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Generating mutants of monotone affinity 
towards stronger protein complexes through 
adversarial learning

Tian Lan1,2,3, Shuquan Su1,2,8, Pengyao Ping    1,2,8, Gyorgy Hutvagner4, 
Tao Liu    5,6, Yi Pan    7 & Jinyan Li    7 

Despite breakthroughs achieved in protein sequence-to-structure and 
function-to-sequence predictions, the affinity-to-mutation prediction 
problem remains unsolved. Such a problem is of exponential complexity 
deemed to find a mutated protein or protein complex having a guaranteed 
binding-affinity change. Here we introduce an adversarial learning-based 
mutation method that creates optimal amino acid substitutions and 
changes the mutant’s affinity change significantly in a preset direction. The 
key aspect in our method is the adversarial training process that dynamically 
labels the real side of the protein data and generates fake pseudo-data 
accordingly to construct a deep learning architecture for guiding the 
mutation. The method is sufficiently flexible to generate both single- and 
multipointed mutations at the adversarial learning step to mimic the natural 
circumstances of protein evolution. Compared with random mutants, our 
mutated sequences have in silico exhibited more than one order of change 
in magnitude of binding free energy change towards stronger complexes 
in the case study of Novavax–angiotensin-converting e nz ym e- re lated 
c ar boxypeptidase vaccine construct optimization. We also applied the 
method iteratively each time, using the output as the input sequence 
of the next iteration, to generate paths and a landscape of mutants with 
affinity-increasing monotonicity to understand SARS-CoV-2 Omicron’s spike 
evolution. With these steps taken for effective generation of protein mutants 
of monotone affinity, our method will provide potential benefits to many 
other applications including protein bioengineering, drug design, antibody 
reformulation and therapeutic protein medication.

Point mutations, or their co-evolution, in protein amino acid sequences 
usually result in a protein folding into a different three-dimensional 
(3D) structure. Such structural changes have immediate impact on the 
protein’s conformation and interaction stability with other proteins1–5. 
When binding affinity or binding strength, as measured by the binding 
free energy change of the complex following the mutation6–10, becomes 

marked, the function of the mutant may be significantly enhanced by 
provoking changes in its binding affinity to receptors11–13, or otherwise 
the mutant loses its original function.

This paper presents a machine learning method that makes 
an accurate prediction of a putative sequence from a given pro-
tein such that the mutated protein will have an in silico guaranteed 
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Based on the core concept of adversarial learning behind the 
generator–discriminator WGAN architectures, we present a new deep 
learning framework, DeepDirect, for generation of protein mutants 
under a preset affinity-increasing or -decreasing direction. The input 
of DeepDirect is the chain sequence aaSeq in a protein complex or 
that of the whole complex, and output f(aaSeq) is a putative sequence 
mutated from aaSeq that has an increase or decrease in binding affinity 
with the receptor following the mutation.

DeepDirect is a framework that is able to generate mutations in 
protein amino acid sequences towards a change of direction in speci-
fied binding affinity. A novel step in our method is the adversarial 
training process that dynamically labels the real side of the data and 
generates fake pseudo-data accordingly to establish a computational 
model that guides the mutation generation. In addition to the classic 
generator and discriminator in a WGAN architecture, our DeepDirect 
architecture has a novel part, termed the binding-affinity change pre-
dictor. With coordination of the three parts, DeepDirect can select both 
mutation positions and amino acid substitutes according to the input 
protein’s spatial information, leading to a direction-guided change in 
binding affinity. The model’s flexibility in generating both single- and 
multipointed mutations partly mimics the natural circumstance of 
protein evolution.

It is of wider interest to find a putative sequence mutated 
from an existing protein such that it has maximum binding affin-
ity with the receptor. We apply f(aaSeq) iteratively using the out-
put sequence each time as the input sequence of the next iteration, 
namely f(…, f(aaSeq)), to reach stable status fn(aaSeq) = f(n+1)(aaSeq), 
where n ≥ 1 represents the number of iterations of f(aaSeq). Then, the 
putative sequence f(n+1)(aaSeq) is a sequence mutated from aaSeq 
after n mutation steps that has a maximum affinity with the recep-
tor. In fact, the affinities of fi(aaSeq), i = 0, 1, …, n, shape a monotone 
increasing trend of change in binding free energy with the series of 
base mutations.

