameters, 
followed by a speech synthesizer, which translates the parameters 
into spectrograms (which are then converted to a waveform by the 
Griffin–Lim algorithm21). The training of our framework comprises 
two steps. We first use semi-supervised learning on the speech signals 
alone. An auto-encoder, shown in the lower part of Fig. 1, is trained 
so that the speech encoder derives speech parameters from a given 
spectrogram, while the speech synthesizer (used here as the decoder) 
reproduces the spectrogram from the speech parameters. Our speech 
synthesizer is fully differentiable and generates speech through a 
weighted combination of voiced and unvoiced speech components 
generated from input time series of speech parameters, including pitch, 
formant frequencies, loudness and so on. The speech synthesizer has 
only a few subject-specific parameters, which are learned as part of 
the auto-encoder training (more details are provided in the Methods 
Speech synthesizer section). Currently, our speech encoder and speech 
synthesizer are subject-specific and can be trained using any speech 
signal of a participant, not just those with corresponding ECoG signals.

In the next step, we train the ECoG decoder in a supervised manner 
based on ground-truth spectrograms (using measures of spectrogram 
difference and short-time objective intelligibility, STOI8,22), as well as 
guidance for the speech parameters generated by the pre-trained 

decoding approaches with a range of model architectures. Currently, 
public code to test and replicate findings across research groups is 
limited in availability.

Earlier approaches to decoding and synthesizing speech spectro-
grams from neural signals focused on linear models. These approaches 
achieved a Pearson correlation coefficient (PCC) of ~0.6 or lower, but 
with simple model architectures that are easy to interpret and do not 
require large training datasets14–16. Recent research has focused on deep 
neural networks leveraging convolutional8,9 and recurrent5,10,17 network 
architectures. These approaches vary across two major dimensions: 
the intermediate latent representation used to model speech and the 
speech quality produced after synthesis. For example, cortical activity 
has been decoded into an articulatory movement space, which is then 
transformed into speech, providing robust decoding performance 
but with a non-natural synthetic voice reconstruction17. Conversely, 
some approaches have produced naturalistic reconstruction leverag-
ing wavenet vocoders8, generative adversarial networks (GAN)11 and 
unit selection18, but achieve limited accuracy. A recent study in one 
implanted patient19 provided both robust accuracies and a naturalistic 
speech waveform by leveraging quantized HuBERT features20 as an 
intermediate representation space and a pretrained speech synthesizer 
that converts the HuBERT features into speech. However, HuBERT 
features do not carry speaker-dependent acoustic information and 
can only be used to generate a generic speaker’s voice, so they require 
a separate model to translate the generic voice to a specific patient’s 
voice. Furthermore, this study and most previous approaches have 
employed non-causal architectures, which may limit real-time applica-
tions, which typically require causal operations.

To address these issues, in this Article we present a novel 
ECoG-to-speech framework with a low-dimensional intermediate 
representation guided by subject-specific pre-training using speech 
signal only (Fig. 1). Our framework consists of an ECoG decoder that 
maps the ECoG signals to interpretable acoustic speech parameters (for 
example, pitch, voicing and formant frequencies), as well as a speech 
synthesizer that translates the speech parameters to a spectrogram. 
The speech synthesizer is differentiable, enabling us to minimize the 
spectrogram reconstruction error during training of the ECoG decoder. 
The low-dimensional latent space, together with guidance on the latent 
representation generated by a pre-trained speech encoder, overcomes 
data scarcity issues. Our publicly available framework produces natu-
ralistic speech that highly resembles the speaker’s own voice, and the 
ECoG decoder can be realized with different deep learning model 
architectures and using different causality directions. We report this 
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Fig. 1 | The proposed neural speech decoding framework. The upper part 
shows the ECoG-to-speech decoding pipeline. The ECoG decoder generates time-
varying speech parameters from ECoG signals. The speech synthesizer generates 
spectrograms from the speech parameters. A separate spectrogram inversion 
algorithm converts the spectrograms to speech waveforms. The lower part 
shows the speech-to-speech auto-encoder, which generates the guidance for the 

speech parameters to be produced by the ECoG decoder during its training. The 
speech encoder maps an input spectrogram to the speech parameters, which 
are then fed to the same speech synthesizer to reproduce the spectrogram. The 
speech encoder and a few learnable subject-specific parameters in the speech 
synthesizer are pre-trained using speech signals only. Only the upper part is 
needed to decode the speech from ECoG signals once the pipeline is trained.
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speech encoder (that is, reference loss between speech parameters). By 
limiting the number of speech parameters (18 at each time step; Meth-
ods section Summary of speech parameters) and using the reference 
loss, the ECoG decoder can be trained with limited corresponding ECoG 
and speech data. Furthermore, because our speech synthesizer is differ-
entiable, we can back-propagate the spectral loss (differences between 
the original and decoded spectrograms) to update the ECoG decoder. 
We provide multiple ECoG decoder architectures to choose from, 
including 3D ResNet23, 3D Swin Transformer24 and LSTM25. Importantly, 
unlike many methods in the literature, we employ ECoG decoders that 
can operate in a causal manner, which is necessary for real-time speech 
generation from neural signals. Note that, once the ECoG decoder and 
speech synthesizer are trained, they can be used for ECoG-to-speech 
decoding without using the speech encoder.

Data collection
We employed our speech decoding framework across N = 48 partici-
pants who consented to complete a series of speech tasks (Methods 
section Experiments design). These participants, as part of their clinical 
care, were undergoing treatment for refractory epilepsy with implanted 
electrodes. During the hospital stay, we acquired synchronized neural 
and acoustic speech data. ECoG data were obtained from five partici-
pants with hybrid-density (HB) sampling (clinical-research grid) and 
43 participants with low-density (LD) sampling (standard clinical grid), 
who took part in five speech tasks: auditory repetition (AR), auditory 
naming (AN), sentence completion (SC), word reading (WR) and pic-
ture naming (PN). These tasks were designed to elicit the same set of 
spoken words across tasks while varying the stimulus modality. We 
provided 50 repeated unique words (400 total trials per participant), 
all of which were analysed locked to the onset of speech production. 
We trained a model for each participant using 80% of available data for 
that participant and evaluated the model on the remaining 20% of data 
(with the exception of the more stringent word-level cross-validation).

Speech decoding performance and causality
We first aimed to directly compare the decoding performance across 
different architectures, including those that have been employed in the 
neural speech decoding literature (recurrent and convolutional) and 
transformer-based models. Although any decoder architecture could 
be used for the ECoG decoder in our framework, employing the same 
speech encoder guidance and speech synthesizer, we focused on three 
representative models for convolution (ResNet), recurrent (LSTM) and 
transformer (Swin) architectures. Note that any of these models can 
be configured to use temporally non-causal or causal operations. Our 
results show that ResNet outperformed the other models, providing 
the highest PCC across N = 48 participants (mean PCC = 0.806 and 
0.797 for non-causal and causal, respectively), closely followed by 
Swin (mean PCC = 0.792 and 0.798 for non-causal and causal, respec-
tively) (Fig. 2a). We found the same when evaluating the three models 
using STOI+ (ref. 26), as shown in Supplementary Fig. 1a. The causal-
ity of machine learning models for speech production has important 
implications for BCI applications. A causal model only uses past and 
current neural signals to generate speech, whereas non-causal mod-
els use past, present and future neural signals. Previous reports have 
typically employed non-causal models5,8,10,17, which can use neural 
signals related to the auditory and speech feedback that is unavail-
able in real-time applications. Optimally, only the causal direction 
should be employed. We thus compared the performance of the same 
models with non-causal and causal temporal operations. Figure 2a 
compares the decoding results of causal and non-causal versions of 
our models. The causal ResNet model (PCC = 0.797) achieved a per-
formance comparable to that of the non-causal model (PCC = 0.806), 
with no significant differences between the two (Wilcoxon two-sided 
signed-rank test P = 0.093). The same was true for the causal Swin model 
(PCC = 0.798) and its non-causal (PCC = 0.792) counterpart (Wilcoxon 

two-sided signed-rank test P = 0.196). In contrast, the performance of 
the causal LSTM model (PCC = 0.712) was significantly inferior to that of 
its non-causal (PCC = 0.745) version (Wilcoxon two-sided signed-rank 
test P = 0.009). Furthermore, the LSTM model showed consistently 
lower performance than ResNet and Swin. However, we did not find 
significant differences between the causal ResNet and causal Swin 
performances (Wilcoxon two-sided signed-rank test P = 0.587). Because 
the ResNet and Swin models had the highest performance and were on 
par with each other and their causal counterparts, we chose to focus 
further analyses on these causal models, which we believe are best 
suited for prosthetic applications.

To ensure our framework can generalize well to unseen words, we 
added a more stringent word-level cross-validation in which random 
(ten unique) words were entirely held out during training (including 
both pre-training of the speech encoder and speech synthesizer and 
training of the ECoG decoder). This ensured that different trials from 
the same word could not appear in both the training and testing sets. 
The results shown in Fig. 2b demonstrate that performance on the 
held-out words is comparable to our standard trial-based held-out 
approach (Fig. 2a, ‘ResNet’). It is encouraging that the model can 
decode unseen validation words well, regardless of which words were 
held out during training.

