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Invalid SMILES are beneficial rather than 
detrimental to chemical language models

Michael A. Skinnider    1,2 

Generative machine learning models have attracted intense interest for 
their ability to sample novel molecules with desired chemical or biological 
properties. Among these, language models trained on SMILES (Simplified 
Molecular-Input Line-Entry System) representations have been subject to 
the most extensive experimental validation and have been widely adopted. 
However, these models have what is perceived to be a major limitation: 
some fraction of the SMILES strings that they generate are invalid, meaning 
that they cannot be decoded to a chemical structure. This perceived 
shortcoming has motivated a remarkably broad spectrum of work designed 
to mitigate the generation of invalid SMILES or correct them post hoc. Here 
I provide causal evidence that the ability to produce invalid outputs is not 
harmful but is instead beneficial to chemical language models. I show that 
the generation of invalid outputs provides a self-corrective mechanism that 
filters low-likelihood samples from the language model output. Conversely, 
enforcing valid outputs produces structural biases in the generated 
molecules, impairing distribution learning and limiting generalization 
to unseen chemical space. Together, these results refute the prevailing 
assumption that invalid SMILES are a shortcoming of chemical language 
models and reframe them as a feature, not a bug.

Over the past century, more than 100 million small molecules have 
been synthesized in the search for new drugs and materials1. These 
efforts have explored only an infinitesimal subset of chemical space, 
the size of which is estimated at over 1060 molecules2. Yet, remarkably 
and often serendipitously, this limited exploration of chemical space 
has led to the discovery of numerous molecules that can modulate bio-
logical processes. That our extremely limited exploration of chemical 
space has already yielded so many medically or industrially valuable 
compounds suggests that more efficient approaches to chemical space 
exploration could help address many of the most pressing challenges 
facing humanity.

Chemical space is so large that its exhaustive enumeration is essen-
tially impossible. Instead, searches for bioactive molecules generally 
focus on particular subsets of chemical space3,4. Historically, these 
subsets were defined primarily by rule-based approaches, in which 
new molecules were generated by iterative application of predefined 

chemical transformations to a ‘starter’ population5–12. More recently, 
generative models based on deep neural networks have emerged as a 
powerful framework for chemical space exploration13–16. Given a set 
of molecules as input, these models are able to learn the chemistries 
implicitly embedded within this training set, and then leverage this 
understanding to sample unseen molecules from the same areas of 
chemical space.

Initial demonstrations that deep generative models could 
design novel molecules with desired physicochemical or bio-
logical properties17–24 have triggered the development of myriad 
approaches to molecule generation. These methods differ not only 
in the architectures of the underlying neural networks, but also 
in the conceptual frameworks they use to represent molecules: 
for instance, as chemical graphs25,26, as combinations of substruc-
tures27 or as three-dimensional objects28,29. Thus far, however, these 
approaches have not consistently surpassed the empirical state of 
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natural language processing to learn the statistical properties of 
these strings and generate new ones.

Like a human language, the SMILES syntax imposes strict rules 
on which strings are syntactically valid. This means that chemical 

the art established by the earliest deep neural network approaches 
based on chemical language models30,31. These models represent 
molecules as strings of text (commonly using the SMILES format32; 
Fig. 1a), and adapt neural network architectures from the field of 
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Fig. 1 | Language models that can generate invalid outputs outperform 
models that cannot. a, Schematic overview of chemical space exploration with 
chemical language models. Language models are trained on a set of chemical 
structures represented as strings (for example, in SMILES or SELFIES formats). 
Sampling new strings from the trained model enables generation of novel 
molecules from the same chemical space as the training set. b, Illustration of 
invalid SMILES. A single character substitution in the SMILES string for caffeine, 
top, creates a syntactically invalid SMILES string that does not correspond to 
any chemical structure, bottom. c, Experimental framework to benchmark 
language models trained on SMILES versus SELFIES. CLM, chemical language 

model. d, Proportion of valid molecules generated by language models trained 
on SMILES versus SELFIES representations (n = 10 each; P = 2.0 × 10–10, paired 
t-test). e, Fréchet ChemNet distance between generated and training molecules 
for language models trained on SMILES versus SELFIES representations (lower 
is better; n = 10 each; P = 1.1 × 10–9, paired t-test). f, Relationship between the 
proportion of valid SMILES generated by chemical language models, and the 
difference in Fréchet ChemNet distance (FCD) between each model and an 
equivalent model trained on SELFIES representations of the same training set. 
Inset text shows the Pearson correlation coefficient and P value. The line and 
shaded area show linear regression and 95% confidence interval, respectively.
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language models can generate SMILES that do not correspond to any 
valid chemical structure (Fig. 1b). The generation of invalid SMILES is 
widely perceived to be an important shortcoming of chemical language 
models. This perception has motivated an enormous amount of work to 
address this shortcoming and encourage generation of valid molecules, 
whether by developing alternative textual representations of mole-
cules33–35, developing methods that generate valid SMILES by design36,37, 
or developing methods to correct invalid SMILES post hoc38–40. The 
generation of invalid SMILES is also frequently cited as a motivation to 
eschew the language modelling framework and develop models that 
generate chemical graphs directly25,27,41–47 and used in benchmark suites 
to quantify the performance of generative models48,49.

That the generation of invalid SMILES is so widely perceived to be 
a limitation of chemical language models might be seen as surprising. 
Removing invalid SMILES from the output of a chemical language 
model is a simple post hoc processing step that does not carry sub-
stantial computational cost. Moreover, despite the assumption that 
generating invalid SMILES is a shortcoming, several benchmarks have 
identified that language models trained on SMILES outperform those 
trained on SELFIES (SELF-referencIng Embedded Strings)34, a textual 
representation that produces 100% valid output by design, as well as 
models that generate chemical graphs directly50–52. These observa-
tions raise the possibility that the ability to generate invalid SMILES is  
actually a desirable property for a generative model: in other words, 
that generating invalid SMILES is a feature, not a bug.

In this study, I set out to empirically test the possibility that inva-
lid SMILES are beneficial, rather than harmful, to chemical language 
models. I show that invalid SMILES are sampled with significantly lower 
likelihoods than valid SMILES, suggesting that filtering invalid SMILES 
provides an intrinsic mechanism to identify and remove low-quality 
samples from the model output. I then exploit the design of the  
SELFIES language by removing the valency constraints that ensure 
valid molecule generation and obtain causal evidence that generat-
ing invalid outputs improves the performance of chemical language 
models. I elucidate the mechanism by which imposing valency con-
straints impairs distribution learning, and show that these constraints 
bias chemical space exploration towards molecules with specific 
structural properties and impair generalization to unseen chemical 
space. Finally, I show that language models can correctly elucidate 
complex chemical structures from minimal analytical data, and that 
models capable of generating invalid outputs outperform models 
that cannot on this task.

Results
Models that generate invalid outputs outperform models  
that do not
Previous benchmarks suggested that chemical language models 
trained on SMILES could outperform those trained on SELFIES, a  
format in which every string corresponds to a valid molecule by design.  
Specifically, these benchmarks showed that language models trained 
on SMILES strings generated unseen molecules whose physicochemical 
properties better matched those of the molecules in the training set50,51. 
I initially set out to reproduce this observation. I trained chemical lan-
guage models on random samples of molecules from the ChEMBL data-
base53, providing either SMILES or SELFIES representations of the same 
molecules as input. The trained models were then used to sample new 
molecules from the same chemical space as the training set, and model 
performance was evaluated by calculating metrics that captured the 
similarity between generated molecules and the training set (Fig. 1c).