We draw a 3D landscape of binding affinities of those randomly 
mutated sequences and those sequences iteratively generated by our 
model f(n+1)(aaSeq) to illustrate how our algorithm effectively locates 
a peak point of binding affinities in the landscape and then jumps to a 
higher peak point. We use this affinity landscape to demonstrate how 
our deep learning algorithm overcomes the exponential complexity 
in the search space to find an optimal amino acid sequence that has 
maximum binding affinity. Specifically, these tests were conducted on 
the Novavax–angiotensin-converting enzyme-related carboxypepti-
dase (ACE2) complex to evaluate the effectiveness of DeepDirect’s 
affinity-to-mutation prediction, and on the SARS-CoV-2 Omicron virus 

binding affinity increase or decrease with the receptor. We call this 
an affinity-guided mutation, or an affinity-to-mutation prediction 
problem. The method can be applied iteratively to generate a path 
of mutated proteins having an increasing trend of monotone affinity 
in the iteration. Because interactions among proteins play critical 
roles in the basic functioning of cells and organisms, including immu-
nity development, molecular transportation and metabolism14,15, our 
method will be useful in many fields including protein engineering, 
protein structure determination, protein function prediction, drug 
design and protein evolution path construction, as has been seen from 
recent studies. For example, the Omicron BA.1 variant of SARS-CoV-2 
can more easily escape from convalescent sera and monoclonal anti-
bodies due to its lowered binding affinity compared with its earlier 
strains16. After acquiring stronger binding affinity to CD33 (ref. 17), 
M195, a monoclonal antibody, was found to have increased diagnostic 
and therapeutic capability for myeloid leukaemia; and the high-affinity 
programmed cell death protein 1 (PD-1) was found to be more effective 
than antiprogrammed cell death ligand 1 (anti-PD-L1) antibodies in the 
treatment of tumour in mouse models18.

Exhaustive combination of random point mutations is a straight-
forward approach to solving this problem, but its exponential nature 
of computational complexity is too high to implement (an n-length 
amino acid sequence would have a total of 19n potential combinations). 
We take deep learning as an efficient heuristic approach to narrow the 
search space through adversarial learning on the protein’s specific 
structural data of receptor binding sites and learning on their atom 
properties to find potential mutation sites and generate the correct 
mutations at these sites. Tailored machine learning methods exist for 
sequence-to-affinity predictions, sequence-to-structure predictions and 
function-to-sequence predictions19–36 (Supplementary Note 2). However, 
these methods are unable to answer our key questions: (1) which puta-
tive sequence will have an in silico guaranteed binding affinity increase 
and (2) what mutated sequence can reach maximum binding affinity 
with the receptor, namely the affinity-to-mutation prediction problem?

Generative adversarial network (GAN) is a type of generative 
deep learning framework proposed to solve generative modelling 
problems37. Its earlier variants, including conditional GAN38 and deep 
convolutional GAN39, were specially developed for a variety of gen-
eration tasks including image-to-image translation and text-to-image 
synthesis. However, these GAN algorithms suffer from problems such as 
unstable training process, vanishing gradients and mode collapse40,41. 
Wasserstein GAN (WGAN) improves performance by utilization of 
Wasserstein distance rather than Jensen–Shannon divergence imple-
mented in the original GAN42.
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Fig. 1 | Overview of the DeepDirect mutation generator. a, Input data requirements. b, Mutation generation process. c, Binding affinity-guided mutation output.
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spike protein to predict a potential evolution path for the virus in terms 
of its interaction with the human ACE2 receptor.

Results
Architecture and adversarial training scheme of DeepDirect
DeepDirect has three main components: a protein sequence mutation 
generator, two discriminators and a protein complex binding-affinity 
change predictor.

The sequence mutation generator is the most important part 
of DeepDirect’s architecture (Figs. 1 and 2a). Three types of data are 
required as input to the generator: the protein’s amino acid sequence, 
the protein’s structure/auxiliary data and protein-related noise  
(Fig. 1a). The mutation generator, together with the two discriminators 
and the binding affinity predictor, are organized in a new two-stage 
adversarial training procedure for the mutation generator to extract 
the required features. Benefiting from its architecture, the mutation 
generator is capable of determining mutation sites and the amino 
acid substitutions at these sites (Fig. 1b), towards a directed change in 
binding affinity (Fig. 1c).

The mutation block (Fig. 2b) is essential in DeepDirect to generate 
amino acid mutations with flexibility. The masking layer (Fig. 2a, flow 2) 

ensures the mutation sites to be selected with a flexible length based on 
features extracted from the input sequence, its auxiliary information 
and random noise. Combined with the extracted protein information 
(Fig. 2a, flows 1, 3 and 4), a mutated amino acid can be selected based 
on the input sequence from a 20-dimension space (corresponding to 
all potential amino acid substitutes) for each determined mutation 
position. As such, base mutations generated by DeepDirect are not 
limited to a single position, having a diversity of amino acid substitu-
tion patterns jointly affecting binding affinity.