Next, we show the performance of the ResNet causal decoder 
on the level of single words across two representative participants 
(LD grids). The decoded spectrograms accurately preserve the 
spectro-temporal structure of the original speech (Fig. 2c,d). We also 
compare the decoded speech parameters with the reference param-
eters. For each parameter, we calculated the PCC between the decoded 
time series and the reference sequence, showing average PCC values 
of 0.781 (voice weight, Fig. 2d), 0.571 (loudness, Fig. 2e), 0.889 (pitch 
f0, Fig. 2f), 0.812 (first formant f1, Fig. 2f) and 0.883 (second formant f2, 
Fig. 2f). Accurate reconstruction of the speech parameters, especially 
the pitch, voice weight and first two formants, is essential for accu-
rate speech decoding and naturalistic reconstruction that mimics a 
participant’s voice. We also provide a non-causal version of Fig. 2 in 
Supplementary Fig. 2. The fact that both non-causal and causal models 
can yield reasonable decoding results is encouraging.

Left-hemisphere versus right-hemisphere decoding
Most speech decoding studies have focused on the language- and 
speech-dominant left hemisphere27. However, little is known about 
decoding speech representations from the right hemisphere. To this 
end, we compared left- versus right-hemisphere decoding performance 
across our participants to establish the feasibility of a right-hemisphere 
speech prosthetic. For both our ResNet and Swin decoders, we 
found robust speech decoding from the right hemisphere (ResNet 
PCC = 0.790, Swin PCC = 0.798) that was not significantly different 
from that of the left (Fig. 3a, ResNet independent t-test, P = 0.623; Swin 
independent t-test, P = 0.968). A similar conclusion held when evaluat-
ing STOI+ (Supplementary Fig. 1b, ResNet independent t-test, P = 0.166; 
Swin independent t-test, P = 0.114). Although these results suggest that 
it may be feasible to use neural signals in the right hemisphere to decode 
speech for patients who suffer damage to the left hemisphere and are 
unable to speak28, it remains unknown whether intact left-hemisphere 
cortex is necessary to allow for speech decoding from the right hemi-
sphere until tested in such patients.

Effect of electrode density
Next, we assessed the impact of electrode sampling density on speech 
decoding, as many previous reports use higher-density grids (0.4 mm) 
with more closely spaced contacts than typical clinical grids (1 cm). Five 
participants consented to hybrid grids (Fig. 3b, HB), which typically had 
LD electrode sampling but with additional electrodes interleaved. The 
HB grids provided a decoding performance similar to clinical LD grids in 
terms of PCC values (Fig. 3c), with a slight advantage in STOI+, as shown 
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Fig. 2 | Decoding performance comparing the original and decoded 
spectrograms across non-causal and causal models. a, Performances of 
ResNet, Swin and LSTM models with non-causal and causal operations. The PCC 
between the original and decoded spectrograms is evaluated on the held-out 
testing set and shown for each participant. Each data point corresponds to a 
participant’s average PCC across testing trials. b, A stringent cross-validation 
showing the performance of the causal ResNet model on unseen words during 
training from five folds; we ensured that the training and validation sets in each 
fold did not overlap in unique words. The performance across all five validation 
folds was comparable to our trial-based validation, denoted for comparison as 
ResNet (identical to the ResNet causal model in a). c–f, Examples of decoded 
spectrograms and speech parameters from the causal ResNet model for eight 
words (from two participants) and the PCC values for the decoded and reference 

speech parameters across all participants. Spectrograms of the original (c) and 
decoded (d) speech are shown, with orange curves overlaid representing the 
reference voice weight learned by the speech encoder (c) and the decoded voice 
weight from the ECoG decoder (d). The PCC between the decoded and reference 
voice weights is shown on the right across all participants. e, Decoded and 
reference loudness parameters for the eight words, and the PCC values of  
the decoded loudness parameters across participants (boxplot on the right).  
f, Decoded (dashed) and reference (solid) parameters for pitch (f0) and the first 
two formants (f1 and f2) are shown for the eight words, as well as the PCC values 
across participants (box plots to the right). All box plots depict the median 
(horizontal line inside the box), 25th and 75th percentiles (box) and 25th or 75th 
percentiles ± 1.5 × interquartile range (whiskers) across all participants (N = 48). 
Yellow error bars denote the mean ± s.e.m. across participants.
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in Supplementary Fig. 3b. To ascertain whether the additional spatial 
sampling indeed provides improved speech decoding, we compared 
models that decode speech based on all the hybrid electrodes versus 
only the LD electrodes in participants with HB grids (comparable to our 
other LD participants). Our findings (Fig. 3d) suggest that the decod-
ing results were not significantly different from each other (with the 
exception of participant 2) in terms of PCC and STOI+ (Supplemen-
tary Fig. 3c). Together, these results suggest that our models can learn 
speech representations well from both high and low spatial sampling 
of the cortex, with the exciting finding of robust speech decoding from 
the right hemisphere.

Contribution analysis
Finally, we investigated which cortical regions contribute to decoding 
to provide insight for the targeted implantation of future prosthetics, 
especially on the right hemisphere, which has not yet been investi-
gated. We used an occlusion approach to quantify the contributions 
of different cortical sites to speech decoding. If a region is involved in 

decoding, occluding the neural signal in the corresponding electrode 
(that is, setting the signal to zero) will reduce the accuracy (PCC) of the 
speech reconstructed on testing data (Methods section Contribution 
analysis). We thus measured each region’s contribution by decod-
ing the reduction in the PCC when the corresponding electrode was 
occluded. We analysed all electrodes and participants with causal 
and non-causal versions of the ResNet and Swin decoders. The results 
in Fig. 4 show similar contributions for the ResNet and Swin models 
(Supplementary Figs. 8 and 9 describe the noise-level contribution). 
The non-causal models show enhanced auditory cortex contributions 
compared with the causal models, implicating auditory feedback in 
decoding, and underlying the importance of employing only causal 
models during speech decoding because neural feedback signals are 
not available for real-time decoding applications. Furthermore, across 
the causal models, both the right and left hemispheres show similar 
contributions across the sensorimotor cortex, especially on the ven-
tral portion, suggesting the potential feasibility of right-hemisphere 
neural prosthetics.
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Fig. 3 | Comparison of decoding performance under different settings of 
the 3D ResNet and 3D Swin models. a, Comparison between left- and right-
hemisphere participants using causal models. No statistically significant 
differences (ResNet independent t-test, P = 0.623; Swin Wilcoxon independent 
t-test, P = 0.968) in PCC values exist between left- (N = 32) and right- (N = 16) 
hemisphere participants. b, An example hybrid-density ECoG array with a total of 
128 electrodes. The 64 electrodes marked in red correspond to a LD placement. 
The remaining 64 green electrodes, combined with red electrodes, reflect HB 
placement. c, Comparison between causal ResNet and causal Swin models for 
the same participant across participants with HB (N = 5) or LD (N = 43) ECoG 
grids. The two models show similar decoding performances from the HB and 

LD grids. d, Decoding PCC values across 50 test trials by the ResNet model for 
HB (N = 5) participants when all electrodes are used versus when only LD-in-HB 
electrodes (N = 5) are considered. There are no statistically significant differences 
for four out of five participants (Wilcoxon two-sided signed-rank test, P = 0.114, 
0.003, 0.0773, 0.472 and 0.605, respectively). All box plots depict the median 
(horizontal line inside box), 25th and 75th percentiles (box) and 25th or 75th 
percentiles ± 1.5 × interquartile range (whiskers). Yellow error bars denote 
mean ± s.e.m. Distributions were compared with each other as indicated, using 
the Wilcoxon two-sided signed-rank test and independent t-test. **P < 0.01; NS, 
not significant.
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Discussion
Our novel pipeline can decode speech from neural signals by leverag-
ing interchangeable architectures for the ECoG decoder and a novel 
differentiable speech synthesizer (Fig. 5). Our training process relies on 
estimating guidance speech parameters from the participants’ speech 
using a pre-trained speech encoder (Fig. 6a). This strategy enabled us 
to train ECoG decoders with limited corresponding speech and neural 
data, which can produce natural-sounding speech when paired with 
our speech synthesizer. Our approach was highly reproducible across 
participants (N = 48), providing evidence for successful causal decod-
ing with convolutional (ResNet; Fig. 6c) and transformer (Swin; Fig. 6d) 
architectures, both of which outperformed the recurrent architecture 
(LSTM; Fig. 6e). Our framework can successfully decode from both high 
and low spatial sampling with high levels of decoding performance. 
Finally, we provide potential evidence for robust speech decoding 
from the right hemisphere as well as the spatial contribution of cortical 
structures to decoding across the hemispheres.