As expected, models trained on SELFIES strings produced valid 
molecules at a rate of 100%, compared to an average of 90.2% for mod-
els trained on SMILES (Fig. 1d). Nonetheless, models trained on SMILES 
generated novel molecules that matched the training set significantly 
better than models trained on SELFIES, as quantified by the Fréchet 
ChemNet distance (Fig. 1e). This conclusion was unchanged when using 

other metrics to quantify performance, such as the Murcko scaffold 
similarity between the training and generated molecules54, and was 
recapitulated when integrating multiple metrics into a single measure 
of model performance using principal component analysis (PCA), as 
previously described50 (Extended Data Fig. 1a–d).

The superior performance of models trained on SMILES was robust 
both to the data used to train the chemical language models, and to the 
architecture of the models themselves. I reproduced this result when 
(1) training models on smaller or larger samples of molecules from 
ChEMBL; (2) training models on molecules from a different chemical 
database, GDB-13 (ref. 55); (3) training models on more or less chemi-
cally diverse training sets; (4) performing data augmentation by SMILES 
or SELFIES enumeration56,57; or (5) using a language model based on the 
transformer architecture58 instead of one based on long short-term 
memory (LSTM) networks (Extended Data Fig. 1e–s).

Language models trained on SELFIES typically generated novel 
molecules at a higher rate than models trained on SMILES, but models 
trained on either representation were able to achieve a very high rate 
of novelty (>99%) except when deliberately constructing training sets 
with a low degree of chemical diversity (Extended Data Fig. 2).

Together, these results demonstrate that language models trained 
on SMILES robustly outperformed those trained on SELFIES. Moreover, 
across all models tested, I found that the magnitude of this differ-
ence in performance was strongly and negatively correlated with the 
proportion of valid SMILES (Fig. 1f): in other words, models trained 
on SMILES performed proportionately better when generating more 
invalid outputs.

Invalid SMILES are low-likelihood samples
These findings expose an apparent contradiction. The presence of inva-
lid outputs is widely perceived to be a central shortcoming of generative 
models based on SMILES strings. However, models that can generate 
invalid outputs robustly outperformed models that—by design—can 
only generate valid outputs.

I sought to identify the mechanisms underlying this contra-
diction. One potential explanation is that invalid SMILES represent 
low-likelihood samples from the language model. Removing invalid 
SMILES would, therefore, function as a mechanism to filter low-quality 
samples from the model output. Notably, this hypothesis is con-
sistent with the observed anticorrelation between invalid SMILES  
generation and model performance (Fig. 1f): filtering out a larger num-
ber of low-quality samples would expectantly result in proportionately  
better performance.

If this hypothesis were correct, one would expect that invalid 
SMILES are sampled with larger losses than valid SMILES from the same 
model. This was, indeed, found to be the case (Fig. 2a,b). Moreover, 
this difference was not limited to a single subtype of invalid SMILES: 
all major categories of invalid SMILES38 were sampled with higher 
losses than their valid counterparts (Fig. 2c–e). These differences were  
mediated, in part, by the increased lengths of invalid SMILES, but 
persisted when comparing the average losses with which individual 
tokens were sampled within valid versus invalid SMILES (Extended Data 
Fig. 3a–d). Conversely, SMILES that were sampled with smaller losses 
were more likely to be valid (Fig. 2f). These findings were robust to vary-
ing the size and composition of the training dataset or the architecture 
of the language model (Extended Data Fig. 3e–m).

Invalid outputs improve performance
These results establish that invalid SMILES are enriched among 
low-likelihood samples from chemical language models. This find-
ing suggests that removing invalid SMILES has the effect of filtering 
low-quality samples from the model output, which in turn would be 
expected to improve performance on distribution-learning metrics 
such as the Fréchet ChemNet distance. However, these data pro-
vide correlative rather than causal evidence for the notion that the 
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ability to generate (and then discard) invalid outputs improves model  
performance.

To obtain such evidence, I took advantage of the design of SELFIES 
themselves. Within the SELFIES library, the generation of chemically 
valid graphs is enforced by a set of constraints on the valence of each 
atom: for example, the specification that a carbon atom cannot partici-
pate in more than four covalent bonds34,59. These valency constraints 
provide a natural mechanism to test the relationship between output 
validity and model performance. I modified the default valency con-
straints within the SELFIES library to allow pentavalent carbons, a modi-
fication I refer to as ‘Texas SELFIES’60. Under these modified constraints, 
language models trained on SELFIES can generate chemically invalid 
outputs. Remarkably, however, these chemically invalid constraints 
significantly improved performance: decoding Texas SELFIES yielded 
samples of novel molecules that were more similar to the training set 
than those decoded with the default and chemically valid constraints 
(Fig. 3a and Extended Data Fig. 4a–d).

Next, I tested the effect of removing valency constraints entirely 
(‘unconstrained SELFIES’), and found that this further improved per-
formance (Fig. 3a and Extended Data Fig. 4e–h). Invalid SELFIES were 
sampled with larger losses than their valid counterparts (Fig. 3b,c), 
corroborating the trends observed for invalid SMILES, and supporting 
the notion that removing valency constraints provided a mechanism 
to filter low-quality samples from the model output.

The superior performance of unconstrained SELFIES was robust to 
variations in the training dataset or model architecture (Extended Data 
Fig. 4j,l,m,p,r). Moreover, I identified a significant correlation between 
the proportion of invalid SELFIES generated and the improvement in 
performance after removing valency constraints (Fig. 3d): in other 
words, models performed proportionately better when generating 
more invalid SELFIES.

Whereas removing valency constraints improved the perfor-
mance of language models trained on SELFIES, these were generally 
still outperformed by models trained on SMILES, pointing to residual 
differences in performance as a function of molecular representation.

These results provide causal evidence that allowing chemical lan-
guage models to produce invalid outputs improves their performance.

Enforcing valid outputs biases chemical space exploration
I sought to clarify the mechanisms by which the ability to produce  
invalid outputs improved the performance of chemical language mod-
els. I hypothesized that these differences in performance reflected 

differences in the chemical space explored by models trained on 
SMILES versus SELFIES. To address this possibility, I computed a series 
of properties for each generated molecule, and compared the result-
ing property distributions to those of the training set. By far the larg-
est difference between models trained on SMILES versus SELFIES in 
this analysis involved their propensity to generate cyclic molecules.  
Molecules generated as SELFIES were markedly depleted for aromatic 
rings (Fig. 4a,b) and enriched for aliphatic rings (Fig. 4c,d), relative both 
to the training set and to molecules generated as SMILES. Smaller but 
statistically significant differences were observed for a range of other 
structural properties, reflecting pervasive differences in the chemical 
space explored by generative models trained on SMILES versus SELFIES 
(Fig. 4e and Extended Data Fig. 5a–t).

Together, these experiments identified significant differences in 
the chemical space explored by language models trained on SMILES 
versus SELFIES. To establish whether a causal relationship existed,  
I compared the SELFIES that could be successfully parsed without 
chemical valency constraints to those that required the imposition 
of these constraints in order to produce a valid chemical graph. This 
comparison allowed me to directly assess how removing invalid SELFIES 
influenced the distributions of structural properties among the gener-
ated molecules. Remarkably, I observed that the most profound differ-
ences between valid and invalid SELFIES again involved their propensity 
to contain aromatic and aliphatic rings. Invalid SELFIES were signifi-
cantly depleted for aromatic rings, and enriched for aliphatic rings, 
relative to both the training set and to valid SELFIES (Fig. 4f,g). Con-
versely, disabling the valency constraints, and allowing the model to 
generate invalid SELFIES, reversed the structural differences between 
molecules generated as SMILES versus SELFIES.

This reversal led me to ask whether other structural differences 
between molecules generated as SMILES versus SELFIES were also 
reversed when disabling valency constraints. Indeed, I observed that 
the differences in structural properties between SMILES and SELFIES 
were strongly and significantly correlated to those between valid and 
invalid SELFIES (Fig. 4h and Extended Data Fig. 6a–w). Thus, the struc-
tural differences between molecules generated as SMILES versus SELF-
IES can be attributed at least in part to the correction of invalid outputs.

