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Reusability report: Unpaired deep-learning 
approaches for holographic image 
reconstruction

Yuhe Zhang    1 , Tobias Ritschel2 & Pablo Villanueva-Perez    1 

Deep-learning methods using unpaired datasets hold great potential for 
image reconstruction, especially in biomedical imaging where obtaining 
paired datasets is often difficult due to practical concerns. A recent study by 
Lee et al. (Nature Machine Intelligence 2023) has introduced a parameterized 
physical model (referred to as FMGAN) using the unpaired approach for 
adaptive holographic imaging, which replaces the forward generator 
network with a physical model parameterized on the propagation distance 
of the probing light. FMGAN has demonstrated its capability to reconstruct 
the complex phase and amplitude of objects, as well as the propagation 
distance, even in scenarios where the object-to-sensor distance exceeds 
the range of the training data. We performed additional experiments to 
comprehensively assess FMGAN’s capabilities and limitations. As in the 
original paper, we compared FMGAN to two state-of-the-art unpaired 
methods, CycleGAN and PhaseGAN, and evaluated their robustness and 
adaptability under diverse conditions. Our findings highlight FMGAN’s 
reproducibility and generalizability when dealing with both in-distribution 
and out-of-distribution data, corroborating the results reported by the 
original authors. We also extended FMGAN with explicit forward models 
describing the response of specific optical systems, which improved 
performance when dealing with non-perfect systems. However, we observed 
that FMGAN encounters difficulties when explicit forward models are 
unavailable. In such scenarios, PhaseGAN outperformed FMGAN.

Deep-learning approaches based on unpaired datasets have been 
demonstrated to be effective in various image reconstruction tasks, 
including biomedical imaging, where collecting paired datasets can 
be challenging or impossible due to practical considerations, such as 
dose. The key idea behind these approaches is to learn the underlying 
mapping between two different domains of images, such as between 
object and detector domains. This is usually implemented by learning 
a cyclic translation between the two domains using two generators. 
The forward generator learns the mapping from the first domain to 

the second, and the backward generator learns the mapping in the 
reverse direction to enforce the cyclic consistency of the reconstructed 
images. Recently, Lee et al. have proposed a physically parameter-
ized and unpaired approach for adaptive holographic imaging1, which 
replaces the forward generator with a forward physical model param-
eterized with the propagation distance of the probing light. For brevity, 
we refer to the parameterized physical forward model proposed by 
Lee et al. as FMGAN. The inclusion of a physical model stabilizes the 
learning process2 for in-distribution (ID) data and increases tolerance 
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0.0001, respectively. The learning rates reported in ref. 1 appear to 
be incorrect as the learning rate of a generator cannot be much lower 
than that of the discriminator. The learning rate was reduced by 0.95 
for every 500 iterations. We set λSSIM to ten and gradient penalty loss 
weight λGP to 20. The rest of the parameters were identical to the ones 
reported in ref. 1.

We ran five independent experiments with different random seeds 
for each method and evaluated the reconstructions of each method 
using the feature similarity index (FSIM)9 and Pearson correlation coef-
ficient (PCC)10 as figures of merit. The results are presented in Table 1 
and Fig. 1. Table 1 reported the mean of the FSIM and PCC between the 
predicted complex images and the ground truth, and also the ratio 
between CycleGAN, PhaseGAN and PhaseGAN* relative to FMGAN. For 
FMGAN, we also evaluated the predicted propagation distances by the 
mean absolute error (MAE). In Table 1, we report the mean of the MAE 
of the predicted propagation distances. The distribution of FSIM and 
PCC for the in-distribution and OOD data is shown in Fig. 1.

Adaptability to non-perfect optical systems
In this section, we study the robustness of the approaches to three 
different non-perfect optical systems.

 (1) Poisson noise: we studied the noise tolerance of the approaches. 
We simulated noisy measurements by adding normalized Pois-
son noise to the detector images.