Our decoding pipeline showed robust speech decoding across 
participants, leading to PCC values within the range 0.62–0.92 (Fig. 2a; 
causal ResNet mean 0.797, median 0.805) between the decoded and 
ground-truth speech across several architectures. We attribute our 
stable training and accurate decoding to the carefully designed 

components of our pipeline (for example, the speech synthesizer 
and speech parameter guidance) and the multiple improvements 
(Methods sections Speech synthesizer, ECoG decoder and Model 
training) over our previous approach on the subset of participants with 
hybrid-density grids29. Previous reports have investigated speech- or 
text-decoding using linear models14,15,30, transitional probability4,31, 
recurrent neural networks5,10,17,19, convolutional neural networks8,29 and 
other hybrid or selection approaches9,16,18,32,33. Overall, our results are 
similar to (or better than) many previous reports (54% of our partici-
pants showed higher than 0.8 for the decoding PCC; Fig. 3c). However, a 
direct comparison is complicated by multiple factors. Previous reports 
vary in terms of the reported performance metrics, as well as the stimuli 
decoded (for example, continuous speech versus single words) and the 
cortical sampling (that is, high versus low density, depth electrodes 
compared with surface grids). Our publicly available pipeline, which 
can be used across multiple neural network architectures and tested 
on various performance metrics, can facilitate the research commu-
nity to conduct more direct comparisons while still adhering to a high 
accuracy of speech decoding.

The temporal causality of decoding operations, critical for 
real-time BCI applications, has not been considered by most previ-
ous studies. Many of these non-causal models relied on auditory (and 
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somatosensory) feedback signals. Our analyses show that non-causal 
models rely on a robust contribution from the superior temporal gyrus 
(STG), which is mostly eliminated using a causal model (Fig. 4). We 
believe that non-causal models would show limited generalizability to 
real-time BCI applications due to their over-reliance on feedback sig-
nals, which may be absent (if no delay is allowed) or incorrect (if a short 
latency is allowed during real-time decoding). Some approaches used 
imagined speech, which avoids feedback during training16, or showed 
generalizability to mimed production lacking auditory feedback17,19. 
However, most reports still employ non-causal models, which cannot 
rule out feedback during training and inference. Indeed, our contribu-
tion maps show robust auditory cortex recruitment for the non-causal 
ResNet and Swin models (Fig. 4, in contrast to their causal counter-
parts, which decode based on more frontal regions. Furthermore, the 
recurrent neural networks that are widely used in the literature5,19 are 
typically bidirectional, producing non-causal behaviours and longer 
latencies for prediction during real-time applications. Unidirectional 
causal results are typically not reported. The recurrent network we 
tested performed the worst when trained with one direction (Fig. 2a, 
causal LSTM). Although our current focus was not real-time decoding, 
we were able to synthesize speech from neural signals with a delay of 
under 50 ms (Supplementary Table 1), which provides minimal auditory 
delay interference and allows for normal speech production34,35. Our 
data suggest that causal convolutional and transformer models can 
perform on par with their non-causal counterparts and recruit more 
relevant cortical structures for real-time decoding.

In our study we have leveraged an intermediate speech parameter 
space together with a novel differentiable speech synthesizer to decode 
subject-specific naturalistic speech (Fig. 1. Previous reports used vary-
ing approaches to model speech, including an intermediate kinematic 
space17, an acoustically relevant intermediate space using HuBERT 

features19 derived from a self-supervised speech masked prediction 
task20, an intermediate random vector (that is, GAN)11 or direct spec-
trogram representations8,17,36,37. Our choice of speech parameters as 
the intermediate representation allowed us to decode subject-specific 
acoustics. Our intermediate acoustic representation led to significantly 
more accurate speech decoding than directly mapping ECoG to the 
speech spectrogram38, and than mapping ECoG to a random vector, 
which is then fed to a GAN-based speech synthesizer11 (Supplementary 
Fig. 10). Unlike the kinematic representation, our acoustic intermediate 
representation using speech parameters and the associated speech syn-
thesizer enables our decoding pipeline to produce natural-sounding 
speech that preserves subject-specific characteristics, which would 
be lost with the kinematic representation.

Our speech synthesizer is motivated by classical vocoder models 
for speech production (generating speech by passing an excitation 
source, harmonic or noise, through a filter39,40 and is fully differen-
tiable, facilitating the training of the ECoG decoder using spectral 
losses through backpropagation. Furthermore, the guidance speech 
parameters needed for training the ECoG decoder can be obtained 
using a speech encoder that can be pre-trained without requiring neural 
data. Thus, it could be trained using older speech recordings or a proxy 
speaker chosen by the patient in the case of patients without the ability 
to speak. Training the ECoG decoder using such guidance, however, 
would require us to revise our current training strategy to overcome the 
challenge of misalignment between neural signals and speech signals, 
which is a scope of our future work. Additionally, the low-dimensional 
acoustic space and pre-trained speech encoder (for generating the 
guidance) using speech signals only alleviate the limited data chal-
lenge in training the ECoG-to-speech decoder and provide a highly 
interpretable latent space. Finally, our decoding pipeline is generaliz-
able to unseen words (Fig. 2b). This provides an advantage compared 
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generate downsampled latent features, and then use corresponding transposed 
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dimension. We then apply temporal convolution layers and channel MLPs to 
map the features to speech parameters, as shown in b. The non-causal version 
uses non-causal temporal convolution in each layer, whereas the causal version 
uses causal convolution. d, The ECoG decoder using the 3D Swin architecture. 

We use three or four stages of 3D Swin blocks with spatial-temporal attention 
(three blocks for LD and four blocks for HB) to extract the features from the 
ECoG signal. We then use the transposed versions of temporal convolution 
layers as in c to upsample the features. The resulting features are mapped to the 
speech parameters using the same structure as shown in b. Non-causal versions 
apply temporal attention to past, present and future tokens, whereas the causal 
version applies temporal attention only to past and present tokens. e, The ECoG 
decoder using LSTM layers. We use three LSTM layers and one layer of channel 
MLP to generate features. We then reuse the prediction layers in b to generate the 
corresponding speech parameters. The non-causal version employs bidirectional 
LSTM in each layer, whereas the causal version uses unidirectional LSTM.
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to the pattern-matching approaches18 that produce subject-specific 
utterances but with limited generalizability.

Many earlier studies employed high-density electrode cover-
age over the cortex, providing many distinct neural signals5,10,17,30,37. 
One question we directly addressed was whether higher-density 
coverage improves decoding. Surprisingly, we found a high decod-
ing performance in terms of spectrogram PCC with both low-density 
and higher (hybrid) density grid coverages (Fig. 3c). Furthermore, 
comparing the decoding performance obtained using all electrodes 
in our hybrid-density participants versus using only the low-density 
electrodes in the same participants revealed that the decoding did 
not differ significantly (albeit for one participant; Fig. 3d). We attrib-
ute these results to the ability of our ECoG decoder to extract speech 
parameters from neural signals as long as there is sufficient perisylvian 
coverage, even in low-density participants.

A striking result was the robust decoding from right hemisphere 
cortical structures as well as the clear contribution of the right perisyl-
vian cortex. Our results are consistent with the idea that syllable-level 
speech information is represented bilaterally41. However, our find-
ings suggest that speech information is well-represented in the right 
hemisphere. Our decoding results could directly lead to speech pros-
theses for patients who suffer from expressive aphasia or apraxia of 
speech. Some previous studies have shown limited right-hemisphere 
decoding of vowels42 and sentences43. However, the results were mostly 
mixed with left-hemisphere signals. Although our decoding results 
provide evidence for a robust representation of speech in the right 
hemisphere, it is important to note that these regions are likely not criti-
cal for speech, as evidenced by the few studies that have probed both 
hemispheres using electrical stimulation mapping44,45. Furthermore, 
it is unclear whether the right hemisphere would contain sufficient 
information for speech decoding if the left hemisphere were damaged. 
It would be necessary to collect right-hemisphere neural data from 
left-hemisphere-damaged patients to verify we can still achieve accept-
able speech decoding. However, we believe that right-hemisphere 
decoding is still an exciting avenue as a clinical target for patients who 
are unable to speak due to left-hemisphere cortical damage.

There are several limitations in our study. First, our decoding 
pipeline requires speech training data paired with ECoG recordings, 
which may not exist for paralysed patients. This could be mitigated by 
using neural recordings during imagined or mimed speech and the cor-
responding older speech recordings of the patient or speech by a proxy 
speaker chosen by the patient. As discussed earlier, we would need to 
revise our training strategy to overcome the temporal misalignment 
between the neural signal and the speech signal. Second, our ECoG 
decoder models (3D ResNet and 3D Swin) assume a grid-based elec-
trode sampling, which may not be the case. Future work should develop 
model architectures that are capable of handling non-grid data, such 
as strips and depth electrodes (stereo intracranial electroencephalo-
gram (sEEG)). Importantly, such decoders could replace our current 
grid-based ECoG decoders while still being trained using our overall 
pipeline. Finally, our focus in this study was on word-level decoding 
limited to a vocabulary of 50 words, which may not be directly compa-
rable to sentence-level decoding. Specifically, two recent studies have 
provided robust speech decoding in a few chronic patients implanted 
with intracranial ECoG19 or a Utah array46 that leveraged a large amount 
of data available in one patient in each study. It is noteworthy that 
these studies use a range of approaches in constraining their neural 
predictions. Metzger and colleagues employed a pre-trained large 
transformer model leveraging directional attention to provide the 
guidance HuBERT features for their ECoG decoder. In contrast, Willet 
and colleagues decoded at the level of phonemes and used transition 
probability models at both phoneme and word levels to constrain 
decoding. Our study is much more limited in terms of data. However, 
we were able to achieve good decoding results across a large cohort of 
patients through the use of a compact acoustic representation (rather 

than learnt contextual information). We expect that our approach 
can help improve generalizability for chronically implanted patients.