Together, these experiments expose the mechanism underly-
ing differences in performance between generative models trained 
on SMILES versus SELFIES. The imposition of valency constraints in 
SELFIES prevents the generation of invalid outputs, but results in an 
overrepresentation of aliphatic rings and an underrepresentation of 
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Fig. 2 | Invalid SMILES are low-likelihood samples from chemical language 
models. a, Losses of valid versus invalid SMILES sampled from a representative 
chemical language model (n = 107 SMILES; P < 10–15, two-sided t-test). b, Effect 
sizes (Cohen’s d) comparing the losses of valid versus invalid SMILES sampled 
from n = 10 chemical language models, demonstrating consistent effects 
(P = 1.5 × 10–13, one-sample t-test). c, Losses of valid SMILES versus invalid SMILES 
sampled from a representative chemical language model, classified into six 
different categories based on RDKit error messages38 (n = 107 SMILES; all P < 10–15, 

two-sided t-test). d, Effect sizes (Cohen’s d) comparing the losses of valid SMILES 
versus six different categories of invalid SMILES across n = 10 chemical language 
models, demonstrating consistent effects (all P ≤ 1.4 × 10–10, one-sample t-test).  
e, Frequencies of each invalid SMILES error type, shown as the mean proportion  
of all generated SMILES across ten chemical language models. f, Proportion of 
valid SMILES within each decile of loss in samples of 500,000 strings from ten 
chemical models (P < 10–15, two-sided Jonckheere–Terpstra test).
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aromatic rings in the resulting molecules. These systematic biases in 
the chemical composition of the generated molecules are reflected 
in poor performance on distribution-learning metrics, such as the 
Fréchet ChemNet distance. Removing valency constraints, and allow-
ing the model to generate invalid outputs, corrects these biases and 
improves performance.

Structural biases limit generalization
An ideal generative model would sample evenly from the chemical 
space surrounding the molecules in the training set. The observation of 
structural biases in the outputs of language models trained on SELFIES 
is at odds with this goal. I therefore sought to test whether, in addi-
tion to introducing biases in the chemical space explored by genera-
tive models, the choice of representation would also constrain their  
capacity for generalization.

To test this hypothesis, I made use of an exhaustively explored 
chemical space: that of the GDB-13 database, which enumerates all  
~975 million drug-like molecules containing up to 13 heavy atoms.  
Following an experimental design proposed previously, I trained 
chemical language models on small samples from GDB-13, using either 
SMILES or SELFIES to represent these molecules61. I then drew sam-
ples of 100 million strings from each language model, and calculated  
the total proportion of GDB-13 that was correctly reproduced within 
the language model output.

Language models trained on SELFIES generated significantly more 
valid molecules than those trained on SMILES, as expected (Fig. 5a). 
However, a substantial fraction of the molecules generated as SELF-
IES were outside the chemical space defined by the GDB-13 database 
(Fig. 5b). Consequently, despite generating fewer molecules overall, 
models trained on SMILES explored a significantly larger proportion of 
the GDB-13 chemical space than models trained on SELFIES (Fig. 5c,d). 
That models trained on SELFIES showed a greater propensity to explore 
outside the chemical space of GDB-13, but a lower coverage of GDB-13 
itself, can be rationalized on the basis that models trained on SELFIES 
show a diminished capacity to generalize from the chemical space of 
the training set.

Invalid outputs improve structure elucidation
To explore the implications of these findings further, I applied  
chemical language models to a task in which efficient navigation of 

unknown chemical space is of central importance: namely, structure 
elucidation of complex natural products. Recent work has shown 
that chemical language models can generate novel molecules that 
match experimentally measured properties. One particularly exciting  
observation is that language models can not only generate plausible 
chemical structures, but even prioritize the most likely ones on the 
basis of as little experimental data as an accurate mass measurement62.  
However, thus far this possibility has only been demonstrated for a 
subset of drug-like molecules, and it remains unclear whether the same 
approach could be applied to structure elucidation of more complex  
molecules. In Supplementary Note 1 and Extended Data Figs. 7–9, I show 
that language models can contribute to the structure elucidation of a range 
of complex small molecules including natural products, environmental  
pollutants, and food-derived compounds, and that the ability to  
generate invalid outputs improves performance on these tasks.

Discarding invalid SMILES is fast and easy
One potential criticism of generating (and then discarding) invalid 
outputs is that the process of parsing every sample from the model 
to establish its validity necessarily requires additional computa-
tional resources63. However, filtering invalid SMILES is a lightweight 
post-processing step that does not substantially increase the compu-
tational requirements of a chemical language model. Parsing 1 million 
SMILES can be achieved with the RDKit in an average of 7.5 minutes on 
a single CPU, and determining the validity of a SMILES string requires 
just a single line of code (Extended Data Fig. 10).

Discussion
That chemical language models trained on SMILES strings can pro-
duce invalid outputs is widely (if not universally) perceived to be an 
important deficiency of these models. This perception has motivated 
a remarkably broad spectrum of work in the field of chemical artifi-
cial intelligence, including the development of alternative molecu-
lar representations, mechanisms that encourage generation of valid  
outputs, approaches to correct invalid outputs post hoc, and models 
that generate chemical graphs directly. Here I provide direct and causal 
evidence that the ability to produce invalid outputs is not harmful 
but is instead beneficial to chemical language models, and elucidate 
the mechanisms underlying this effect. I show that language models 
trained on SMILES, a representation that can lead to both syntactically 
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linear regression and 95% confidence interval, respectively.
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and semantically invalid outputs, outperform models trained on  
SELFIES, a representation that enforces the generation of valid outputs 
by design (Fig. 1). Invalid SMILES are sampled with significantly lower 
likelihoods than valid SMILES, implying that filtering invalid SMILES 
preferentially removes low-quality samples from the model output 
(Fig. 2). I leverage the design of the SELFIES representation by removing 
the valency constraints that enforce valid molecule generation, allow-
ing me to show causally that generating (and then removing) invalid 
outputs improves language model performance (Fig. 3). I further show 
that the imposition of valency constraints results in biased explora-
tion of chemical space, reflected in an overrepresentation of aliphatic 
rings and an underrepresentation of aromatic rings in the generated 
molecules (Fig. 4), and that these biases in turn impair generalization 
to unseen chemical space (Fig. 5). Finally, I apply chemical language 
models to structure elucidation of natural products, and show that  
(1) language models can develop remarkably accurate hypotheses 
about unknown chemical structures from minimal analytical data, 
and (2) models capable of generating invalid outputs significantly 
outperform models that cannot on this task (Extended Data Fig. 7).

Collectively, these results challenge the often-voiced assumption 
that invalid SMILES are a problem that must be addressed by developing 
new computational approaches. They suggest that further efforts to 
enforce the generation of valid molecules are unlikely to improve model 
performance. Instead, these results advocate for a more widespread 
recognition that removing invalid outputs is a simple and computation-
ally efficient post-processing step that does not necessarily reflect a 

fundamental flaw in the underlying model. More broadly, these results 
support a redirection of efforts towards improving the performance 
of generative models of molecules through directions other than  
maximizing output validity. Indeed, several recent studies have high-
lighted opportunities to improve molecule generation despite the 
generation of invalid SMILES64–67.

That language models trained on SMILES outperformed those 
trained on SELFIES on distribution-learning metrics does not imply 
the latter should never be preferred. A number of recent works have 
presented computational approaches in which the robustness of the 
SELFIES representation has been a central consideration, including 
applications to model interpretability68,69 and inverse design70,71. In 
other words, while I demonstrate that the ability to generate invalid 
outputs is beneficial to chemical language models in general, there are 
specific scenarios in which validity is a more important consideration.

