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Mitigating allocative tradeoffs and harms in 
an environmental justice data tool

Benjamin Q. Huynh    1,8 , Elizabeth T. Chin2,8, Allison Koenecke    3, 
Derek Ouyang    4, Daniel E. Ho    4,5,6, Mathew V. Kiang    7,9 & 
David H. Rehkopf    7,9

Neighbourhood-level screening algorithms are increasingly being 
deployed to inform policy decisions. However, their potential for harm 
remains unclear: algorithmic decision-making has broadly fallen under 
scrutiny for disproportionate harm to marginalized groups, yet opaque 
methodology and proprietary data limit the generalizability of algorithmic 
audits. Here we leverage publicly available data to fully reproduce and 
audit a large-scale algorithm known as CalEnviroScreen, designed to 
promote environmental justice and guide public funding by identifying 
disadvantaged neighbourhoods. We observe the model to be both highly 
sensitive to subjective model specifications and financially consequential, 
estimating the effect of its positive designations as a 104% (62–145%) 
increase in funding, equivalent to US$2.08 billion (US$1.56–2.41 billion) 
over four years. We further observe allocative tradeoffs and susceptibility 
to manipulation, raising ethical concerns. We recommend incorporating 
technical strategies to mitigate allocative harm and accountability 
mechanisms to prevent misuse.

As decision-making algorithms continue to be adopted for a variety of 
high-impact applications, many of them have been found to dispropor-
tionately harm marginalized populations, as evidenced by algorithmic 
audits1–6. In particular, area-based measures to identify disadvantaged 
neighbourhoods have recently become widespread for tasks such 
as allocating vaccines, assessing social vulnerability, and healthcare 
cost adjustment, intended to optimize an equitable distribution of 
resources7–10. However, their potential for allocative harm—the with-
holding of resources from specific subpopulations11—is not well under-
stood, and it remains unclear how different subpopulations may be 
disproportionately impacted by the design of such area-based models.

The California Community Environmental Health Screening Tool 
(CalEnviroScreen) is a data tool that designates neighbourhoods as 
eligible for capital projects and social services funding, and is intended 

to promote environmental justice. CalEnviroScreen’s model output 
is used to designate ‘disadvantaged communities’, for which 25% of 
proceeds from California’s cap-and-trade programme are earmarked. 
CalEnviroScreen also directly influences funding from a variety of pub-
lic and private sources, and is reported to have directed an estimated 
US$12.7 billion in funding12. The funding targets of the tool are varied, 
including programmes for affordable housing, land-use strategies, 
agricultural subsidies, wildfire risk reduction, public transit and renew-
able energy. Similar data tools are in use or development at the federal 
and state levels across the United States13.

CalEnviroScreen ranks each census tract in the state according 
to its level of marginalization in terms of environmental conditions 
and population characteristics. The algorithm does so by aggregating 
publicly available tract-level data into a single score, based on variables 
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Allocative tradeoffs and harms
Under such a model with high uncertainty, every subjective model 
decision is implicitly a value judgement: any variation of a model could 
favour one subpopulation or disfavour another. Both the model in its 
current form and plausible alternative forms can exhibit bias among 
different subpopulations, illustrating the zero-sum nature of delegat-
ing funding allocation to a single model.

To exemplify these challenging tradeoffs, we constructed an alter-
native model for designation assignment. CalEnviroScreen does not 
include race in its algorithm, but we are able to assess its impact on 
race by examining the racial composition of designated tracts. We first 
changed the pre-processing and aggregation methods to avoid penal-
izing tracts with extreme levels in variables such as air pollution indica-
tors, and then incorporated a number of additional population health 
metrics for a more broad definition of vulnerability to environmental 
exposures. On average, incorporating these changes led to increased 
designation to tracts with higher levels of racially minoritized people 
in poverty, but decreased designation among racially minoritized 
populations overall (Fig. 3 and Extended Data Fig. 2).