To summarize, our neural decoding approach, capable of decoding 
natural-sounding speech from 48 participants, provides the following 
major contributions. First, our proposed intermediate representation 
uses explicit speech parameters and a novel differentiable speech 
synthesizer, which enables interpretable and acoustically accurate 
speech decoding. Second, we directly consider the causality of the 
ECoG decoder, providing strong support for causal decoding, which is 
essential for real-time BCI applications. Third, our promising decoding 
results using low sampling density and right-hemisphere electrodes 
shed light on future neural prosthetic devices using low-density grids 
and in patients with damage to the left hemisphere. Last, but not least, 
we have made our decoding framework open to the community with 
documentation (https://github.com/flinkerlab/neural_speech_decod-
ing), and we trust that this open platform will help propel the field 
forward, supporting reproducible science.

Methods
Experiments design
We collected neural data from 48 native English-speaking participants 
(26 female, 22 male) with refractory epilepsy who had ECoG subdural 
electrode grids implanted at NYU Langone Hospital. Five participants 
underwent HB sampling, and 43 LD sampling. The ECoG array was 
implanted on the left hemisphere for 32 participants and on the right 
for 16. The Institutional Review Board of NYU Grossman School of 
Medicine approved all experimental procedures. After consulting with 
the clinical-care provider, a research team member obtained written 
and oral consent from each participant. Each participant performed 
five tasks47 to produce target words in response to auditory or visual 
stimuli. The tasks were auditory repetition (AR, repeating auditory 
words), auditory naming (AN, naming a word based on an auditory 
definition), sentence completion (SC, completing the last word of an 
auditory sentence), visual reading (VR, reading aloud written words) 
and picture naming (PN, naming a word based on a colour drawing).

For each task, we used the exact 50 target words with different 
stimulus modalities (auditory, visual and so on). Each word appeared 
once in the AN and SC tasks and twice in the others. The five tasks 
involved 400 trials, with corresponding word production and ECoG 
recording for each participant. The average duration of the produced 
speech in each trial was 500 ms.

Data collection and preprocessing
The study recorded ECoG signals from the perisylvian cortex (including 
STG, inferior frontal gyrus (IFG), pre-central and postcentral gyri) of 
48 participants while they performed five speech tasks. A microphone 
recorded the subjects’ speech and was synchronized to the clinical 
Neuroworks Quantum Amplifier (Natus Biomedical), which captured 
ECoG signals. The ECoG array consisted of 64 standard 8 × 8 macro 
contacts (10-mm spacing) for 43 participants with low-density sam-
pling. For five participants with hybrid-density sampling, the ECoG 
array also included 64 additional interspersed smaller electrodes 
(1 mm) between the macro contacts (providing 10-mm centre-to-centre 
spacing between macro contacts and 5-mm centre-to-centre spacing 
between micro/macro contacts; PMT Corporation) (Fig. 3b). This Food 
and Drug Administration (FDA)-approved array was manufactured for 
this study. A research team member informed participants that the 
additional contacts were for research purposes during consent. Clini-
cal care solely determined the placement location across participants 
(32 left hemispheres; 16 right hemispheres). The decoding models 
were trained separately for each participant using all trials except ten 
randomly selected ones from each task, leading to 350 trials for train-
ing and 50 for testing. The reported results are for testing data only.

We sampled ECoG signals from each electrode at 2,048 Hz and 
downsampled them to 512 Hz before processing. Electrodes with 
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artefacts (for example, line noise, poor contact with the cortex, 
high-amplitude shifts) were rejected. The electrodes with interictal 
and epileptiform activity were also excluded from the analysis. The 
mean of a common average reference (across all remaining valid 
electrodes and time) was subtracted from each individual electrode. 
After the subtraction, a Hilbert transform extracted the envelope of 
the high gamma (70–150 Hz) component from the raw signal, which 
was then downsampled to 125 Hz. A reference signal was obtained 
by extracting a silent period of 250 ms before each trial’s stimulus 
period within the training set and averaging the signals over these 
silent periods. Each electrode’s signal was normalized to the refer-
ence mean and variance (that is, z-score). The data-preprocessing 
pipeline was coded in MATLAB and Python. For participants with 
noisy speech recordings, we applied spectral gating to remove 
stationary noise from the speech using an open-source tool48. We 
ruled out the possibility that our neural data suffer from a recently 
reported acoustic contamination (Supplementary Fig. 5) by follow-
ing published approaches49.

To pre-train the auto-encoder, including the speech encoder and 
speech synthesizer, unlike our previous work in ref. 29, which com-
pletely relied on unsupervised training, we provided supervision for 
some speech parameters to improve their estimation accuracy further. 
Specifically, we used the Praat method50 to estimate the pitch and four 
formant frequencies ( fti=1 to 4, in hertz) from the speech waveform. The 
estimated pitch and formant frequency were resampled to 125 Hz, the 
same as the ECoG signal and spectrogram sampling frequency. The 
mean square error between these speech parameters generated by the 
speech encoder and those estimated by the Praat method was used as 
a supervised reference loss, in addition to the unsupervised spectro-
gram reconstruction and STOI losses, making the training of the 
auto-encoder semi-supervised.

Speech synthesizer
Our speech synthesizer was inspired by the traditional speech voco-
der, which generates speech by switching between voiced and 
unvoiced content, each generated by filtering a specific excitation 
signal. Instead of switching between the two components, we use a 
soft mix of the two components, making the speech synthesizer 
differentiable. This enables us to train the ECoG decoder and the 
speech encoder end-to-end by minimizing the spectrogram recon-
struction loss with backpropagation. Our speech synthesizer can 
generate a spectrogram from a compact set of speech parameters, 
enabling training of the ECoG decoder with limited data. As shown 
in Fig. 5, the synthesizer takes dynamic speech parameters as input 
and contains two pathways. The voice pathway applies a set of for-
mant filters (each specified by the centre frequency f ti , bandwidth 
bt
i  that is dependent on f ti , and amplitude at

i ) to the harmonic excita-
tion (with pitch frequency f0) and generates the voiced component, 
Vt(f), for each time step t and frequency f. The noise pathway filters 
the input white noise with an unvoice filter (consisting of a broad-
band filter defined by centre frequency f t ̂u , bandwidth bt

̂u and ampli-
tude at

̂u and the same six formant filters used for the voice filter) and 
produces the unvoiced content, Ut(f). The synthesizer combines the 
two components with a voice weight αt ∈ [0, 1] to obtain the com-
bined spectrogram S̃t( f ) as

S̃t( f ) = αtV t( f ) + (1 − αt)U t( f )

Factor αt acts as a soft switch for the gradient to flow back through the 
synthesizer. The final speech spectrogram is given by

Ŝt( f ) = LtS̃t( f ) + B( f )

where Lt is the loudness modulation and B(f) the background noise. 
We describe the various components in more detail in the following.

Formant filters in the voice pathway. We use multiple formant filters 
in the voice pathway to model formants that represent vowels and nasal 
information. The formant filters capture the resonance in the vocal 
tract, which can help recover a speaker’s timbre characteristics and 
generate natural-sounding speech. We assume the filter for each for-
mant is time-varying and can be derived from a prototype filter Gi(f), 
which achieves maximum at a centre frequency f protoi  and has a 
half-power bandwidth bproto

i . The prototype filters have learnable 
parameters and will be discussed later. The actual formant filter at any 
time is written as a shifted and scaled version of Gi(f). Specifically, at 
time t, given an amplitude (at

i), centre frequency ( f ti ) and bandwidth 
(bt

i), the frequency-domain representation of the ith formant filter is

F t
i ( f ) = at

i × Gi (
bproto
i

bt
i

× ( f − f ti ) + f protoi ) , f ∈ [0, fmax] (1)

where fmax is half of the speech sampling frequency, which in our case 
is 8,000 Hz.

Rather than letting the bandwidth parameters bt
i  be independent 

variables, based on the empirically observed relationships between bt
i  

and the centre frequencies f ti , we set

bt
i = {

a ( f ti − fθ) + b0, if f ti > fθ
b0, otherwise

(2)

The threshold frequency fθ, slope a and baseline bandwidth b0 are three 
parameters that are learned during the auto-encoder training, shared 
among all six formant filters. This parameterization helps to reduce the 
number of speech parameters to be estimated at every time sample, 
making the representation space more compact.

Finally the filter for the voice pathway with N formant filters is 
given by F t

v ( f ) = ∑N
i=1 F

t
i ( f ) . Previous studies have shown that two 

formants (N = 2) are enough for intelligible reconstruction51, but we 
use N = 6 for more accurate synthesis in our experiments.

Unvoice filters. We construct the unvoice filter by adding a single 
broadband filter F t

̂u ( f ) to the formant filters for each time step t. The 
broadband filter F t

̂u ( f ) has the same form as equation (1) but has its 
own learned prototype filter G ̂u(f). The speech parameters correspond-
ing to the broadband filter include (αt

̂u, f
t
̂u , b

t
̂u) . We do not impose a 

relationship between the centre frequency f t ̂u  and the bandwidth bt
̂u. 