I found that removing the valency constraints that enforce valid 
molecule generation in SELFIES greatly reduced the difference in per-
formance between models trained on SMILES versus SELFIES, but did 
not abolish it entirely (Fig. 3a). This observation suggests that there are 
residual differences between the two representations that go beyond 
the presence of invalid outputs and reflect deeper aspects of how  
they represent chemical structures. Elucidating the mechanisms under-
lying these differences will be an important direction for future work.

The application of chemical language models to structure 
elucidation of natural products indicates that these models can 
develop remarkably accurate hypotheses about complex and unseen 
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of aromatic rings in generated molecules sampled from representative chemical 
language models trained on the same molecules in SMILES versus SELFIES 
format, and in the training set molecules themelves. b, Effect sizes (Cohen’s d) 
comparing the number of aromatic rings in generated molecules from chemical 
language models trained on SMILES versus SELFIES to the molecules in the 
training set (n = 10 each; P = 1.2 × 10–11, paired t-test). c, As in a, but showing 
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e, Volcano plot showing differences in structural properties between molecules 
generated as SMILES versus SELFIES (statistical significance versus mean 
difference in effect size, paired t-test). Dotted line shows P = 0.05. f, Effect sizes 

(Cohen’s d) comparing the number of aromatic rings in generated molecules 
from chemical language models to the molecules in the training set, shown 
separately for valid versus invalid SELFIES when parsing generated SELFIES 
without valency constraints (n = 10 each; P = 7.6 × 10–11, paired t-test). g, As in f, but 
showing aliphatic rings (P = 2.6 × 10–12, paired t-test). h, Differences in structural 
properties (mean effect sizes) are correlated between molecules generated as 
SMILES versus SELFIES (x-axis) and valid versus invalid SELFIES when parsing 
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Pearson correlation coefficient and P value. The line and shaded area show linear 
regression and 95% confidence interval, respectively.
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chemical structures from as little data as an accurate mass measurement.  
Structures proposed by the chemical language model were more simi-
lar to the true molecule than those obtained by searching in PubChem, 
or even by searching in the natural product-like chemical space of the 
training set itself. This latter observation emphasizes the degree to 
which the model has learned to extrapolate beyond the training set and 
into unseen chemical space. Of course, the evaluation scenario here is 
by design unrealistic, and I do not mean to suggest that it is possible 
to perform complete structure elucidation of complex natural prod-
ucts from an accurate mass alone (not least because it is theoretically 
impossible to discriminate between different structures with the same 
molecular formula using only MS1 information). Instead, my intention 
in this experiment is to highlight that given minimal analytical data, 
language models can develop remarkably good hypotheses—some-
times even better than those based on much richer analytical data. 
This is exciting because, to my knowledge, these structural hypotheses 
represent a new source of information that is not currently used by any 
methods for structure elucidation of unknown molecules72. Integrating 
the novel chemical structures prioritized by chemical language models 
with computational approaches that leverage MS/MS or retention 
time information could provide a powerful mechanism to accelerate 
structure elucidation of unknown molecules in biological systems.

Methods
Datasets
My experiments initially focused on training chemical language models 
on random samples of molecules from the ChEMBL database53. ChEBML 
(version 28) was obtained from ftp.ebi.ac.uk/pub/databases/chembl/
ChEMBLdb/latest/chembl_28_chemreps.txt.gz. Duplicate SMILES and 
SMILES that could not be parsed by the RDKit were removed. Salts and 
solvents were removed by splitting molecules into fragments and 
retaining only the heaviest fragment containing at least three heavy 
atoms, using code adapted from the Mol2vec package73. Charged 
molecules were neutralized using code adapted from the RDKit Cook-
book. Molecules with atoms other than Br, C, Cl, F, H, I, N, O, P or S were 
removed, and molecules were converted to their canonical SMILES 
representations.

Random samples of between 30,000 and 300,000 molecules 
were then drawn from the preprocessed SMILES. In most experiments, 
molecules were sampled randomly to achieve uniform coverage of 
ChEMBL chemical space. Separately, the effect of the chemical diversity 
of the training set on model performance was assessed by sampling 
training sets of molecules with decreasing chemical diversity50. This 
was achieved by selecting a ‘seed’ molecule at random from ChEMBL 

and then computing the Tanimoto coefficient (Tc) between the seed 
molecule and the remainder of the database. The database was then 
filtered to retain only molecules with a Tc greater than some target 
minimum value. A minimum Tc of zero reflects random selection of 
molecules across the entire database, whereas increasing the minimum 
Tc selects molecules that are increasingly similar to the seed molecule 
(that is, decreasing diversity). The Tanimoto coefficient was calculated 
on Morgan fingerprints74 with a radius of 3, folded to 1,024 bits.

Past studies reported that data augmentation by non-canonical 
SMILES enumeration56 could significantly improve the performance  
of chemical language models62,75,76. I therefore also tested the 
effect of SMILES enumeration, which was performed using the  
SmilesEnumerator class available from http://github.com/EBjerrum/ 
SMILES-enumeration, with augmentation factors of 10× or 30×.  
SELFIES enumeration was performed by first enumerating non- 
canonical SMILES and then converting these to SELFIES, which I verified 
produced multiple SELFIES representing the same molecules. Finally, 
conversion from SMILES to SELFIES was performed using the SELFIES 
package (version 2.1.1).

To verify that the results were not specific to the chemical space 
populated by molecules from ChEMBL, I also trained chemical language 
models on the GDB-13 database55. The GDB-13 database was obtained 
from Zenodo (https://doi.org/10.5281/zenodo.5172018) and underwent 
preprocessing identical to that described above for ChEMBL.

For each set of parameters tested (for example, training dataset 
size, degree of data augmentation, or input database), ten independent 
training datasets were created with random seeds in order to evaluate 
variability in model performance and enable statistical comparisons. In 
total, I trained 180 models (90 on SMILES and 90 on SELFIES) that differed 
according to the random seed, the size of the training dataset (30,000, 
100,000 or 300,000 molecules), the chemical diversity (Tc ≥ 0.0,  
0.05, 0.10, or 0.15), the degree of SMILES/SELFIES augmentation 
(canonical, 10×, 30×) and the input database (ChEMBL versus GDB-13).  
Models shown in the main text were trained on 100,000 molecules 
from ChEMBL, without data augmentation or chemical diversity filters.

Chemical language models
For most experiments, I trained chemical language models based on 
LSTMs, which have been widely adopted in the field and have been 
subject to extensive experimental validation. LSTMs were implemented 
in PyTorch, adapting code from the REINVENT package77. Briefly, each 
SMILES was converted into a sequence of tokens by splitting the SMILES 
string into its constituent characters, except for atomic symbols 
composed of two characters (Br, Cl) and environments within square 
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of 100 million strings (n = 10 each; P = 8.5 × 10–7). c, As in a, but showing the 
number of molecules from the full GDB-13 database reproduced within samples 
of 100 million strings (n = 10 each; P = 1.1 × 10–7). d, Saturation curve showing 
the proportion of the full GDB-13 database reproduced after sampling a given 
number of valid molecules from chemical language models trained on SMILES 
versus SELFIES.
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brackets, such as [nH]. SELFIES were tokenized using the split_selfies 
function from the selfies package. The vocabulary of the RNN then 
consisted of all unique tokens detected in the training data, as well 
as start-of-string and end-of-string characters and a padding token. 
The architecture of the language models consisted of a three-layer 
LSTM with a hidden layer of 1,024 dimensions, an embedding layer 
of 128 dimensions, and a linear decoder layer. Models were trained to 
minimize the cross-entropy loss of next-token prediction using the 
Adam optimizer with β1 = 0.9 and β2 = 0.999, with a batch size of 64 and 
a learning rate of 0.001. Ten percent of the molecules in the training set 
were reserved as a validation set and used to perform early stopping 
with a patience of 50,000 minibatches. A total of 500,000 SMILES 
strings were sampled from each trained model after completion of  
model training.