DeepDirect has a two-stage training scheme for generation of 
expected mutations (Fig. 3). At stage A we train the mutation generator 
to produce appropriate mutations based on the properties of the pro-
tein sequence. Here, an appropriate mutation is one that, by avoiding 
the generation of an extra number of mutation positions, may lead to 
a totally different protein sequence. At stage B we train the mutation 
generator to generate mutations guided by a specific affinity-changing 
direction. We make use of two protein–protein interaction databases, 
AB-Bind43 and SKEMPI v.2.0 (ref. 44), for the training. AB-Bind and 
SKEMPI v.2.0 contain 1,102 and 7,085 protein mutants, respectively, 
together with their experimentally determined binding free energy 
changes (ΔΔG (DDG), in kcal mol−1). We note that all DDG data were split 
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into ‘train’, ‘validation’ and ‘test’, in a ratio 0.7:0.15:0.15, for generaliza-
tion validation of the binding-affinity change predictor. Further details 
regarding the training scheme are referred to in ‘DeepDirect training 
framework and parameter settings’.

Deepdirect applied to a Novavax vaccine construct
One order of magnitude greater DDG change by DeepDirect. We 
evaluated the effectiveness of DeepDirect’s affinity-guided muta-
tion in comparison with random mutations. We randomly generated 
1,500 mutated sequences of the Novavax vaccine for each of mutation 
rates 5, 10 and 20%; we also applied both models of DeepDirect—namely 
modelinc (model trained to generate affinity-increasing mutations) 
and modeldec (model trained to generate affinity-decreasing muta-
tions)—to generate 500 mutated sequences using the Novavax–ACE2 
complex sequence as input. More detailed parameter settings for 
the two models can be found at ‘DeepDirect training framework and 
parameter settings’. The randomly mutated sequences have an average 
DDG of 0.24, 0.18 and 0.057 with a median 0.16, 0.09 and 0.006 under 
mutation rates 5, 10 and 20%, respectively (Supplementary Fig 1a). The 
500 sequences generated by modelinc have an average DDG of − 2.501 
and median of −2.515, and the 500 generated by modeldec have an aver-
age DDG of 5.352 and median of 5.312 (Fig. 4a). We additionally com-
pared the the results from DeepDirect with those randomly mutated 
sequences grouped with a stronger/weaker binding affinity, as well as 
with chain-independent random mutations. The results demonstrate 
that DeepDirect’s mutation mechanism is very effective in generating a 
new sequence that has one order of magnitude greater binding affinity 
increase or decrease than random mutants’ affinity change (further 
comparison details can be found in Supplementary Note 3).

We note that only random mutations were compared, because 
DeepDirect is a method proposed to generate binding affinity- 
guided protein mutants whereas, biologically, every base in the input 
sequences allows a potential mutation. We found no models in the 
literature similar to ours in regard to performance benchmarking.

Vaccine optimization by modelinc. Furthermore, we reconstructed 
the Novavax vaccine trimer using modelinc for in silico strengthen-
ing of the binding affinity of the vaccine construct with the human  
ACE2 receptor. Such an in silico reconstructed vaccine con-
struct would render immune response more easily activated (in  
terms of binding to ACE2). In steps, we applied modelinc to create 
mutated chain A of the Novavax–ACE2 complex with a batch size of 
500 and then used the mutations on chain A of Novavax as template 
to reconstruct the other two chains and integrate the three chains 
as a trimer. Figure 4c shows that the reconstructed trimers have an 
average DDG of −2.44 kcal mol−1 with a median of −2.41 according to 
our prediction.

We also applied modeldec and the random mutation approach 
under mutation rates of 5, 10 and 20% to reconstruct the vaccine 
construct with the same steps as above for comparison. Average 
changes in binding affinity for the reconstructed vaccine complexes 
by modeldec and those by the random mutation approach under 
rates of 5, 10 and 20% were 6.14, 0.22, 0.11 and 0.11, with a median 
6.00, 0.13, 0.04 and 0.03, respectively (Fig. 4c and Supplementary 
Fig 1b. Figure 4d illustrates one case of mutated positions among 
DeepDirect-generated mutants, where the overall stability of the 
complex has been enhanced by the mutation. Such mutants would be 
considered as potential candidates for strengthening the immuno-
genicity of the Novavax vaccine because of its capability of forming 
more stable conformation structures with the ACE2 receptor accord-
ing to our prediction.