This allows more flexibility in shaping the broadband unvoice filter. 
However, we constrain bt

̂u to be larger than 2,000 Hz to capture the wide 
spectral range of obstruent phonemes. Instead of using only the broad-
band filter, we also retain the N formant filters in the voice pathway F t

i  
for the noise pathway. This is based on the observation that humans 
perceive consonants such as /p/ and /d/ not only by their initial bursts 
but also by their subsequent formant transitions until the next vowel52. 
We use identical formant filter parameters to encode these transitions. 
The overall unvoice filter is F t

u( f ) = F t
̂u ( f ) + ∑N

i=1 F
t
i ( f ).

Voice excitation. We use the voice filter in the voice pathway to modu-
late the harmonic excitation. Following ref. 53, we define the harmonic 
excitation as ht = ∑K

k=1 h
t
k, where K = 80 is the number of harmonics.

The value of the kth resonance at time step t is ht
k = sin(2πkϕt) with 

ϕt = ∑t
τ=0 f

τ
0 , where f τ0  is the fundamental frequency at time τ. The 

spectrogram of ht forms the harmonic excitation in the frequency 
domain Ht(f), and the voice excitation is V t( f ) = Ftv( f )H t( f ).

Noise excitation. The noise pathway models consonant sounds (plo-
sives and fricatives). It is generated by passing a stationary Gaussian 
white noise excitation through the unvoice filter. We first generate the 
noise signal n(t) in the time domain by sampling from the Gaussian 
process 𝒩𝒩(0, 1) and then obtain its spectrogram Nt(f). The spectrogram 
of the unvoiced component is U t( f ) = F t

u ( f )N t( f ).
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Summary of speech parameters. The synthesizer generates the 
voiced component at time t by driving a harmonic excitation with pitch 
frequency f t0  through N formant filters in the voice pathway, each 
described by two parameters ( f ti , a

t
i ). The unvoiced component is 

generated by filtering a white noise through the unvoice filter consist-
ing of an additional broadband filter with three parameters ( f t ̂u , b

t
̂u, a

t
̂u). 

The two components are mixed based on the voice weight αt and further 
amplified by the loudness value Lt. In total, the synthesizer input 
includes 18 speech parameters at each time step.

Unlike the differentiable digital signal processing (DDSP) in ref. 
53, we do not directly assign amplitudes to the K harmonics. Instead, 
the amplitude in our model depends on the formant filters, which has 
two benefits:

•	 The representation space is more compact. DDSP requires 80 
amplitude parameters at

k  for each of the 80 harmonic compo-
nents f tk  (k = 1, 2, …, 80) at each time step. In contrast, our 
synthesizer only needs a total of 18 parameters.

•	 The representation is more disentangled. For human speech, the 
vocal tract shape (affecting the formant filters) is largely 
independent of the vocal cord tension (which determines the 
pitch). Modelling these two separately leads to a disentangled 
representation. 
In contrast, DDSP specifies the amplitude for each harmonic 
component directly resulting in entanglement and redundancy 
between these amplitudes. Furthermore, it remains uncertain 
whether the amplitudes at

k  could be effectively controlled and 
encoded by the brain. In our approach, we explicitly model the 
formant filters and fundamental frequency, which possess clear 
physical interpretations and are likely to be directly controlled 
by the brain. Our representation also enables a more robust and 
direct estimation of the pitch.

Speaker-specific synthesizer parameters. Prototype filters. Instead 
of using a predetermined prototype formant filter shape, for example, 
a standard Gaussian function, we learn a speaker-dependent prototype 
filter for each formant to allow more expressive and flexible formant 
filter shapes. We define the prototype filter Gi(f) of the ith formant as 
a piecewise linear function, linearly interpolated from gi[m], m = 1, …, M, 
with the amplitudes of the filter at M being uniformly sampled frequen-
cies in the range [0, fmax]. We constrain gi[m] to increase and then 
decrease monotonically so that Gi(f) is unimodal and has a single peak 
value of 1. Given gi[m], m = 1, …, M, we can determine the peak frequency 
f protoi  and the half-power bandwidth bproto

i  of Gi(f).
The prototype parameters gi[m], m = 1, …, M of each formant filter 

are time-invariant and are determined during the auto-encoder train-
ing. Compared with ref. 29, we increase M from 20 to 80 to enable more 
expressive formant filters, essential for synthesizing male speakers’ 
voices.

We similarly learn a prototype filter for the broadband filter Gû(f) 
for the unvoiced component, which is specified by M parameters gû(m).

Background noise. The recorded sound typically contains background 
noise. We assume that the background noise is stationary and has a 
specific frequency distribution, depending on the speech recording 
environment. This frequency distribution B(f) is described by K param-
eters, where K is the number of frequency bins (K = 256 for females and 
512 for males). The K parameters are also learned during auto-encoder 
training. The background noise is added to the mixed speech compo-
nents to generate the final speech spectrogram.

To summarize, our speech synthesizer has the following learnable 
parameters: the M = 80 prototype filter parameters for each of the N = 6 
formant filters and the broadband filters (totalling M(N + 1) = 560), the 
three parameters fθ, a and b0 relating the centre frequency and band-
width for the formant filters (totalling 18), and K parameters for the 
background noise (256 for female and 512 for male). The total number 

of parameters for female speakers is 834, and that for male speak-
ers is 1,090. Note that these parameters are speaker-dependent but 
time-independent, and they can be learned together with the speech 
encoder during the training of the speech-to-speech auto-encoder, 
using the speaker’s speech only.

Speech encoder
The speech encoder extracts a set of (18) speech parameters at each 
time point from a given spectrogram, which are then fed to the speech 
synthesizer to reproduce the spectrogram.

We use a simple network architecture for the speech encoder, with 
temporal convolutional layers and multilayer perceptron (MLP) across 
channels at the same time point, as shown in Fig. 6a. We encode pitch 
f t0 by combining features generated from linear and Mel-scale spec-

trograms. The other 17 speech parameters are derived by applying 
temporal convolutional layers and channel MLP to the linear-scale 
spectrogram. To generate formant filter centre frequencies f ti=1 to 6, 
broadband unvoice filter frequency f t ̂u  and pitch f t0, we use sigmoid 
activation at the end of the corresponding channel MLP to map the 
output to [0, 1], and then de-normalize it to real values by scaling [0, 1] 
to predefined [fmin, fmax]. The [fmin, fmax] values for each frequency param-
eter are chosen based on previous studies54–57. Our compact speech 
parameter space facilitates stable and easy training of our speech 
encoder. Models were coded using PyTorch version 1.21.1 in Python.

ECoG decoder
In this section we present the design details of three ECoG decoders: 
the 3D ResNet ECoG decoder, the 3D Swin transformer ECoG decoder 
and the LSTM ECoG decoder. The models were coded using PyTorch 
version 1.21.1 in Python.

3D ResNet ECoG decoder. This decoder adopts the ResNet architec-
ture23 for the feature extraction backbone of the decoder. Figure 6c 
illustrates the feature extraction part. The model views the ECoG 
input as 3D tensors with spatiotemporal dimensions. In the first 
layer, we apply only temporal convolution to the signal from each 
electrode, because the ECoG signal exhibits more temporal than 
spatial correlations. In the subsequent parts of the decoder, we 
have four residual blocks that extract spatiotemporal features using 
3D convolution. After downsampling the electrode dimension to 
1 × 1 and the temporal dimension to T/16, we use several transposed 
Conv layers to upsample the features to the original temporal size 
T. Figure 6b shows how to generate the different speech parameters 
from the resulting features using different temporal convolution 
and channel MLP layers. The temporal convolution operation can 
be causal (that is, using only past and current samples as input) or 
non-causal (that is, using past, current and future samples), leading 
to causal and non-causal models.

3D Swin Transformer ECoG decoder. Swin Transformer24 employs 
the window and shift window methods to enable self-attention of 
small patches within each window. This reduces the computational 
complexity and introduces the inductive bias of locality. Because our 
ECoG input data have three dimensions, we extend Swin Transformer 
to three dimensions to enable local self-attention in both temporal 
and spatial dimensions among 3D patches. The local attention within 
each window gradually becomes global attention as the model merges 
neighbouring patches in deeper transformer stages.

Figure 6d illustrates the overall architecture of the proposed 3D 
Swin Transformer. The input ECoG signal has a size of T × H × W, where 
T is the number of frames and H × W is the number of electrodes at each 
frame. We treat each 3D patch of size 2 × 2 × 2 as a token in the 3D Swin 
Transformer. The 3D patch partitioning layer produces T2 ×

H
2
× W

2  3D 
tokens, each with a 48-dimensional feature. A linear embedding layer 
then projects the features of each token to a higher dimension C (=128).

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | April 2024 | 467–480 477

Article https://doi.org/10.1038/s42256-024-00824-8

The 3D Swin Transformer comprises three stages with two, two 
and six layers, respectively, for LD participants and four stages with 
two, two, six and two layers for HB participants. It performs 2 × 2 × 2 
spatial and temporal downsampling in the patch-merging layer of 
each stage. The patch-merging layer concatenates the features of 
each group of 2 × 2 × 2 temporally and spatially adjacent tokens. 
It applies a linear layer to project the concatenated features to 
one-quarter of their original dimension after merging. In the 3D Swin 
Transformer block, we replace the multi-head self-attention (MSA) 
module in the original Swin Transformer with the 3D shifted window 
multi-head self-attention module. It adapts the other components 
to 3D operations as well. A Swin Transformer block consists of a 3D 
shifted window-based MSA module followed by a feedforward net-
work (FFN), a two-layer MLP. Layer normalization is applied before 
each MSA module and FFN, and a residual connection is applied 
after each module.