 (2) Gaussian blurring: we studied the generalizability of the ap-
proaches to a defocused optical system. We characterized the 
response of this optical system by using the PSF. The PSF was 
mathematically included as a convolution to the diffraction in-
tensity images on the detector domain but not explicitly in the 
forward propagation process. We used a Gaussian PSF with a 
kernel size of 25 pixels and a standard deviation of three pixels.

 (3) Non-uniform blurring: we studied the generalizability of the ap-
proaches to non-uniform blurring, which could be because of 
a tilted image plane or defects in the optics. We simulated the 
blurring effect using Gaussian PSFs, which change from left to 
right on the detector plane. On the left side, we used a Gaussian 
PSF with a standard deviation of three pixels, and on the right 
side, we used that with a standard deviation of six pixels. The 
detector image was formed by a linear combination of the two 
blurring images.
We study the performance of CycleGAN, PhaseGAN and FMGAN 

under the three simulated non-perfect optical systems. For the 
non-perfect optical systems 2 and 3, we introduced FMGAN†, where the 
blurring effects were added explicitly to the forward physical propaga-
tor of FMGAN accordingly. For each condition, we trained all of the 

for handling out-of-distribution (OOD) data because of the extension 
of the mapping space.

In this report, we study the reusability of FMGAN, focusing on 
its robustness and adaptability under various conditions. First, we 
evaluate the reproducibility of the results reported in ref. 1, including 
a comparison of FMGAN with CycleGAN3,4 and PhaseGAN2. Second, we 
study the performance of the three approaches for non-perfect opti-
cal systems, for example, with the presence of Poisson noise or under 
the effect of out-of-focus blurring for an untilted and a tilted detector 
plane. The blurring effect is simulated by a point spread function (PSF), 
a two-dimensional function that describes the response of an optical 
system to a point-light source. We finally consider the adaptability limit 
of FMGAN to a wide range of propagation distances.

Reproducing the reported results
We study the reproducibility of the results on both in-distribution data 
and OOD data using the 3 μm polystyrene microsphere dataset shared 
by Lee et al.5. Note that additional datasets, including a red blood cell 
dataset and a histological slide dataset, are also available in ref. 5, but 
these datasets were not used in the current study. First, we studied 
the performance of the methods on in-distribution data, where the 
networks were trained on 600 diffraction intensities measured at 
propagation distances 7 to 17 mm in steps of 2 mm (100 images for each 
distance) and 300 complex field patches as ground truth. For testing, 
44 diffraction intensity patches measured at propagation distances 
in the same range with 1 mm steps were used. Second, we reproduced 
the adaptability study of the methods on OOD data, where the net-
works were trained on 100 diffraction intensities measured at a fixed 
13 mm propagation distance and tested on diffraction intensity patches 
measured at 7 to 17 mm distances with 1 mm spacing. For training each 
dataset, we used three networks: CycleGAN, PhaseGAN and FMGAN. We 
used U-Net as in ref. 2 for the networks of CycleGAN and PhaseGAN, and 
squeeze-and-excitation U-Net6 as in ref. 1 for the network of FMGAN. The 
ADAM optimizer7 with a mini-batch size of eight was used throughout 
the training. For CycleGAN and PhaseGAN, we set the learning rates to 
be 0.0002 for both generators and discriminators and decayed the 
learning rate by 0.5 for every 1,000 iterations. The cycle-consistency 
weights were set to 200. For PhaseGAN, we added Fourier ring cor-
relation (FRC) losses and structural similarity index measure (SSIM) 
losses to better constrain the model1,2, with λFRC = 100 and λSSIM = 0.5. 
Incorporating the FRC loss has been demonstrated to improve the 
reconstruction quality and enhance the training performance2,8. We 
also reported the results of PhaseGAN trained without an FRC loss, 
which is denoted by PhaseGAN*. For the training of FMGAN, we set the 
learning rates for the generator and the discriminator to be 0.001 and 