Because DeepDirect’s generator requires receptor binding 
domain (RBD) information for the mutation task, our method also 
provides an inbuilt RBD prediction function for generating RBD 
index in situations where such information is lacking. We examined 
this prediction performance in the Novavax–ACE2 complex, finding 
that the predicted RBD area of the complex was located at the junc-
tion between the Novavax construct and ACE2 receptor, exactly as 
expected (Fig. 4e).
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Omicron spike protein: evolution path and affinity landscape
We were interested in strain SARS-CoV-2 Omicron’s spike protein and its 
potential evolution path. We applied modelinc to the original sequence 
(denoted as s0) of the spike protein to obtain putative sequence s1, 
namely s1 = DMinc(s0), where DMinc denotes the DeepDirect modelinc 
mutation function. DeepDirect recommended 108 residue mutations 
(out of 1,061) for s0. Following the mutation, the binding affinity of 
mutant s1 was increased by 2.43 kcal mol−1 with the receptor (that is, 
complex free energy was reduced by 2.43 kcal mol−1).

Affinity monotonicity. Iteratively we applied modelinc each time, tak-
ing output sequence si as the input data to DMinc(s) to obtain the next 
putative sequence, s(i + 1). The iteration was stopped at s4; The binding 
affinity of s4 with the receptor showed little change compared with 
that of DMinc(s4), indicating that a potential maximum level of bind-
ing strength had been reached. With a total of 134 residue mutations 
(out of 1,061) from the original sequence s0 in the four steps, putative 
sequence s4 had gained 5.96 kcal mol−1 binding free energy with the 
ACE2 receptor (Fig. 5a).

On the other hand, we applied modeldec with s4 as input. As 
expected, the resulting sequence s5 has a much weakened binding 
affinity with the receptor in comparison with that of s4. We applied 
modeldec repeatedly and obtained putative sequence s7 whose binding 

strength was far less than the original level of that between s0 and ACE2 
(Fig. 5a). Interestingly, x6 was not identical to x0 in sequence, suggesting 
that there may be many unknown variants of Omicron’s spike protein 
that have the same level of binding strength with ACE2. These results 
also suggest that SARS-CoV-2 Omicron variants may not have sufficient 
potential to mutate into a strong variant with significantly higher bind-
ing affinity to the ACE2 receptor.

There are two monotone trends of binding affinity as shown in  
Fig. 5a. One is an increasing trend when modelinc was applied to s0, the 
other a decreasing trend when modeldec was applied to s4. We term 
these, together with their associated mutants, either an in silico evolu-
tion or devolution path of the original SARS-CoV-2 Omicron spike pro-
tein sequence s0. For the former path, mutant binding affinity increases 
sharply at the first mutation step and then slows down gradually in the 
remaining steps. However, as observed for the devolution path, bind-
ing affinity weakened much more rapidly than the increase in binding 
affinity during the evolution iterations.

Affinity landscape. To further understand unknown clusters of vari-
ants into which the SARS-CoV-2 Omicron virus might have evolved, 
we generated mutations 500 times separately by modelinc on its spike 
protein sequences in a batch size of 500, to create 500 evolution paths. 
We then embedded the final 500 mutated sequences into vectors 
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by a sequence graph transform (SGT) method45 and further applied 
DBSCAN46 on their first two principal components (PCs) for cluster-
ing of protein mutants. Four groups of sequences were formed in the 
hyperspace of the first two PCs, labelled 1–4, containing 368, 21, 76 
and 12 mutants, respectively (Fig. 5b). DBSCAN also identified some 
outliers, showing that their sequences are less similar in terms of their 
extracted features compared with other sequences clustered into each 
group. Figure 5c shows the impact of the SGT (amino acid pair impact) 
in the first two PC spaces. Pair mutations H–Y, L–H and M–H (for PC-1) 
and H–S, M–Y and Y–I (for PC-2) have high absolute values, indicating 
their potentially key role in determininging the evolution paths of 
SARS-CoV-2 Omicron spike protein.

Figure 6 and Supplementary Fig 2b–d show a 3D landscape of 
binding affinities for randomly mutated sequences, as well as for 
those sequences generated by modelinc from the Omicron spike pro-
tein sequence. The x–y plane of the 3D landscape is a hyperspace 
of the first two PCs of protein sequence embeddings obtained by 
SGT45. The z-axis of the landscape represents the binding affinities 
(DDGs) of protein mutants with the receptor. We compared the above 
DeepDirect-generated evolution path (four-step mutations towards 
stronger binding affinity) with three batches of 500 randomly generated 
mutation paths (each with the same four-step mutations) under muta-
tion rates of 5, 10 and 20%. DeepDirect can generate mutations towards 
higher binding affinities whereas most randomly generated mutations 
go in different directions and eventually the sequences mutate toward a 
complex conformation of lower stability. This landscape also signifies 
that none of the randomly generated sequences has a binding affinity 
exceeding those of the putative sequences generated by our deep learn-
ing method. This verifies the effectiveness of the generator–discrimina-
tor adversarial learning concept as a heuristic idea aimed at narrowing 
the exponential search space to determine the maximum peak points 
of binding affinities from monotone increasing trends.