Consider a stage with T × H × W input tokens. If the 3D window  

size is P × M × M, we partition the input into ⌈ T
P
⌉ × ⌈ H

M
⌉ × ⌈W

M
⌉  non- 

overlapping 3D windows evenly. We choose P = 16, M = 2. We perform 
the multi-head self-attention within each 3D window. However, this 
design lacks connection across adjacent windows, which may limit the 
representation power of the architecture. Therefore, we extend the 
shifted 2D window mechanism of the Swin Transformer to shifted 3D 
windows. In the second layer of the stage, we shift the window by 
( P
2
, M

2
, M

2
) tokens along the temporal, height and width axes from the 

previous layer. This creates cross-window connections for the 
self-attention module. This shifted 3D window design enables the 
interaction of electrodes with longer spatial and temporal distances 
by connecting neighbouring tokens in non-overlapping 3D windows 
in the previous layer.

The temporal attention in the self-attention operation can be 
constrained to be causal (that is, each token only attends to tokens tem-
porally before it) or non-causal (that is, each token can attend to tokens 
temporally before or after it), leading to the causal and non-causal 
models, respectively.

LSTM decoder. The decoder uses the LSTM architecture25 for the 
feature extraction in Fig. 6e. Each LSTM cell is composed of a set of 
gates that control the flow of information: the input gate, the forget 
gate and the output gate. The input gate regulates the entry of new 
data into the cell state, the forget gate decides what information is 
discarded from the cell state, and the output gate determines what 
information is transferred to the next hidden state and can be output 
from the cell.

In the LSTM architecture, the ECoG input would be processed 
through these cells sequentially. For each time step T, the LSTM would 
take the current input xt and the previous hidden state ht − 1 and would 
produce a new hidden state ht and output yt. This process allows the 
LSTM to maintain information over time and is particularly useful for 
tasks such as speech and neural signal processing, where temporal 
dependencies are critical. Here we use three layers of LSTM and one 
linear layer to generate features to map to speech parameters. Unlike 
3D ResNet and 3D Swin, we keep the temporal dimension unchanged 
across all layers.

Model training
Training of the speech encoder and speech synthesizer. As 
described earlier, we pre-train the speech encoder and the learnable 
parameters in the speech synthesizer to perform a speech-to-speech 
auto-encoding task. We use multiple loss terms for the training. The 
modified multi-scale spectral (MSS) loss is inspired by ref. 53 and is 
defined as

LMSS(Ŝt( f ), St( f )) = L(Ŝt( f ), St( f )) + L(Ŝtmel( f ), S
t
mel( f ))

with

L(x, y) = ‖x − y‖1 +
‖
‖log x − log y‖‖1

Here, St(f) denotes the ground-truth spectrogram and Ŝt( f )  the 
reconstructed spectrogram in the linear scale, Stmel( f ) and Ŝtmel( f ) 
are the corresponding spectrograms in the Mel-frequency scale. We 
sample the frequency range [0, 8,000 Hz] with K = 256 bins for 
female participants. For male participants, we set K = 512 because 
they have lower f0, and it is better to have a higher resolution  
in frequency.

To improve the intelligibility of the reconstructed speech, we also 
introduce the STOI loss by implementing the STOI+ metric26, which is 
a variation of the original STOI metric8,22. STOI+26 discards the normali-
zation and clipping step in STOI and has been shown to perform best 
among intelligibility evaluation metrics. First, a one-third octave band 
analysis22 is performed by grouping Discrete Fourier transform (DFT) 
bins into 15 one-third octave bands with the lowest centre frequency 
set equal to 150 Hz and the highest centre frequency equal to ~4.3 kHz. 
Let ̂x(k, m) denote the kth DFT bin of the mth frame of the ground-truth 
speech. The norm of the jth one-third octave band, referred to as a 
time-frequency (TF) unit, is then defined as

Xj(m) =
√√√
√

k2( j)−1
∑

k=k1( j)
| ̂x(k, m)|2

where k1(j) and k2(j) denote the one-third octave band edges rounded 
to the nearest DFT bin. The TF representation of the processed speech 
̂y  is obtained similarly and denoted by Yj(m). We then extract the 

short-time temporal envelopes in each band and frame, denoted Xj, m 
and Yj, m, where Xj,m = [Xj(m − N + 1), Xj(m − N + 2), … , Xj(m)]

T
, with N = 30. 

The STOI+ metric is the average of the PCC dj, m between Xj, m and Yj, m, 
overall j and m (ref. 26):

STOIplus =
1
JM ∑

j,m
dj,m

We use the negative of the STOI+ metric as the STOI loss:

LSTOI = −STOIplus

where J and M are the total numbers of frequency bins (J = 15) and 
frames, respectively. Note that LSTOI is differentiable with respect to 
Ŝt( f ), and thus can be used to update the model parameters generating 
the predicted spectrogram Ŝt( f ).

To further improve the accuracy for estimating the pitch ̃f t0 and 
formant frequencies ̃f ti=1 to 4, we add supervisions to them using the 
formant frequencies extracted by the Praat method50. The supervision 
loss is defined as

Lsupervision = ‖
‖ ̃f t0 − f t0

‖
‖
2

2
+

4
∑
i=1

βi
‖
‖ ̃f ti − f ti

‖
‖
2

2

where the weights βi are chosen to be β1 = 0.1, β2 = 0.06, β3 = 0.03 and 
β4 = 0.02, based on empirical trials. The overall training loss is defined as

L = LMSS + λ1LSTOI + λ2Lsupervision

where the weighting parameters λi are empirically optimized to 
be λ1 = 1.2 and λ2 = 0.1 through testing the performances on three 
hybrid-density participants with different parameter choices.

Training of the ECoG decoder. With the reference speech parameters 
generated by the speech encoder and the target speech spectrograms 
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as ground truth, the ECoG decoder is trained to match these targets. 
Let us denote the decoded speech parameters as C̃ t

j , and their  
references as C t

j , where j enumerates all speech parameters fed to the 
speech synthesizer. We define the reference loss as

Lreference = ∑
j
λj‖‖C̃

t
j − Ct

j
‖
‖
2

2

where weighting parameters λj are chosen as follows: voice weight 
λα = 1.8, loudness λL = 1.5, pitch λf0 = 0.4 , formant frequencies 
λf1 = 3, λf2 = 1.8, λf3 = 1.2, λf4 = 0.9, λf5 = 0.6, λf6 = 0.3 , formant ampli-
tudes λa1 = 4, λa2 = 2.4, λa3 = 1.2, λa4 = 0.9, λa5 = 0.6, λa6 = 0.3 , broad-
band filter frequency λf ̂u = 10, amplitude λa ̂u = 4, bandwidth λb ̂u = 4. 
Similar to speech-to-speech auto-encoding, we add supervision loss 
for pitch and formant frequencies derived by the Praat method and 
use the MSS and STOI loss to measure the difference between the 
reconstructed spectrograms and the ground-truth spectrogram. The 
overall training loss for the ECoG decoder is

L = LMSS + λ1LSTOI + λ2Lsupervision + λ3Lreference

where weighting parameters λi are empirically optimized to be λ1 = 1.2, 
λ2 = 0.1 and λ3 = 1, through the same parameter search process as 
described for training the speech encoder.

We use the Adam optimizer58 with hyper-parameters lr = 10−3, 
β1 = 0.9 and β2 = 0.999 to train both the auto-encoder (including the 
speech encoder and speech synthesizer) and the ECoG decoder. We 
train a separate set of models for each participant. As mentioned earlier, 
we randomly selected 50 out of 400 trials per participant as the test 
data and used the rest for training.

Evaluation metrics
In this Article, we use the PCC between the decoded spectrogram and 
the actual speech spectrogram to evaluate the objective quality of the 
decoded speech, similar to refs. 8,18,59.

We also use STOI+26, as described in Methods section Training of 
the ECoG decoder to measure the intelligibility of the decoded speech. 
The STOI+ value ranges from −1 to 1 and has been reported to have a 
monotonic relationship with speech intelligibility.

Contribution analysis with the occlusion method
To measure the contribution of the cortex region under each electrode 
to the decoding performance, we adopted an occlusion-based method 
that calculates the change in the PCC between the decoded and the 
ground-truth spectrograms when an electrode signal is occluded (that 
is, set to zeros), as in ref. 29. This method enables us to reveal the critical 
brain regions for speech production. We used the following notations: 
St(f), the ground-truth spectrogram; ̂S

t
( f ), the decoded spectrogram 

with ‘intact’ input (that is, all ECoG signals are used); ̂S
t
i ( f ), the decoded 

spectrogram with the ith ECoG electrode signal occluded; r(⋅, ⋅), cor-
relation coefficient between two signals. The contribution of ith elec-
trode for a particular participant is defined as

Ci = Mean {r (St( f ), Ŝt( f )) − r (St( f ), Ŝti ( f ))}

where Mean{⋅} denotes averaging across all testing trials of the 
participant.