Table 1 | Experimental results for the reproducibility tests (tested on 44 images)

Reconstruction resultsa CycleGAN PhaseGAN PhaseGAN* FMGAN

Amplitude

FSIM ID 0.84 (0.94×) 0.88 (0.99×) 0.87 (0.98×) 0.89 (1.00×)

OOD 0.81 (0.95×) 0.79 (0.93×) 0.83 (0.97×) 0.85 (1.00×)

PCC ID 0.19 (0.28×) 0.67 (0.97×) 0.60 (0.87×) 0.69 (1.00×)

OOD 0.24 (0.34×) 0.44 (0.61×) 0.45 (0.62×) 0.72 (1.00×)

Phase

FSIM ID 0.62 (0.66×) 0.93 (1.00×) 0.91 (0.97×) 0.94 (1.00×)

OOD 0.70 (0.74×) 0.85 (0.91×) 0.83 (0.88×) 0.94 (1.00×)

PCC ID 0.26 (0.29×) 0.88 (1.01×) 0.84 (0.95×) 0.88 (1.00×)

OOD 0.36 (0.40×) 0.73 (0.81×) 0.67 (0.74×) 0.90 (1.00×)

Distance
MAE ID – – – – – – 0.3 ±0.2

OOD – – – – – – 0.3 ±0.2

ID, in-distribution; OOD, out-of-distribution. aThe mean values of the FSIM and PCC between the ground truth and the predicted complex images are provided, along with the performance 
ratios between CycleGAN, PhaseGAN and PhaseGAN* relative to FMGAN. For FMGAN, the mean and standard deviation of the MAE for the predicted propagation distances are also reported.
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networks using 600 simulated diffraction intensities with propagation 
distances between 7 and 17 mm in steps of 2 mm (100 images for each 
distance) and the ground truth. We performed data augmentation by 
applying random rotations and flips to the images. Then, we evaluated 
the performance of the approaches with these perturbations. For the 
tests of the last two systems with the Gaussian blurring, we used 
λCyc = 400, λFRC = 5 and λSSIM = 2  for the training of PhaseGAN, and 
λCyc = 200 for the training of CycleGAN. The rest of the training param-
eters were the same as those used in the previous section.

Figure 2 shows the simulated diffraction intensity images of a test 
image at a propagation distance of 8 mm, and the amplitude, as well as 
the phase, reconstructed by the different methods together with the 
ground truth. We also reported the mean of the FSIM and PCC between 
the predicted complex images and the ground truth, and the relative 
ratio between the CycleGAN, PhaseGAN, FMGAN† and FMGAN results 
in Table 2. The MAE of the predicted propagation distances is also 
reported for FMGAN† and FMGAN. The distribution of the FSIM and PCC 
between the reconstruction results and the ground truth images of the 
three or four different methods is shown in the last three rows of Fig. 1.

Adaptability to the propagation distance
In this section, we investigate the adaptability of the FMGAN to varying 
propagation distances, specifically, to distances outside the range it 
was trained on. We trained the networks on diffraction intensity images 
measured at 13 mm, and tested the limit of the trained network on OOD 

simulated diffraction intensity images with the propagation distance 
ranging from 2 to 26 mm. We started from the propagation distance of 
2 mm because interference fringes were not visible below that distance. 
For the simulation, we generated 27 diffraction intensity images from 
the test image as shown in Fig. 2. We used the same forward physics 
model as in ref. 1, based on the law of light propagation11, to simulate 
the diffraction intensity images.

The quantitative evaluation of the network on the simulated dif-
fraction images as a function of the propagation distance is reported in 
Fig. 3a. We also plotted the relationship between the FMGAN predicted 
propagation distances and the real propagation distances in Fig. 3b. 
The mean and standard deviation of the FSIM and PCC between the 
predicted complex images and the ground truth and the MAE of the 
predicted distances below, within and above the distance range used 
in ref. 1 (7–17 mm) are reported in Table 3.