Discussion
We present DeepDirect, a deep learning framework for the genera-
tion of mutants from protein complexes with a specified direction of 
binding-affinity change so that mutants become either more or less 
stable. DeepDirect is an in silico approach used for the generation of 
affinity-guided mutations. As shown in the evaluation results, DeepDi-
rect shows good performance in the detrmination of mutation sites that 
affect the binding free energy of the whole complex. As seen in Fig. 6a,b,  
DeepDirect is able to determine monotone paths in contrast to the 

random mutation approach. In addition, the model has the capability 
to deal with large-batch mutation generation tasks within a reasonable 
computing time.

The framework is implemented as a modified WGAN structure with 
three main components: a mutation generator, a discriminator and a 
predictor of binding-affinity change. We developed a new two-stage 
training scheme by first training the model to generate reasonable 
mutations from the reference, mimicking the natural mutation, and 
then learning to mutate along change in binding affinity direction. 
We designed such an objective-separated training scheme to help 
model enhanced extraction of required features, thereby improving 
training efficiency.

We demonstrated the effectiveness and application potential of 
DeepDirect by generating mutants for the Novavax vaccine construct. 
All 500 mutants generated by DeepDirect were found to have signifi-
cantly stronger binding affinity compared with the random mutation 
process. In addition, by using DeepDirect to simulate the evolution 
paths for the SARS-CoV-2 Omicron virus spike protein, we found that 
the limited potential of the virus had evolved into a much stronger 
strain in terms of binding affinity to the ACE2 receptor. Four main 
groups into which the virus might have evolved were also predicted, 
as well as those amino acids that play key roles in that evolution. In 
addition to these case studies, DeepDirect has a wide range of appli-
cation domains, providing researchers with efficient ways to better 
understand protein bioengineering and protein–protein interactions 
(see Supplementary Note 1 for further examples).

Note that we used DeepDirect to generate mutations based only on 
the initial protein conformation during its iterations for the SARS-CoV-2 
Omicron spike protein. However, in reality those mutations in each 
iteration may also result in changes in the structure of the complex. The 
reason we did not consider those conformational changes is that there 
are currently few in silico protein structure prediction methodologies 
that have the capability to quantify those changes from mutation 
events (that is, the template-based searching strategy used by Alpha-
fold prevents it from detecting minor structural changes from slight 
change in amino acids). We also note that all binding-affinity changes 
presented in the study were in silico predicted from DeepDirect’s 
predictor of binding-affinity change, which is trained on protein muta-
tion datasets containing wet-lab experimentally determined changed 
values of binding affinity. However, for more accurate detection of 
change in binding affinity, further wet-lab experiments may need to 
be carried out.
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The current version of DeepDirect allows only substitution muta-
tions in the input protein sequences but no insertion or deletion muta-
tions, the main reason being that there are few data available relating to 
insertion or deletion mutations with change in labelled binding affinity 
for construction of the training model. Other challenges include: (1) 
how to define the length of continuous insertions or deletion in which 
an overmutation problem will occur and (2) how to handle overlap 
between insertion and deletion areas. There is no doubt that considera-
tion of insertions and deletions will widen the mutation search space for 
DeepDirect in the search for better mutants. This will be a future devel-
opment in upgrading DeepDirect. We also note that recently emerged 
foundation models for protein-related prediction tasks (for example, 
by ESM-2) have shown their superior performance. Integration of these 
models may of benefit in regard to DeepDirect’s performance, which is 
another potential development area in our future work.

Methods
Data preprocessing
The ΔΔG data used in this study were derived directly from the AB-bind 
database. For the SKEMPI2 database we calculated ΔΔG values for each 
entry using

ΔΔG = ΔGmut − ΔGwt (1)

with

ΔGmut = −RT ln (Kmut) andΔGwt = −RT ln (Kwt) (2)

where R is a universal gas constant equal to 8.314/4,184 (kcalK−1 mol−1), 
T is set as 273.15 + 25(K) and Kmut and Kwt are, respectively, the binding 
affinity data after and before the mutation from each entry in the 
SKEMPI2 database. Mutated sequences were generated from the origi-
nal sequences based on the mutations denoted in each database.