We generate the contribution map on the standardized Montreal 
Neurological Institute (MNI) brain anatomical map by diffusing the 
contribution of each electrode of each participant (with a correspond-
ing location in the MNI coordinate) into the adjacent area within the 
same anatomical region using a Gaussian kernel and then averaging the 
resulting map from all participants. To account for the non-uniform 
density of the electrodes in different regions and across the partici-
pants, we normalize the sum of the diffused contribution from all the 

electrodes at each brain location by the total number of electrodes in 
the region across all participants.

We estimate the noise level for the contribution map to assess the 
significance of our contribution analysis. To derive the noise level, we 
train a shuffled model for each participant by randomly pairing the 
mismatched speech segment and ECoG segment in the training set. 
We derive the average contribution map from the shuffled models for 
all participants using the same occlusion analysis as described earlier. 
The resulting contribution map is used as the noise level. Contribution 
levels below the noise levels at corresponding cortex locations are 
assigned a value of 0 (white) in Fig. 4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
The data of one participant who consented to the release of the neural 
and audio data are publicly available through Mendeley Data at https://
data.mendeley.com/datasets/fp4bv9gtwk/2 (ref. 60). Although all 
participants consented to share their data for research purposes, not 
all participants agreed to share their audio publicly. Given the sensitive 
nature of audio speech data we will share data with researchers that 
directly contact the corresponding author and provide documentation 
that the data will be strictly used for research purposes and will comply 
with the terms of our study IRB. Source data are provided with this paper.

Code availability
The code is available at https://github.com/flinkerlab/neural_speech_
decoding (https://doi.org/10.5281/zenodo.10719428)61.

References
1. Schultz, T. et al. Biosignal-based spoken communication: 

a survey. IEEE/ACM Trans. Audio Speech Lang. Process. 25, 
2257–2271 (2017).

2. Miller, K. J., Hermes, D. & Staff, N. P. The current state of 
electrocorticography-based brain-computer interfaces. 
Neurosurg. Focus 49, E2 (2020).

3. Luo, S., Rabbani, Q. & Crone, N. E. Brain-computer interface: 
applications to speech decoding and synthesis to augment 
communication. Neurotherapeutics 19, 263–273 (2022).

4. Moses, D. A., Leonard, M. K., Makin, J. G. & Chang, E. F. Real-time 
decoding of question-and-answer speech dialogue using human 
cortical activity. Nat. Commun. 10, 3096 (2019).

5. Moses, D. A. et al. Neuroprosthesis for decoding speech in a 
paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 
(2021).

6. Herff, C. & Schultz, T. Automatic speech recognition from neural 
signals: a focused review. Front. Neurosci. 10, 429 (2016).

7. Rabbani, Q., Milsap, G. & Crone, N. E. The potential for a speech 
brain-computer interface using chronic electrocorticography. 
Neurotherapeutics 16, 144–165 (2019).

8. Angrick, M. et al. Speech synthesis from ECoG using densely 
connected 3D convolutional neural networks. J. Neural Eng. 16, 
036019 (2019).

9. Sun, P., Anumanchipalli, G. K. & Chang, E. F. Brain2Char: a deep 
architecture for decoding text from brain recordings. J. Neural 
Eng. 17, 066015 (2020).

10. Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of 
cortical activity to text with an encoder–decoder framework.  
Nat. Neurosci. 23, 575–582 (2020).

11. Wang, R. et al. Stimulus speech decoding from human cortex 
with generative adversarial network transfer learning. In Proc. 
2020 IEEE 17th International Symposium on Biomedical Imaging 
(ISBI) (ed. Amini, A.) 390–394 (IEEE, 2020).

http://www.nature.com/natmachintell
https://data.mendeley.com/datasets/fp4bv9gtwk/2
https://data.mendeley.com/datasets/fp4bv9gtwk/2
https://github.com/flinkerlab/neural_speech_decoding
https://github.com/flinkerlab/neural_speech_decoding
https://doi.org/10.5281/zenodo.10719428


Nature Machine Intelligence | Volume 6 | April 2024 | 467–480 479

Article https://doi.org/10.1038/s42256-024-00824-8

12. Zelinka, P., Sigmund, M. & Schimmel, J. Impact of vocal effort 
variability on automatic speech recognition. Speech Commun. 
54, 732–742 (2012).

13. Benzeghiba, M. et al. Automatic speech recognition and speech 
variability: a review. Speech Commun. 49, 763–786 (2007).

14. Martin, S. et al. Decoding spectrotemporal features of overt and 
covert speech from the human cortex. Front. Neuroeng. 7, 14 (2014).

15. Herff, C. et al. Towards direct speech synthesis from ECoG:  
a pilot study. In Proc. 2016 38th Annual International Conference  
of the IEEE Engineering in Medicine and Biology Society (EMBC) 
(ed. Patton, J.) 1540–1543 (IEEE, 2016).

16. Angrick, M. et al. Real-time synthesis of imagined speech 
processes from minimally invasive recordings of neural activity. 
Commun. Biol 4, 1055 (2021).

17. Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis 
from neural decoding of spoken sentences. Nature 568, 493–498 
(2019).

18. Herff, C. et al. Generating natural, intelligible speech from brain 
activity in motor, premotor and inferior frontal cortices. Front. 
Neurosci. 13, 1267 (2019).

19. Metzger, S. L. et al. A high-performance neuroprosthesis for speech 
decoding and avatar control. Nature 620, 1037–1046 (2023).

20. Hsu, W.-N. et al. Hubert: self-supervised speech representation 
learning by masked prediction of hidden units. IEEE/ACM Trans. 
Audio Speech Lang. Process. 29, 3451–3460 (2021).

21. Griffin, D. & Lim, J. Signal estimation from modified short-time 
fourier transform. IEEE Trans. Acoustics Speech Signal Process. 32, 
236–243 (1984).

22. Taal, C. H., Hendriks, R. C., Heusdens, R. & Jensen, J. A short-time 
objective intelligibility measure for time-frequency weighted 
noisy speech. In Proc. 2010 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ed. Douglas, S.) 
4214–4217 (IEEE, 2010).

23. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for 
image recognition. In Proc. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) (ed. Bajcsy, R.) 770–778 
(IEEE, 2016).

24. Liu, Z. et al. Swin Transformer: hierarchical vision transformer 
using shifted windows. In Proc. 2021 IEEE/CVF International 
Conference on Computer Vision (ICCV) (ed. Dickinson, S.) 
9992–10002 (IEEE, 2021).

25. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural 
Comput. 9, 1735–1780 (1997).

26. Graetzer, S. & Hopkins, C. Intelligibility prediction for speech 
mixed with white Gaussian noise at low signal-to-noise ratios.  
J. Acoust. Soc. Am. 149, 1346–1362 (2021).

27. Hickok, G. & Poeppel, D. The cortical organization of speech 
processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

28. Trupe, L. A. et al. Chronic apraxia of speech and Broca’s area. 
Stroke 44, 740–744 (2013).

29. Wang, R. et al. Distributed feedforward and feedback cortical 
processing supports human speech production. Proc. Natl Acad. 
Sci. USA 120, e2300255120 (2023).

30. Mugler, E. M. et al. Differential representation ofÿ articulatory 
gestures and phonemes in precentral and inferior frontal gyri. J. 
Neurosci. 38, 9803–9813 (2018).

31. Herff, C. et al. Brain-to-text: decoding spoken phrases from phone 
representations in the brain. Front. Neurosci. 9, 217 (2015).

32. Kohler, J. et al. Synthesizing speech from intracranial depth 
electrodes using an encoder-decoder framework. Neurons Behav. 
Data Anal. Theory https://doi.org/10.51628/001c.57524 (2022).

33. Angrick, M. et al. Towards closed-loop speech synthesis from 
stereotactic EEG: a unit selection approach. In Proc. 2022 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) (ed. Li, H.) 1296–1300 (IEEE, 2022).

34. Ozker, M., Doyle, W., Devinsky, O. & Flinker, A. A cortical 
network processes auditory error signals during human speech 
production to maintain fluency. PLoS Biol. 20, e3001493 (2022).

35. Stuart, A., Kalinowski, J., Rastatter, M. P. & Lynch, K. Effect of 
delayed auditory feedback on normal speakers at two speech 
rates. J. Acoust. Soc. Am. 111, 2237–2241 (2002).

36. Verwoert, M. et al. Dataset of speech production in intracranial 
electroencephalography. Sci. Data 9, 434 (2022).

37. Berezutskaya, J. et al. Direct speech reconstruction from 
sensorimotor brain activity with optimized deep learning models. 
J. Neural Eng. 20, 056010 (2023).

38. Wang, R., Wang, Y. & Flinker, A. Reconstructing speech stimuli 
from human auditory cortex activity using a WaveNet approach. 
In Proc. 2018 IEEE Signal Processing in Medicine and Biology 
Symposium (SPMB) (ed. Picone, J.) 1–6 (IEEE, 2018).

39. Flanagan, J. L. Speech Analysis Synthesis and Perception Vol. 3 
(Springer, 2013).

40. Serra, X. & Smith, J. Spectral modeling synthesis: a sound 
analysis/synthesis system based on a deterministic plus 
stochastic decomposition. Comput. Music J. 14, 12–24 (1990).