To confirm that these results were robust to the specific architecture 
of the chemical language models, I also trained a series of models based 
on the generative pretrained transformer (GPT) architecture78. Models 
were implemented in PyTorch, adapting code and hyperparameters 
from MolGPT79. The architecture consisted of an embedding layer of 256 
dimensions, which was concatenated with a learned positional encoding 
and passed through eight transformer blocks. Each block comprised 
eight masked self-attention heads and a feed-forward network with a hid-
den layer of 1,024 dimensions using GELU activation, both preceded by 
layer normalization. Finally, the outputs of the transformer blocks were 
passed through a single linear decoder layer with layer normalization. 
The transformer models were trained as described above for language 
models based on LSTMs, except that the learning rate was set to 0.0005.

Evaluation of model performance
I evaluated the performance of chemical language models trained 
on SMILES versus SELFIES by drawing samples of 500,000 SMILES 
or SELFIES strings from the trained models, and then quantifying 
the similarity between the generated molecules and the molecules in 
the training set. I used multiple complementary metrics to evaluate  
similarity. As the primary measure of model performance, I measured 
the chemical similarity between the generated molecules and the train-
ing set as quantified by the Fréchet ChemNet distance80. This metric 
was previously found to be among the most reliable for evaluating 
chemical language models50 and is included in multiple benchmark 
suites48,49. As secondary measures of model performance, I also calcu-
lated a series of other metrics that were found to be similarly reliable, 
including the Jensen–Shannon distances between the Murcko scaffold 
compositions54, natural product-likeness scores81, and fraction of 
atoms in each molecule that are stereocenters in both the generated 
and training molecules. Molecules from the training set were filtered 
before calculating any of the above metrics to ensure that models were 
not being rewarded for simply reproducing the training molecules.  
I additionally integrated these metrics into a single measure of model 
performance using PCA, as previously demonstrated in a study in which 
chemical language models were trained on datasets of between 1,000 
and 500,000 molecules50. PCA was shown to recover a first principal 
component that correlated strongly with the size of the training data-
set, and thus also the quality of the learned model, while accounting 
for the covariance between the underlying evaluation metrics. PCA was 
performed using the reference dataset collected in the prior study using 
the ‘CLMeval’ R package (https://github.com/skinnider/CLMeval),  
and evaluation metrics for models analysed in the present study were 
projected onto this PC space. Finally, I confirmed that models trained 
on SELFIES generated 100% valid molecules whereas models trained 
on SMILES did not. Valid molecules were defined as those that could be 
parsed by RDKit, using the Chem.MolFromSmiles function.

Analysis of invalid SMILES
To investigate the properties of invalid SMILES, I drew samples of  
10 million SMILES strings from trained chemical language models, and 

identified invalid SMILES as those that could not be parsed by RDKit.  
I then compared the losses with which valid versus invalid SMILES were 
sampled from the chemical language model by calculating Cohen’s d, 
as implemented in the R package effsize. Separately, I divided SMILES 
into ten bins according to their losses and calculated the proportion 
of valid SMILES in each bin, testing for the presence of a trend with the 
Jonckheere–Terpstra test as implemented in the R package clinfun. 
Last, for each invalid SMILES, the parsing errors returned by RDKit 
were classified into six different error types using code developed as 
part of the UnCorrupt SMILES approach38 (available from GitHub at 
https://github.com/LindeSchoenmaker/SMILES-corrector), and the 
losses for invalid SMILES from each error type were compared to those 
of valid SMILES with Cohen’s d.

Removal of SELFIES valency constraints
To causally test the relationship between the generation of invalid 
output and model performance, I leveraged the design of the SELFIES 
library by modifying the valency constraints that ensure semantically 
correct output. I initially modified the default constraints (encoded in 
the _DEFAULT_CONSTRAINTS dictionary) by allowing carbon atoms 
to participate in five bonds (‘Texas SELFIES’). I then parsed gener-
ated SELFIES under this modified set of constraints, removed outputs 
that could not be parsed by the RDKit, and re-calculated the Fréchet 
ChemNet distance and other distribution-learning metrics. I also tested 
the effect of removing valency constraints entirely by setting all values 
in the _DEFAULT_CONSTRAINTS dictionary to 999 (‘unconstrained 
SELFIES’), following a previous suggestion59, after which I removed 
invalid SELFIES and re-calculated the distribution-learning metrics.

Properties of generated molecules
To understand why the generation of invalid outputs improved  
performance on distribution-learning metrics, I calculated a series 
of structural properties for molecules generated as SMILES versus  
SELFIES using the RDKit. I calculated the same properties for molecules 
generated as SELFIES that could be parsed without valency constraints, 
versus molecules parsed under the default constraints. The list of 
properties examined was as follows:

 1. The molecular weight of each molecule.
 2. The computed octanol–water partition coefficient82 of each 

molecule.
 3. The topological complexity83 of each molecule.
 4. The topological polar surface area84 of each molecule.
 5. The proportion of carbon atoms in each molecule that were sp3 

hybridized.
 6. The proportion of rotatable bonds in each molecule.
 7. The proportion of atoms in each molecule that were 

stereocentres.
 8. The fraction of heteroatoms in each molecule.
 9. The number of aliphatic rings in each molecule.
 10. The number of aromatic rings in each molecule.
 11. The total number of rings in each molecule.
 12. The number of hydrogen donors in each molecule.
 13. The number of hydrogen acceptors in each molecule.

For each of these properties, I compared the distributions of  
values for generated molecules versus the training set using Cohen’s 
d. I then tested for statistically significant differences using a paired 
t-test. Separately, I computed the Pearson correlation between the 
mean difference in effect sizes in comparisons of (1) molecules gener-
ated as SELFIES versus SMILES and (2) molecules generated as valid 
versus invalid SELFIES.

Generalization to unseen chemical space
To evaluate the ability of chemical language models to generalize 
to unseen chemical space surrounding the training set, I adapted an 
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experimental design proposed previously61. I trained chemical lan-
guage models on samples of 100,000 molecules from the GDB-13 
database, represent either as SMILES or SELFIES, and then drew samples 
of 100 million strings from each trained model. I then intersected these 
samples with the remainder of the GDB-13 database by comparison of 
canonical SMILES. For each language model, I computed (1) the number 
of novel and unique molecules; (2) the number of generated molecules 
in GDB-13 (excluding the training set); and (3) the number of generated 
molecules not in either GDB-13 or the training set. The experiment was 
repeated ten times with different training sets to gauge variability and 
enable statistical comparison.

Structure elucidation with chemical language models
Previous work had reported that chemical language models could con-
tribute to structure elucidation of unknown small molecules using mass 
spectrometry, given minimal analytical data as input62. Specifically, it 
was found that when drawing a very large sample of molecules from a 
trained language model, the frequency with which any given unique 
molecule appeared in this output provided a model-intrinsic measure 
that could be used to develop structural hypotheses from an accurate 
mass measurement. These hypotheses could then be further refined 
by integrating the sampling frequency with MS/MS data, using existing 
tools for MS/MS interpretation85. Here, I tested (1) whether this princi-
ple would apply to other classes of small molecules, including complex 
natural products and (2) whether the choice of representation would 
influence the accuracy of structure elucidation using this approach.