We used the alpha-carbon 3D coordinates of each amino acid as 
the coordinates of that amino acid from the protein’s Protein Data Bank 
(PDB) file. The receptor–ligand index was constructed to distinguish 
receptor chains and ligand chains in the protein complex. We con-
structed the RBD index by locating the k (set as 50) nearest amino acids 
for each amino acid and counting the number among those k amino 
acids with a different receptor–ligand index. All counts were normal-
ized, and those scores exceeding a cutoff (set at 0.1) were predicted as 
the amino acid at or around the RBD area. Amino acid sequences were 
one-hot encoded into a 20-element vector as input to a neural network.

Further details on DeepDirect architecture
A mutation generator, two discriminators and a binding affinity predic-
tor are included in DeepDirect, as shown in Fig. 2.

The mutation generator is designed to generate binding 
affinity-guided mutations. Three types of data are required as input 
to the generator: the protein’s amino acid sequence, its structure/
auxiliary information and protein-related noise (Fig. 1a). Auxiliary 
information is defined as the index of the RBD of the protein complex, 
the amino acid corresponding to the ligand and the receptor in the 
complex, and the 3D coordinates information for each amino acid. 
Noise is generated using a Gaussian distribution. Each input data vector 
first undergoes bidirectional long short-term memory (bi-LSTM) layers 
separately for extraction of input information, and for the model to 
incorporate the input with different lengths. We set the latent dimen-
sion of all bi-LSTM layers at 128.

All bi-LSTM layer outputs are concatenated except for noise, and 
both the concatenated features and those from the bi-LSTM layers 
following noise are separately input into two bi-LSTM layers. We fur-
ther concatenate these two outputs and feed them to a group of three 
bi-LSTM layers with latent dimension 128, 32 or 20 for further feature 
extraction. To create a binary mask in selection of mutation positions 

we build two dense layers to reduce the last dimension (the latent 
dimension) to 1, followed by a binary activation function that converts 
output data into a binary value of 0 or 1 (a value above threshold 0.5 is 
output as 1, otherwise as 0), where the number 1 represents selection 
of mutation position while 0 means that there is no need to mutate.

We then select features and output (denoted as numbers in  
Fig. 2a,b) from upstream and input them to the mutation block, which 
stimulates mutations based on the sequence. Figure 2b shows the 
architecture of a mutation block: a LSTM layer takes the concatenated 
input from the previous dense layer 1 and bi-LSTM layer 3, followed by 
another bi-LSTM layer with latent dimensions of 64 and 32, respectively, 
for further feature extraction. The dense layer then reduces the last 
dimension (latent dimension) to 20 using a softmax activation func-
tion. The output is a subset of base positions derived by the binary 
mask, and the new value is replaced at the determined mutation posi-
tion at the original sequence.

We designed two discriminators, discriminator A and discrimina-
tor B, for different training purposes. The architecture of the protein 
complex binding-affinity change predictor and discriminator A are 
shown in Fig. 2c. The model takes three main types of input data: protein 
sequence, mutated sequence and auxiliary information. Both pro-
tein sequence and auxiliary information are the same as those for the 
protein sequence mutation generator described above. The mutated 
sequence is the sequence corresponding to the protein sequence but 
with mutations replacing some of its amino acids. The model calculates 
differences between the original and mutated sequences by subtract-
ing their one-hot vector representing amino acids, to highlight the 
mutation. The original protein sequence, the sequence difference 
and then the auxiliary information are fed to bi-LSTM layers to encode 
them into vectors.

Two connected convolutional neural network (CNN) blocks take 
these vectors separately for extraction of features within each input 
vector. The binding-affinity change predictor is constructed with 
32 and 64 filters in the first and second blocks, respectively, while 
discriminator A has 64 and 128, both with a kernel size of 5. These con-
volved features are concatenated and further input to another group 
of four CNN blocks for integrated feature extraction, with 32, 64, 128 
and 256 filters for the binding-affinity change predictor and 64, 128, 
256 and 512 for discriminator A, both again having a kernel size of 5. 
A global Max Pooling layer is then applied followed by four fully con-
nected dense layers with neuron units 128, 64, 8 and 1. Rectified linear 
unit (ReLU) activation is then applied on the first two dense layers 
and LeakyReLU on the third, with the alpha-value set as 0.2. For the 
binding-affinity change predictor, a linear activation is applied at the 
last step of the model while for discriminator A no activation is placed. 
The architecture of the CNN blocks (Fig. 2d) includes a convolution 
two-dimensional layer, a batch normalization layer, a ReLU activation, a 
two-dimensional Max Pooling and a dropout layer in sequential order.

Figure 2e illustrates the architecture of discriminator B. It is com-
posed of a group of four dense layers each having 16, 16, 8 or 1 units 
and with activation function ReLU, except for the last layer where a 
sigmoid function is set.