41. Cogan, G. B. et al. Sensory–motor transformations for speech 
occur bilaterally. Nature 507, 94–98 (2014).

42. Ibayashi, K. et al. Decoding speech with integrated hybrid signals 
recorded from the human ventral motor cortex. Front. Neurosci. 
12, 221 (2018).

43. Soroush, P. Z. et al. The nested hierarchy of overt, mouthed and 
imagined speech activity evident in intracranial recordings. 
NeuroImage 269, 119913 (2023).

44. Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. 
Probabilistic map of critical functional regions of the human 
cerebral cortex: Broca’s area revisited. Brain 137, 2773–2782 
(2014).

45. Long, M. A. et al. Functional segregation of cortical regions 
underlying speech timing and articulation. Neuron 89, 1187–1193 
(2016).

46. Willett, F. R. et al. A high-performance speech neuroprosthesis. 
Nature 620, 1031–1036 (2023).

47. Shum, J. et al. Neural correlates of sign language production 
revealed by electrocorticography. Neurology 95, e2880–e2889 
(2020).

48. Sainburg, T., Thielk, M. & Gentner, T. Q. Finding, visualizing 
and quantifying latent structure across diverse animal vocal 
repertoires. PLoS Comput. Biol. 16, e1008228 (2020).

49. Roussel, P. et al. Observation and assessment of acoustic 
contamination of electrophysiological brain signals during 
speech production and sound perception. J. Neural Eng. 17, 
056028 (2020).

50. Boersma, P. & Van Heuven, V. Speak and unSpeak with PRAAT. 
Glot Int. 5, 341–347 (2001).

51. Chang, E. F., Raygor, K. P. & Berger, M. S. Contemporary model  
of language organization: an overview for neurosurgeons.  
J. Neurosurgery 122, 250–261 (2015).

52. Jiang, J., Chen, M. & Alwan, A. On the perception of voicing in 
syllable-initial plosives in noise. J. Acoust. Soc. Am. 119, 1092–1105 
(2006).

53. Engel, J., Hantrakul, L., Gu, C. & Roberts, A. DDSP: differentiable 
digital signal processing. In Proc. 8th International Conference 
on Learning Representations https://openreview.net/
forum?id=B1x1ma4tDr (Open.Review.net, 2020).

54. Flanagan, J. L. A difference limen for vowel formant frequency.  
J. Acoust. Soc. Am. 27, 613–617 (1955).

55. Schafer, R. W. & Rabiner, L. R. System for automatic formant 
analysis of voiced speech. J. Acoust. Soc. Am. 47, 634–648 (1970).

56. Fitch, J. L. & Holbrook, A. Modal vocal fundamental frequency of 
young adults. Arch. Otolaryngol. 92, 379–382 (1970).

http://www.nature.com/natmachintell
https://doi.org/10.51628/001c.57524
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=B1x1ma4tDr


Nature Machine Intelligence | Volume 6 | April 2024 | 467–480 480

Article https://doi.org/10.1038/s42256-024-00824-8

57. Stevens, S. S. & Volkmann, J. The relation of pitch to frequency:  
a revised scale. Am. J. Psychol. 53, 329–353 (1940).

58. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. 
In Proc. 3rd International Conference on Learning Representations 
(eds Bengio, Y. & LeCun, Y.) http://arxiv.org/abs/1412.6980 (arXiv, 
2015).

59. Angrick, M. et al. Interpretation of convolutional neural networks 
for speech spectrogram regression from intracranial recordings. 
Neurocomputing 342, 145–151 (2019).

60. Chen, X. ECoG_HB_02. Mendeley data, V2 (Mendeley, 2024); 
https://doi.org/10.17632/fp4bv9gtwk.2

61. Chen, X. & Wang, R. Neural speech decoding 1.0 (Zenodo, 2024); 
https://doi.org/10.5281/zenodo.10719428

Acknowledgements
This Work was supported by the National Science Foundation 
under grants IIS-1912286 and 2309057 (Y.W. and A.F.) and National 
Institute of Health grants R01NS109367, R01NS115929 and 
R01DC018805 (A.F.).

Author contributions
Y.W. and A.F. supervised the research. X.C., R.W., Y.W. and A.F. 
conceived research. X.C., R.W., A.K.-G., L.Y., P.D., D.F., W.D., O.D. and 
A.F. performed research. X.C., R.W., Y.W. and A.F. contributed new 
reagents/analytic tools. X.C., R.W., A.K.-G., L.Y. and A.F. analysed 
data. P.D. and D.F. provided clinical care. W.D. provided neurosurgical 
clinical care. O.D. assisted with patient care and consent. X.C., Y.W. and 
A.F. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s42256-024-00824-8.

Correspondence and requests for materials should be addressed to 
Adeen Flinker.

Peer review information Nature Machine Intelligence thanks the anony-
mous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natmachintell
http://arxiv.org/abs/1412.6980
https://doi.org/10.17632/fp4bv9gtwk.2
https://doi.org/10.5281/zenodo.10719428
https://doi.org/10.1038/s42256-024-00824-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Adeen Flinker

Last updated by author(s): Dec 27, 2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MATLAB 2016a, Python 3.8

Data analysis MATLAB 2016a, Python 3.8, Pytorch 1.21.1, Librosa 0.8.0, https://github.com/flinkerlab/neural_speech_decoding

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data of one participant who consented to the release of the neural and audio data is publicly available through Mendeley Data https://data.mendeley.com/
datasets/fp4bv9gtwk/. While all participants consented to share their data for research purposes, not all participants agreed to share their audio publicly. Given the 
sensitive nature of audio speech data we will share data with researchers that directly contact the corresponding author and provide documentation that the data 
will be strictly used for research purposes and will comply with the terms of our study IRB.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Findings apply to two genders (Female and Male). Gender is considered in the study design and determined by self reporting. 
26 Female and 22 Male participants' data are collected with their consent. The analysis for Female and Male participants are 
slightly different based on their acoustic characteristic differences.

Population characteristics Participants were all  diagnosed with epilepsy and required surgical treatment (a prerequisite for participation in human 
ECoG research). Due to this data collection setup, no covariates or participant properties could be controlled for.

Recruitment Participants were recruited as part of their ongoing neurosurgical clinical care for Epilepsy. Once a patient was identified as 
undergoing surgical procedures they were first approached by their clinician to ask if they are interested and if a member of 
the research team could contact them. Prior to surgery, or post surgery at bedside, a member of the research team 
contacted the patient (after explicit consent they provided to the clinician) and explained the research. After research was 
explained, written and oral permission was obtained.  
Patients were consented to participate in research only if they were clinical candidates for a two-staged neurosurgical 
procedure, had cognitive capacity to consent and provided approval to be approached for consent by their clinical provider. 
Since the participants' medical condition has had no impact on their ability to speak fluently, we do not expect there to be 
any selection bias and we believe them to be representative of general population. 

Ethics oversight The study was conducted under a New York University Grossman School of Medicine approved IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The amount of speech data collected from each participant was dependent on their clinical treatment schedule and the experimental design. 
As explained in the manuscript each participant performed 5 auditory tasks and 400 trials are recorded. No sample size calculation was 
performed. A total of 48 neurosurgical patients that were implanted with electrocorticography electrodes were included in this study. 
Electrode implantation and location were guided solely by clinical requirements. Previous study used around 1-5 patients recordings. In this 
study we use a sample size a magnitude larger and the sample size should be sufficient.

Data exclusions No data exclusions

Replication Decoding performance was first done with one participant's data and then re-done with other 47 participants to confirm findings. The 
attempts to replicate were successful.

Randomization The trials used to test decoding performances are randomly chosen. We also performed five fold cross validation to validate the decoding 
performance. There is no experimental group. We only have within subject decoding experiment.

Blinding Blinding was not relevant for this study. The participants' speaking of words are not biased.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	A neural speech decoding framework leveraging deep learning and speech synthesis
	Results
	ECoG-to-speech decoding framework
	Data collection
	Speech decoding performance and causality
	Left-hemisphere versus right-hemisphere decoding
	Effect of electrode density
	Contribution analysis

	Discussion
	Methods
	Experiments design
	Data collection and preprocessing
	Speech synthesizer
	Formant filters in the voice pathway
	Unvoice filters
	Voice excitation
	Noise excitation
	Summary of speech parameters
	Speaker-specific synthesizer parameters

	Speech encoder
	ECoG decoder
	3D ResNet ECoG decoder
	3D Swin Transformer ECoG decoder
	LSTM decoder

	Model training
	Training of the speech encoder and speech synthesizer
	Training of the ECoG decoder

	Evaluation metrics
	Contribution analysis with the occlusion method
	Reporting summary

	Acknowledgements
	Fig. 1 The proposed neural speech decoding framework.
	Fig. 2 Decoding performance comparing the original and decoded spectrograms across non-causal and causal models.
	Fig. 3 Comparison of decoding performance under different settings of the 3D ResNet and 3D Swin models.
	Fig. 4 Contribution analysis.
	Fig. 5 Differentiable speech synthesizer architecture.
	Fig. 6 Speech encoder and ECoG decoder.