Discussion and conclusion
We performed three tests in this report to analyse the reusability and 
adaptability of FMGAN. First, we investigated the reproducibility of 
FMGAN’s results reported in the original paper and compared its perfor-
mance with two other state-of-the-art image reconstruction networks, 
CycleGAN and PhaseGAN. We also studied the influence of including 
an FRC loss by comparing the performance between PhaseGAN and 
PhaseGAN*. As shown in Table 1 and Fig. 1, our results are consistent 
with the results reported in ref. 1. For the in-distribution data, which 
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Fig. 1 | Error distribution validation. FSIM and PCC error distribution of amplitude (left two columns) and phase (right two columns) for CycleGAN (blue), PhaseGAN 
(yellow) and FMGAN (green) for in-distribution (row 1), OOD (row 2) and the non-perfect optical systems (rows 3 to 5). The results of PhaseGAN* (red) and FMGAN† 
(purple) are also shown where applicable.
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Fig. 2 | Demonstration of the networks’ adaptability to non-perfect optical 
systems. Three different distortions are applied to the diffraction intensity 
images measured at a propagation distance of 8 mm to simulate the blurring 
effect of the three non-perfect optical systems: Poisson noise (a), Gaussian 
blurring (b) and non-uniform blurring (c). The reconstruction results of the 

diffraction intensity image reconstructed by the three or four networks and 
the corresponding ground truth are shown on the right. Magnified views of 
the areas marked by the red boxes are shown at the bottom. Red circles mark 
an unexpected polystyrene bead reconstructed by FMGAN. ROI, region(s) of 
interest.
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reconstructions. CycleGAN failed to produce reliable results for both 
in-distribution and OOD data demonstrating the relevance of the physi-
cal model. As in ref. 1, we noticed that CycleGAN generated indistin-
guishable polystyrene bead images, but completely different from 
the ground truth. Furthermore, one can observe in Fig. 1 that the phase 
components were generally better reconstructed than the amplitude 
ones, as polystyrene beads are mainly phase objects.

Second, we investigated the effect of introducing non-perfect 
optical systems via noise and blurring effects on the performance 
of CycleGAN, PhaseGAN and FMGAN. Additionally, we examined the 
influence of introducing an explicit forward propagator by comparing 
the performance between FMGAN and FMGAN†. As shown in Figs. 1  
and 2a,b and Table 2, our results showed that both FMGAN and 
PhaseGAN could reconstruct high-quality images under the influence 
of Poisson noise and uniform Gaussian blurring, whereas CycleGAN 
failed to capture many important details in the reconstructed images. 
However, we have observed phase artefacts in the reconstructions of 
FMGAN, as highlighted in the zoomed-in areas of Fig. 2. Additionally, 
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Fig. 3 | Demonstration of FMGAN’s adaptability to the propagation distance. 
a, FSIM (blue) and PCC (orange) of the FMGAN reconstructed phase (solid line) 
and amplitude (dashed line) for each propagation distance. b, FMGAN predicted 

distances (blue solid) as a function of the real propagation distances (yellow 
dashed). The red star marked the propagation distance where FMGAN was 
trained.

consisted of diffraction intensity images from the same distribution as 
the training data, both PhaseGAN (including PhaseGAN and PhaseGAN*) 
and FMGAN achieved high-precision reconstruction results, with FSIM 
and PCC values close to the values reported in the original paper. 
FMGAN achieved the highest mean and lowest standard deviation in 
FSIM and PCC values among the three networks, indicating a better 
performance compared to CycleGAN and PhaseGAN. For the OOD 
data, where the test images were from a different distribution from the 
training data, FMGAN also outperforms the other two methods in both 
FSIM and PCC, suggesting that FMGAN has a better generalizability 
than CycleGAN and PhaseGAN by the inclusion of the parameterized 
physical forward model. The performance of PhaseGAN dropped when 
tested on OOD data, as it is based on a precise propagation model with 
a known propagation distance, which better constrains the training 
and improves the performance if compared to CycleGAN but also 
limits its adaptability to OOD data due to the ‘hard-coded’ physical 
model. We also observed that PhaseGAN outperformed PhaseGAN*, 
providing evidence that the inclusion of an FRC loss leads to enhanced 