I evaluated the performance of chemical language models on this 
task using four databases representing three different categories of 
small molecules. These included natural products from the LOTUS86 
and COCONUT87 databases, food-derived compounds from the FooDB 
database, and environmental compounds from the NORMAN suspect 
list88. All four databases were preprocessed as described above for 
ChEMBL, and then split at random (that is, without scaffold splitting) 
into ten folds. For each test fold, a language model was trained on the 
90% of molecules comprising the training set, after which a total of 100 
million strings were sampled from the trained model. The sampled mol-
ecules were then parsed with the RDKit, invalid outputs were discarded, 
and the frequency with which each canonical SMILES appeared in the 
model output was tabulated. Then, for each molecule in the held-out 
test set, the model output was searched with the exact mass of this 
query molecule (plus or minus a 10 part per million window) and the 
generated molecules were sorted in descending order by their sampling 
frequencies to provide a ranked list of structural hypotheses. A window 
of 10 ppm was used to allow for differences between the measured 
(experimental) and theoretical mass; the accuracy of the experimental 
measurements is usually expressed as a mass error in parts per million as

(massmeasured −masstheoretical)/masstheoretical × 106

The top-k accuracy was then calculated as the proportion of 
held-out molecules for which the correct chemical structure appeared 
within the k top-ranked outputs from the language model when ordered 
by sampling frequency (in the case of ties, molecules were ordered at 
random). A similar evaluation was carried out at the level of molecular 
formulas, whereby the top-k accuracy was calculated as the proportion 
of held-out molecules for which the correct formula appeared within 
the k top-ranked model outputs. In addition, I calculated the Tanimoto 
coefficient between each held-out molecule and the top-ranked chemi-
cal structure proposed by the language model, using Morgan finger-
prints with a radius of 3 as above. The entire process was repeated in 
ten-fold cross-validation.

As a baseline, I compared this language model-directed approach 
to searching by exact mass in PubChem, mimicking one approach to 
assigning chemical structures or molecular formulas based on MS1 
measurements. I also compared the language model approach to 

searching by exact mass in the training set itself, recognizing that this 
would by definition lead to a top-k accuracy of 0 for any value of k, but 
with the goal of comparing the Tanimoto coefficients between the 
true molecule and structures prioritized by the language model versus  
molecules from the training set as a means to assess generalization 
beyond the training set. In both baselines, the same 10 ppm error 
window was used, within which molecules were ordered at random.

Finally, I repeated the procedures above with language models 
trained on SELFIES representations of the same databases, using identi-
cal folds. In addition, I parsed molecules generated as SELFIES without 
valency constraints as described above, discarded invalid outputs, and 
then re-calculated the sampling frequency of each generated molecule 
after canonicalization.

CASMI 2022
To further place the performance of chemical language models in 
context, I benchmarked the language model trained on the LOTUS 
database against 19 submissions to the CASMI 2022 competition (two 
submissions, Nikolic_KUCA and Nikolic_POSO, were excluded because 
these represented manual rather than computational approaches, per 
the organizers of the competition). In this competition, 500 commer-
cially available compounds were profiled by mass spectrometry; four 
compounds (identifiers 81, 282, 432, 476) were subsequently excluded 
from the competition. Entrants were provided with the accurate m/z 
and retention times for each compound, and an accompanying mzML 
file containing MS/MS data. I tested the performance of the chemical 
language model given only the accurate m/z value as input. To simu-
late de novo elucidation of unknown molecules, I averaged sampling 
frequencies across all 10 cross-validation folds, removing training 
set molecules from the generative model output for each fold. This 
procedure ensured that sampling frequencies could be generated for 
known natural products without data leakage. For each accurate m/z 
value, I considered multiple potential adducts ([M + H]+, [M + NH4]+ and 
[M + Na]+ in the positive mode and [M – H]–, [M + Cl]– and [M + FA – H]– in 
the negative mode) and retrieved sampled molecules with the cor-
responding exact masses, plus or minus a 10 ppm error window as 
above. Generated molecules were then sorted in descending order 
by sampling frequency across all potential adduct types to produce a 
ranked list of hypotheses for each target m/z value.

Visualization
Throughout the manuscript, the box plots show the median (horizontal 
line), interquartile range (hinges) and smallest and largest values no 
more than 1.5 times the interquartile range (whiskers), and the error 
bars show the standard deviation.

Data availability
Datasets used to train chemical language models, unprocessed samples 
of 10 million molecules from each model trained on ChEMBL or GDB-13, 
and samples of 100 million molecules from each cross-validation fold 
of LOTUS, COCONUT, FooDB and NORMAN, represented as canonical 
SMILES and sorted by sampling frequency, are available via Zenodo 
(https://doi.org/10.5281/zenodo.8321735)89.

Code availability
Source code used to train models, analyse generated molecules and 
reproduce the figures, along with relevant intermediate data files, is 
available via Zenodo (https://doi.org/10.5281/zenodo.10680855)90.
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Extended Data Fig. 1 | Chemical language models trained on SMILES robustly 
outperform models trained on SELFIES. a, Jensen–Shannon distances between 
the Murcko scaffold compositions of generated and training molecules, shown 
for language models trained on SMILES versus SELFIES representations (n = 10 
each; p = 3.6 × 10–6, paired t-test). b, Jensen–Shannon distances between the 
natural product-likeness scores of generated and training molecules, shown for 
language models trained on SMILES versus SELFIES representations (n = 10 each; 
p = 1.8 × 10–9, paired t-test). c, Jensen–Shannon distances between the fraction 
of atoms in each molecule that are stereocenters in generated and training 
molecules, shown for language models trained on SMILES versus SELFIES 
representations (n = 10 each; p = 0.10, paired t-test). d, PC1 scores integrating 
multiple distribution-learning metrics for language models trained on SMILES 
versus SELFIES representations (higher is better; n = 10 each; p = 3.5 × 10–8, 
paired t-test). e, Proportion of valid molecules generated by language models 
trained on SMILES versus SELFIES representations, for models trained on 30,000 
or 300,000 molecules (n = 10 each; all p ≤ 6.7 × 10–8, paired t-test). f, Fréchet 
ChemNet distances between generated and training molecules for language 
models trained on SMILES versus SELFIES representations, for models trained on 
30,000 or 300,000 molecules (n = 10 each; all p ≤ 3.0 × 10–8, paired t-test). g, PC1 

scores integrating multiple distribution-learning metrics for language models 
trained on SMILES versus SELFIES representations, for models trained on 30,000 
or 300,000 molecules (n = 10 each; all p ≤ 6.9 × 10–6, paired t-test). h, As in e, but 
for models trained on molecules from the GDB-13 database (p = 2.6 × 10–9). i, As 
in f, but for models trained on molecules from the GDB-13 database (p = 0.011). 
j, As in g, but for models trained on molecules from the GDB-13 database (p = 5.2 
× 10–4). k, As in e, but for models trained on sets of molecules with decreasing 
chemical diversity, as quantified by the minimum Tanimoto coefficient (Tc) 
from the seed molecule (all p ≤ 2.4 × 10–7). l, As in f, but for models trained on sets 
of molecules with decreasing chemical diversity (all p ≤ 3.2 × 10–7). m, As in g, 
but for models trained on sets of molecules with decreasing chemical diversity 
(all p ≤ 4.0 × 10–7). n, As in e, but for models trained with data augmentation by 
non-canonical SMILES or SELFIES enumeration (all p ≤ 8.0 × 10–11). o, As in f, but 
for models trained with data augmentation by non-canonical SMILES or SELFIES 
enumeration (all p ≤ 3.9 × 10–7). p, As in g, but for models trained with data 
augmentation by non-canonical SMILES or SELFIES enumeration (p ≤ 8.0 × 10–6). 
q, As in e, but for models based on the transformer architecture (p = 3.1 × 10–9).  
r, As in f, but for models based on the transformer architecture (p = 1.7 × 10–8).  
s, As in g, but for models based on the transformer architecture (p = 7.9 × 10–9).
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Extended Data Fig. 2 | Chemical language models trained on SMILES and 
SELFIES generate novel molecules at a high rate. a, Proportion of novel 
molecules generated by language models trained on SMILES versus SELFIES 
representations (n = 10 each; p = 0.025, paired t-test). b, As in a, but for models 
trained on 30,000 or 300,000 molecules (p = 0.98 and 7.8 × 10–6, respectively).  