DeepDirect training framework and parameter settings
At stage A we use the original protein sequences and their mutated 
sequences for training. We first mutate the sequences via the mutation 
generator, label them as ‘fake’ and subsequently label the mutations 
from the training database as ‘real’. We train discriminator A for five 
rounds and update the weights through back propagation. To prevent 
discriminator A from determining the sequence without generating 
mutations as real, we train the discriminator for three more steps to 
label the non-mutated sequence as fake and mutants from the train-
ing database as real. Weight clipping is applied at all steps for training 
of discriminator A to ensure training smoothness, then we freeze the 
weights of discriminator A and train the mutation generator for one 
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step. We train discriminator A more than the mutation generator to help 
produce a reliable gradient. At stage B we first specify a mutation direc-
tion (in the direction of increase/decrease of binding free energies) and 
then we mutate the sequence via the mutation generator. Together 
with the original sequence, the generated mutant is then input to the 
pretrained binding-affinity change predictor to predict a free energy 
change score. We use ΔEG to represent free energy changes from the 
mutation generator. Hence, in the circumstance of ’decrease’ specified 
for mutation direction, the mutated data are labelled as real if ΔEG <0 
or as fake if ≥0. A pseudo-energy value is then generated accordingly, 
sampled from uniform distribution U(0, 2) and labelled as fake if EG >0, 
or from U(−2, 0), and labelled as real if EG ≥0. If increase is specified for 
the direction, the mutated data are labelled as real if ΔEG >0 or as fake 
if ≤0. Subsequently a pseudo-energy value is sampled from U(−2, 0) 
and labelled as fake if EG >0, or sampled from U(0, 2) and labelled as 
real if EG ≤ 0. Similar to the process at stage A, we train discriminator B 
using this set of real and fake data for five steps with weight clipping 
on parameter updating. For the mutation generator we start from the 
trained parameter in stage A, set the generated mutant as fake and train 
the model without the weight-clipping restriction.

We train the protein complex binding-affinity change predictor 
separately and integrate it into the DeepDirect framework for train-
ing of the whole model. For training of the binding-affinity change 
predictor we first extract features from the original sequence, mutant, 
change in binding free energy and related auxiliary data. We split all 
data into ‘train’, ‘validation’ and ‘test’ at a ratio 0.7:0.15:0.15. We then 
randomly choose a set of training data and feed them into the predic-
tor for training so that the model will not be overfitted to mutations 
specific to any typical complex.

Different loss functions are set at different stages in the training of 
DeepDirect. The loss function of discriminator A is designed similarly 
to Wasserstein loss, LDA, as

LDA = α × (real − fake), (3)

which is the difference in average scores (across a minibatch of samples) 
obtained from discriminator A between the real real  and fake fake  data, 
with α as a scalar set as 104. Such a loss encourages the real data to be 
scored lower and the fake data higher, to clearly separate real and fake 
training data. The loss for the mutation generator at stage A, LMA, is 
defined as

LMA = β×(fake − penalty/γ) (4)

where

Penalty = c1×(SR − R)4 + c2×(SR − R) + c3SR
2 + c4 (5)

and

SR = (L −M )/L. (6)

Here we introduce a penalty item for control of mutation rate. 
The penalty is calculated as equation (3) under two main parameters, 
R and SR; R is the mutation range, which we set at 0.8. This penalty 
is expected to ensure that LMA decreases when R approaches our set 
value, keeping all other factors the same. The other parameter, SR, 
controls the similarity ratio, defined as the number of amino acids 
not mutated (sequence length L − number of mutated amino acids M) 
divided by sequence length L; equation (4)). We apply scalars on both 
penalty item γ and the entire function β set as 5 and −50, respectively, 
during training. Symbols c1, c2, c3 and c4 represent the coefficients of 
the penalty function, set as 4, 1, 1 and 0.2, respectively. We use a binary 
cross-entropy as the loss function for both the mutation generator and 
discriminator B at training stage B, LB, defined as

LB = − 1N

N
∑
i=1

yi × log (p ( yi)) + (1 − yi) × log (1 − p ( yi)) , (7)

where yi is the label for the given training data, p ( yi) the predicted 
probability of the data belonging to label yi and N the number of training 
samples. We use loss of mean absolute error as the loss function for the 
protein complex binding-affinity change predictor LBAP:

LBAP =
1
N

N
∑
i=1

|| yi − ̂yi|| , (8)

where yi is the actual score, ̂yi the predicted score and N the number of 
samples.

The training loss of the mutation generator and discriminator in 
the final stage was 0.6, while the loss of the mutation generator was 0.7. 
Loss for the protein complex binding-affinity change predictor—mean 
absolute error loss—was 1.82 on the test data.