Table 2 | Experimental results for the adaptability tests of non-perfect optical systems

Reconstuction resultsa CycleGAN PhaseGAN FMGAN† FMGAN

Poisson noise

Amplitude FSIM 0.85 (0.96×) 0.89 (1.00×) – – 0.89 (1.00×)

PCC −0.10 (0.00×) 0.68 (0.95×) – – 0.71 (1.00×)

Phase FSIM 0.71 (0.75×) 0.94 (0.99×) – – 0.95 (1.00×)

PCC 0.48 (0.54×) 0.87 (0.99×) – – 0.88 (1.00×)

Distance MAE – – – – – – 0.2 ±0.2

Gaussian blurring

Amplitude FSIM 0.85 (0.96×) 0.89 (1.01×) 0.89 (1.00×) 0.89 (1.00×)

PCC 0.10 (0.15×) 0.67 (1.06×) 0.68 (1.08×) 0.63 (1.00×)

Phase FSIM 0.70 (0.75×) 0.94 (1.01×) 0.94 (1.01×) 0.93 (1.00×)

PCC 0.45 (0.52×) 0.88 (1.02×) 0.88 (1.01×) 0.86 (1.00×)

Distance MAE – – – – 0.2 ±0.2 0.6 ±0.4

Non-uniform blurring

Amplitude FSIM 0.85 (1.08×) 0.89 (1.12×) 0.82 (1.04×) 0.79 (1.00×)

PCC 0.31 (1.87×) 0.63 (3.80×) 0.72 (4.31×) 0.17 (1.00×)

Phase FSIM 0.75 (1.43×) 0.92 (1.75×) 0.94 (1.80×) 0.53 (1.00×)

PCC 0.55 (5.94×) 0.84 (8.98×) 0.91 (9.74×) 0.09 (1.00×)

Distance MAE – – – – 0.3 ±0.3 13 ±3
aFor each test, the mean values of the FSIM and PCC between the ground truth and the predicted complex images are presented, along with the performance ratios between CycleGAN, 
PhaseGAN and FMGAN† relative to FMGAN. For FMGAN and FMGAN†, the mean and standard deviation of the MAE for the predicted propagation distances are also provided.
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we have also noticed the occurrence of image hallucinations for the 
reconstructions of the non-perfect optical system 2, as marked by red 
circles in Fig. 2b. These phase artefacts and the hallucinations are not 
presented in the ground truth or in the reconstructions of PhaseGAN. 
For the reconstructions of non-perfect optical system 3, both CycleGAN 
and FMGAN failed to reconstruct the amplitude and phase of the object 
due to the non-uniform blurring of the detector images, as shown 
in Fig. 2c. Comparing the results between FMGAN and FMGAN†, it is 
noticeable that including the blurring effect explicitly to the forward 
propagator improved the reconstructions. FMGAN† correctly recon-
structed the details of the sample images for both non-perfect optical 
systems 2 and 3, despite some minor artefacts on the background. 
These results indicate that FMGAN works well under noisy conditions. 
For optical systems characterized by a PSF, PhaseGAN outperformed 
FMGAN. The superior performance of PhaseGAN over FMGAN can be 
explained by the fact that FMGAN uses only one field generator, which 
makes it challenging to learn the performance of the optical system. 
By contrast, PhaseGAN uses two generators: a field generator and a 
detector generator. The detector generator of PhaseGAN can help it 
to learn the response of the optical system. Including the response of 
the optical system explicitly to the forward propagator is an effective 
way to improve the performance of FMGAN, but this information is not 
always available. There are conditions where previous knowledge of the 
response of the optical system is not available or difficult to measure, 
where PhaseGAN would be more suitable.