c, As in a, but for models trained on molecules from the GDB-13 database 
(p = 0.078). d, As in a, but for models trained on sets of molecules with decreasing 
chemical diversity (p ≤ 0.032). e, As in a, but for models trained with data 
augmentation by non-canonical SMILES or SELFIES enumeration (p ≤ 2.5 × 10–5).  
f, As in a, but for models based on the transformer architecture (p = 0.0028).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Invalid SMILES are low-likelihood samples from 
chemical language models across architectures and training datasets.  
a, Lengths of valid versus invalid SMILES sampled from a representative chemical 
language model (n = 107 SMILES; p < 10–15, two-sided t-test). b, Effect sizes 
(Cohen’s d) comparing the lengths of valid versus invalid SMILES sampled from 
n = 10 chemical language models, demonstrating consistent effects  
(p = 1.5 × 10–13, two-sided one-sample t-test). c, Per-character losses of valid 
versus invalid SMILES sampled from a representative chemical language model 
(n = 107 SMILES; p < 10–15, two-sided t-test). d, Effect sizes (Cohen’s d) comparing 
per-character losses of valid versus invalid SMILES sampled from n = 10 chemical 
language models, demonstrating consistent effects (p = 2.4 × 10–5, two-sided 
one-sample t-test). e, Effect sizes (Cohen’s d) comparing the losses of valid versus 
invalid SMILES sampled from n = 10 chemical language models trained on 30,000 
or 300,000 molecules (all p ≤ 1.5 × 10–12, two-sided t-test). f, Losses of valid 
SMILES versus invalid SMILES sampled from a representative chemical language 

model trained on 30,000 or 300,000 molecules, classified into six different 
categories based on RDKit error messages (n = 107 SMILES; all p ≤ 1.1 × 10–9,  
two-sided one-sample t-test). g, As in e, but for models trained on molecules  
from the GDB-13 database (p = 2.0 × 10–11). h, As in f, but for models trained on 
molecules from the GDB-13 database (all p ≤ 4.5 × 10–10). i, As in e, but for models 
trained on sets of molecules with decreasing chemical diversity, as quantified  
by the minimum Tanimoto coefficient (Tc) from the seed molecule (all  
p ≤ 1.1 × 10–12). j, As in f, but for models trained on sets of molecules with 
decreasing chemical diversity (all p ≤ 4.3 × 10–9). k, As in e, but for models trained 
with data augmentation by non-canonical SMILES or SELFIES enumeration  
(all p ≤ 1.2 × 10–13). l, As in f, but for models trained with data augmentation by 
non-canonical SMILES or SELFIES enumeration (all p ≤ 4.3 × 10–10). m, As in e,  
but for models based on the transformer architecture (p = 4.3 × 10–14). n, As in f, 
but for models based on the transformer architecture (all p ≤ 6.5 × 10–8).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Generating invalid outputs robustly improves the 
performance of chemical language models. a, Fréchet ChemNet distance 
between training and generated molecules for language models trained on 
SMILES or SELFIES representations, and with SELFIES valency constraints 
modified to allow pentavalent carbons (‘Texas SELFIES’; n = 10 each; p = 2.8 × 10–14  
compared to default valency constraints, paired t-test). b, Jensen–Shannon 
distances between the Murcko scaffold compositions of training and generated 
molecules for language models trained on SMILES or SELFIES representations, 
and with SELFIES valency constraints modified to allow pentavalent carbons 
(n = 10 each; p = 7.6 × 10–5 compared to default valency constraints, paired t-test). 
c, Jensen–Shannon distances between the natural product-likeness scores 
of training and generated molecules for language models trained on SMILES 
or SELFIES representations, and with SELFIES valency constraints modified 
to allow pentavalent carbons (n = 10 each; p = 1.0 × 10–5 compared to default 
valency constraints, paired t-test). d, Jensen–Shannon distances between the 
fraction of atoms that are stereocenters in training and generated molecules 
for language models trained on SMILES or SELFIES representations, and with 
SELFIES valency constraints modified to allow pentavalent carbons (n = 10 each; 

p = 0.058 compared to default valency constraints, paired t-test). e-h, As in a-d, 
but showing the removal of SELFIES valency constraints entirely (‘unconstrained 
SELFIES’; p = 2.6 × 10–15, p = 5.6 × 10–16, p = 8.5 × 10–8, and p = 0.38, respectively). 
i, Effect sizes (Cohen’s d) comparing the losses of valid versus invalid SELFIES 
sampled from n = 10 chemical language models trained on 30,000 or 300,000 
molecules (all p ≤ 4.5 × 10–14, two-sided one-sample t-test). j, Fréchet ChemNet 
distances between generated and training molecules for language models 
trained on SMILES versus SELFIES representations, and with SELFIES valency 
constraints disabled, for models trained on 30,000 or 300,000 molecules (n = 10 
each; all p ≤ 3.2 × 10–5, paired t-test). k-l, As in i-j, but showing language models 
trained on molecules from the GDB-13 database (losses, p = 1.0 × 10–11; Fréchet 
ChemNet distances, p = 0.17). m-n, As in i-j, but showing language models trained 
on sets of molecules with decreasing chemical diversity (losses, all p ≤ 8.7 × 10–10; 
Fréchet ChemNet distances, all p ≤ 5.4 × 10–6). o-p, As in i-j, but showing language 
models trained with data augmentation by non-canonical SMILES enumeration 
(losses, all p ≤ 3.3 × 10–15; Fréchet ChemNet distances, all p ≤ 2.1 × 10–4). q-r, As in 
i-j, but showing language models based on the transformer architecture (losses, 
p = 5.3 × 10–14; Fréchet ChemNet distances, p = 8.8 × 10–11).
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Extended Data Fig. 5 | Biased exploration of chemical space by language 
models trained on SMILES versus SELFIES. a, Molecular weights of molecules 
generated by chemical language models trained on SMILES versus SELFIES, as 
compared to the molecules in the training set (for valid molecules parsed from 
n = 107 sampled SMILES or SELFIES). Horizontal line shows the median molecular 
weight of molecules in the training set. b, Effect sizes (Cohen’s d) comparing 
the molecular weights of generated molecules from chemical language models 
trained on SMILES versus SELFIES to the molecules in the training set (n = 10 each; 
p = 2.9 × 10–4, paired t-test). c-d, As in a-b, but showing octanol–water partition 

coefficients (p = 0.24). e-f, As in a-b, but showing topological complexity (p = 3.1 
× 10–3). g-h, As in a-b, but showing topological polar surface area (p = 4.0 × 10–3). 
i-j, As in a-b, but showing the fraction of sp3 carbons (p = 8.3 × 10–3). k-l, As in a-b, 
but showing the fraction of rotatable bonds (p = 8.5 × 10–5). m-n, As in a-b, but 
showing the fraction of stereocenters (p = 1.0 × 10–5). o-p, As in a-b, but showing 
the fraction of heteroatoms (p = 0.31). q-r, As in a-b, but showing the number 
of hydrogen donors (p = 8.0 × 10–5). s-t, As in a-b, but showing the number of 
hydrogen acceptors (p = 2.4 × 10–3).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Biased exploration of chemical space by language 
models trained on SELFIES with and without valency constraints.  
a, Molecular weights of molecules generated by chemical language models 
trained on SELFIES, shown separately for valid versus invalid SELFIES when 
parsing generated SELFIES without valency constraints, as compared to the 
molecules in the training set (for molecules parsed from n = 107 sampled SMILES 
or SELFIES). Horizontal line shows the median molecular weight of molecules in 
the training set. b, Effect sizes (Cohen’s d) comparing the molecular weights of 
generated molecules from chemical language models trained on SELFIES to the 
molecules in the training set, shown separately for valid versus invalid SELFIES 
when parsing generated SELFIES without valency constraints (n = 10 each; 
p = 2.7 × 10–11, paired t-test). c-d, As in a-b, but showing octanol–water partition 
coefficients (p = 3.2 × 10–9). e-f, As in a-b, but showing topological complexity 