The specific settings used for training of DeepDirect modelinc 
and modeldec in the two sequential stages are as follows. At training 
stage A for discriminator A, kernel size in the CNN block was set as 5. 
For the first- and second-tier CNN blocks for the reference sequence, 
sequence difference and auxiliary information we set a filter number 
of 64 or 128, respectively. Neuron numbers in dense layers 1, 2, 3 and 4 
were set as 128, 64, 8 and 1. respectively. Two ReLUs and one LeakyReLU 
with an alpha-value of 0.2 were set as the activation functions after 
the first three dense layers. For the mutation generator, the first-tier 
bi-LSTM layers after the layer of protein sequence, auxiliary infor-
mation and noise all had 128 latent dimensions, and likewise for the 
second-tier bi-LSTM layers after the two concatenation layers. The 
third tier had 128, 32 and 20 latent dimensions. Both dense layers had 
a neuron number of 16. Within the mutation generator, the first two 
LSTM layers had 64 and 32 latent dimensions and the following dense 
layer had 20 neurons with softmax activation. The learning rate for 
both the discriminator and mutation generator was set at 0.000003, 
with Adam as optimizer. ‘Clip for gradient’ was set as 0.1. The ratio 
of updating the weights of the discriminator versus training for the 
discriminator using the unchanged reference sequence versus the 
mutation generator was set at 5:1:1.

At training stage B for discriminator B, neuron numbers in the four 
dense layers were 16, 16, 8 and 1. Activation functions of the three ReLUs 
and one Sigmoid were placed after each layer in sequential order. The 
mutation generator was built as in training stage 1. The learning rate for 
the discriminator was set at either 0.000008 or 0.000005, and learn-
ing rate for the mutation generator was set as 0.000008 and 0.00001 
for modelinc and modeldec, respectively. Clip for gradient was set at 0.1. 
We set the ratio for updating the weights of the discriminator versus 
mutation generator at 5:1.

For the binding-affinity predictor we set the filter number as 32 
and 64, respectively, for the first and second CNN blocks for the ref-
erence sequence, sequence difference and auxiliary information. A 
linear activation function was placed after the final dense layer. The 
remainder were assembled as for discriminator A. Adam was used as 
the optimizer for training, with a learning rate of 0.0001.

Docking and random mutation process
Docking was performed with the HDOCK server, between PDB entry 
7JII (SARS-CoV-2 3Q-2P full-length prefusion spike trimer) and Native 
Human 1R42 (angiotensin-converting enzyme-related carboxypepti-
dase (ACE2)). We selected the top-predicted model having a HDOCK 
docking score of −261 and a root-mean-square deviation score of 
343.62. The amino acid 3D coordinates of the docked protein complex 
were extracted as the input to DeepDirect to generate mutations. In the 
generation of random mutations, we first randomly chose mutation 
positions in a protein sequence restricted by a mutation rate that we 
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set at 5, 10 or 20% in this work. At each determined mutation site the 
amino acid is randomly substituted with a different amino acid. Such 
a mutation pipeline was applied to generate 500 mutated sequences 
under each mutation rate; 3D structures of protein complexes were 
visualized by ChimeraX software47.

Evolution analysis of the SARS-CoV-2 Omicron strain
The PDB file of the SARS-CoV-2 Omicron Variant SPIKE trimer com-
plexed with ACE2 was downloaded under accession no. 7WPA. The 
relevant information was extracted and input to DeepDirect modelinc 
500 times iteratively, with a batch size of 500. Mutations on spike pro-
tein chain A were extracted to construct the mutated spike trimer and 
used in the analysis. Random mutations were generated as for the pre-
vious random mutation generation steps. Sequence Graph Transform 
was applied via the SGT package with parameter kappa set at 5. PCA and 
DBSCAN were applied via sklearn. DBSCAN had the parameter eps set 
as 0.015, determined by k-NN distance (Supplementary Fig 2a). Package 
Numpy and Seaborn were used for data processing and visualization.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The AB-bind database was downloaded from https://github.com/
sarahsirin/AB-Bind-Database (ref. 43). The SKEMPI v.2.0 database was 
downloaded from https://life.bsc.es/pid/skempi2/database/index 
(ref. 44). The PDB structures of 7JII, 7WPA and 1R42 were downloaded 
from https://www.rcsb.org/structure/7JII, https://www.rcsb.org/
structure/7WPA and https://www.rcsb.org/structure/1r42, respectively.

Code availability
The source code for DeepDirect is available at https://github.com/
tianlt/Deepdirect (ref. 48), where some analysis results are also 
provided.
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