Third, we studied the limit of adaptability of FMGAN on propaga-
tion distances. As shown in Table 3 and Fig. 3, we observed that FMGAN 
could reliably reconstruct images within the distance range of 7 to 
18 mm. This corresponded to the 7 to 17 mm test datasets used in ref. 1. 
Outside this range, the performance of FMGAN decreased, and it failed 
to reconstruct the phase and amplitude. Although FMGAN has been 
trained at the propagation distance of 13 mm, we have observed that 
it performs slightly worse at this propagation distance than shorter 
ones, for example, 7 to 10 mm. A possible explanation for this could 
be that FMGAN has difficulties in solving the holograms when the 
objects interfere with each other. We noticed that at shorter propaga-
tion distances (below 11 mm), the beads barely interfere with each 
other, leading to good reconstructions by FMGAN, even though not 
being trained at those propagation distances. From this propagation 
distance, the single-bead fringes started to interfere with the ones from 
other beads, increasing the hologram’s complexity. This interference 
between the different beads seems to be difficult for FMGAN to learn, 
and this leads to deteriorated behaviour at longer distances.

In conclusion, our analysis of the FMGAN model indicates that it is 
highly reusable for holographic image reconstructions. Compared to 
CycleGAN and PhaseGAN, FMGAN demonstrated better performance in 
reconstructing in-distribution data in terms of the mean and standard 
deviation of FSIM and PCC values due to the inclusion of a parameter-
ized physical forward model. Additionally, FMGAN showed good gen-
eralizability when reconstructing OOD data and noisy data, and our 
adaptability study indicated a reliable range of approximately 10 mm. 
However, we observed that when dealing with blurring non-perfect 

systems, FMGAN struggled to learn the response of the optical system 
and generated hallucinations. By contrast, PhaseGAN appeared to be 
better suited for such scenarios due to its ability to learn the response 
of the optical system. Finally, CycleGAN performed poorly in all of our 
tests due to the lack of a physics model.

Future directions
In this section, we explore opportunities to improve the performance 
of holographic image reconstruction using deep learning. One prom-
ising approach could be to combine the strengths of both PhaseGAN 
and FMGAN. As we noticed in our analysis, PhaseGAN’s ability to learn 
the response of the optical system could be beneficial in situations 
where the optical system is not ideal, while FMGAN’s inclusion of a 
parameterized physical forward model improves the versatility and 
robustness when the propagator cannot be determined. A poten-
tial approach that combines a single generator to retrieve complex 
field images and the relevant propagator parameters and another 
generator to learn the response of the optical system can improve 
the capabilities of PhaseGAN and FMGAN. Such an approach could 
potentially overcome limitations observed in our analysis, such as 
the hallucinations generated by FMGAN in non-ideal optical systems, 
while keeping its generalization to OOD. Another aspect to consider for 
future improvements is related to the availability and quality of train-
ing data. As larger and more diverse datasets become accessible, new 
deep-learning architectures that capture complex spatial relationships 
in holographic images may be developed. Investigating the potential 
of transfer learning could also be valuable for future research, where 
pretraining a model on a large dataset of holographic images can reduce 
the required training data and improve performance in future applica-
tions. Finally, exploring different loss functions and their combination 
could lead to an improvement and provide more robust models. For 
instance, incorporating perceptual loss functions12 could potentially 
enhance the visual quality of the reconstructed images, and including 
an FRC loss2,13 could better constrain the images in the Fourier space.

Data availability
The data used in this report are available in ref. 5.

Code availability
The FMGAN code is available in ref. 14. PhaseGAN code is available in 
ref. 15. The FMGAN† code used in the non-perfect optical system tests 
is available in ref. 16.
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