(p = 1.6 × 10–10). g-h, As in a-b, but showing topological polar surface area  
(p = 6.4 × 10–10). i-j, As in a-b, but showing the fraction of sp3 carbons (p = 2.9 × 10–9). 
k-l, As in a-b, but showing the fraction of rotatable bonds (p = 1.0 × 10–12).  
m-n, As in a-b, but showing the fraction of stereocenters (p = 9.4 × 10–12).  
o-p, As in a-b, but showing the fraction of heteroatoms (p = 0.026). q-r,  
As in a-b, but showing the number of hydrogen donors (p = 7.0 × 10–10). s-t, As in  
a-b, but showing the number of hydrogen acceptors (p = 6.9 × 10–12). u, As in a, 
but showing the number of aromatic rings. v, As in a, but showing the number 
of aliphatic rings. w, Volcano plot showing differences in structural properties 
between molecules generated as valid versus invalid SELFIES when parsing 
generated SELFIES without valency constraints (statistical significance versus 
mean difference in effect size, paired t-test). Dotted line shows p = 0.05.
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Extended Data Fig. 7 | Language models facilitate structure elucidation of 
complex natural products. a, Experimental framework for structure elucidation 
of complex natural products from minimal analytical data (here, an accurate 
mass measurement) based on the sampling frequency of generated molecules. 
b, Top-1 accuracy, left, and top-k accuracy, right, of structure elucidation for 
held-out natural products by a chemical language model trained on the LOTUS 
database63, as compared to searching by accurate mass in the PubChem database. 
Error bars and shaded areas show the mean and standard deviation across n = 10 
cross-validation folds, respectively. c, Examples of natural product structures 
correctly elucidated by the language model. d, Tanimoto coefficients comparing 
chemical structures prioritized by the language model to the true held-out 
natural product (n = 137,400), as compared to searching by accurate mass in the 
PubChem database or the LOTUS training set, or a random molecule sampled 
from the output of the language model without regard to sampling frequency.  
e, As in b, but showing the accuracy of molecular formula annotation rather than 
full structure elucidation. f, Number of candidate molecular formulas proposed 
by the language model for each held-out natural product (n = 137,400), as 
compared to searching by accurate mass in PubChem or the LOTUS training set. 

g, As in b, but showing the accuracy of a language model trained on food-derived 
compounds from the FooDB database. h, As in d, but showing the Tanimoto 
coefficients of prioritized chemical structures from a language model trained on 
the FooDB database (n = 52,880 compounds). i, As in b, but showing the accuracy 
of a language model trained on environmental compounds from the NORMAN 
suspect list exchange. j, As in d, but showing the Tanimoto coefficients of 
prioritized chemical structures from a language model trained on the NORMAN 
dataset (n = 63,732 compounds). k, Top-1 accuracy, left, and top-k accuracy, right, 
of structure elucidation for held-out natural products by chemical language 
models trained on the LOTUS database, represented as SMILES or SELFIES. For 
models trained on SELFIES, results are shown separately for structures parsed 
with or without valency constraints (‘unconstrained SELFIES’). l, Tanimoto 
coefficients comparing chemical structures prioritized by the language model to 
the true held-out natural product, for the same three language model variants as 
in k (n = 137,400 compounds). m, Number of candidate structures generated for 
each held-out natural product by chemical language models, for the same three 
language model variants as in k (n = 137,400 compounds).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Language models contribute to structure elucidation 
of unknown molecules. a, Distribution of Tanimoto coefficients between 
random pairs of molecules from the LOTUS database of natural products. Vertical 
line shows the mean Tanimoto coefficient comparing chemical structures 
prioritized by the language model to the true held-out natural product, greater 
than 99.1% of pairs. b, Accuracy of a chemical language model trained in  
cross-validation on the LOTUS natural product database versus 19 submissions 
to the CASMI 2022 ‘priority’ competition (dark grey and coloured bars, number 
of correct solutions; light grey bars, number of attempts). Arrows highlight de 
novo structure elucidation methods. c, As in b, but showing the CASMI 2022 
‘bonus’ competition. d, Top-k accuracy of a chemical language model trained 

in cross-validation on the LOTUS database in the CASMI ‘priority’ and ‘bonus’ 
competitions. e, Top-1 accuracy, left, and top-k accuracy, right, of structure 
elucidation for held-out natural products by a chemical language model trained 
on the COCONUT database of natural products, as compared to searching by 
accurate mass in PubChem. Error bars and shaded areas show the standard 
deviation across n = 10 cross-validation folds. f, As in e, but showing the accuracy 
of molecular formula annotation rather than full structure elucidation. g, As in f, 
but showing molecular formula annotation for food-derived compounds from 
the FooDB database. h, As in f, but showing molecular formula annotation for 
environmental compounds from the NORMAN suspect list exchange.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Generating and discarding invalid outputs improves 
structure elucidation. a, Tanimoto coefficients comparing chemical structures 
prioritized by the language model to true held-out natural products (n = 137,400) 
from the LOTUS database, for language models trained on SMILES versus 
SELFIES, as compared to searching by accurate mass in the training set. b, Top-1 
accuracy, left, and top-k accuracy, right, of structure elucidation for held-out 
natural products by n = 10 chemical language models trained on the COCONUT 
database, represented as SMILES or SELFIES. For models trained on SELFIES, 
results are shown separately for structures parsed with or without valency 
constraints (‘unconstrained SELFIES’). c, Tanimoto coefficients comparing 
chemical structures prioritized by the language model to the true held-out 

natural product (n = 405,947), for the same three language model variants shown 
in b. d, Number of candidate structures generated for each held-out natural 
product (n = 405,947) by chemical language models, for the same three language 
model variants as in b. e-g, As in b-d, but for food-derived compounds from the 
NORMAN suspect list exchange. h-j, As in b-d, but for environmental compounds 
from the FooDB database. k, Top-1 accuracy of structure elucidation for held-out 
natural products by n = 10 chemical language models trained on the LOTUS 
database, represented as SMILES or SELFIES, shown separately for acyclic natural 
products versus natural products containing at least one ring system (p = 0.016, 
two-way ANOVA).
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Extended Data Fig. 10 | Discarding invalid SMILES is fast and easy. a, Time  
(in hours) required to parse n = 10 samples of 10 million SMILES or SELFIES 
strings and discard invalid outputs. For SELFIES, results are shown only when 
parsing SELFIES with valency constraints that allow for invalid output generation.  
b, Python code snippet demonstrating the ease with which it can be determined 
if a SMILES string is invalid. c, Time (in hours) required to train n = 10 chemical 
language models on samples of 100,000 molecules from the ChEMBL database, 
represented as SMILES versus SELFIES. Training was performed on Dell EMC 
C4140 GPU compute nodes equipped with NVIDIA Tesla V100 GPUs. Language 

models trained on SELFIES required an average of 0.6 h longer to train, relative 
to models trained on SMILES representations of the same molecules. d, As in c, 
but showing the total time (in hours) required to train chemical language models, 
sample 500,000 outputs from the trained models, and discard invalid outputs. 
e, As in c, but showing the total time (in hours) required to train chemical 
language models, sample 4 million outputs from the trained models, and discard 
invalid outputs. Filtering invalid SMILES would not increase computational 
requirements, relative to a model trained on SELFIES, until approximately  
4 million molecules.
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