In particular, expanding the ‘sensitive populations’ category of 
the algorithm presents ethical concerns. The category is represented 
by three variables: respiratory health, cardiovascular health and low 
birthweight. It would be sensible to include additional health indicators 
relevant to environmental exposures, such as chronic kidney disease 
or cancer23,24. The inclusion of such variables, however, would result in 
the loss of designation for tracts with high Black populations. Because 
low birthweight disproportionately affects Black infants, the introduc-
tion of other variables such as cancer—which also disproportionately 
affects Black populations albeit to a lesser extent—would reduce the 
impact of low birthweight on the algorithm’s output.

from four categories: environmental exposures, environmental effects, 
sensitive populations and socioeconomic factors. Tracts in the top 25% 
of scores are designated as disadvantaged communities, representing 
~10 million residents for whom earmarked funding is made available.

Screening tools like CalEnviroScreen have been criticized for 
being in tension with the principles of environmental justice, defined 
broadly as a movement to address systemic environmental harms faced 
by marginalized populations through mechanisms such as equitable 
resource allocation and inclusive decision-making14. On the one hand, 
such tools may distributively advance environmental justice by allocat-
ing resources to marginalized communities, but on the other, critics 
contend that subjective, state-run decision-making lacks account-
ability for affected communities, particularly as the state itself bears 
responsibility for perpetuating environmental injustices14–16. Conse-
quently, such screening tools may present their algorithmic output as 
objective truth and place marginalized communities in competition 
for limited funds16,17. Algorithmic audits are therefore necessary to 
identify the extent to which the design of tools like CalEnviroScreen 
can impact different communities.

Audits of large-scale algorithms are often limited to observing 
‘black box’ outputs, as individual-level data privacy requirements 
and proprietary pipelines prevent comprehensive audits of algorith-
mic systems1,2,18. By contrast, we are able to fully reproduce and test 
changes to CalEnviroScreen’s model due to its population-level usage 
of publicly available data, potentially enabling generalization of our 
findings to similar large-scale algorithms. In this Article we investigate 
the inner workings of CalEnviroScreen, characterizing model sensitiv-
ity, funding impact, ethical concerns and avenues for harm-reduction  
(Extended Data Fig. 1).

Model sensitivity and funding impact
The CalEnviroScreen model is highly sensitive to change. We found 
that 16.1% of all tracts could change designation based on small altera-
tions to the model. This represents high designation variation given 
that only 25% of all tracts receive designation (Fig. 1 and Extended 
Data Table 1). These large fluctuations in designation are solely due 
to varying subjective model specifications such as health metrics, 
pre-processing methods and aggregation methods19. For example, 
changing pre-processing methods—switching from a percentile ranking 
to a more commonly used method like z-score standardization—led to 
a 5.3% change in designated tracts.

In the absence of a ground-truth variable or validation metric 
(that is, a concrete ability to quantify the true value of environmental 
harm in California), model sensitivity represents the ambiguity across 
alternative specifications, enabling an uncertainty assessment of 
the model outputs19–22. For example, we observe high levels of model 
sensitivity at the designation threshold (75th percentile), where the 
predicted tract ranking could vary across models by 44 percentile 
ranks (Fig. 1). Even tracts ranked as low as the bottom 5th percentile 
could be eligible under slightly different models. We observe lower, 
yet still substantial, model sensitivity at the 95th percentile, where 
the predicted range is 18 percentile ranks. Given this variability in 
ranking certainty, dichotomizing designation may present a false 
sense of precision, leading to funding decisions based on unstable 
information.

Receiving algorithmic designation is financially consequential. 
We estimated through a causal analysis that the effect of receiving 
designation from the algorithm is a 104% (95% confidence inter-
val, 62–145%) increase in funding, equivalent to US$2.08 billion  
(US$1.56–2.41 billion) in additional funding over a four-year period 
for 2,007 tracts (Fig. 2 and Extended Data Table 2). Similarly, among 
the 400 tracts that would be eligible for designation under an alterna-
tive model (described below), we estimated they would have received 
equivalent to US$632 million ($377–881 million) in additional funding 
over the same time period.
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Fig. 1 | CalEnviroScreen’s sensitivity to input parameters. The axes denote 
model scores in terms of percentiles. Grey bars indicate maximum and minimum 
values from alternative plausible model specifications with varying health 
metrics, pre-processing methods and aggregation methods. The dashed red 
line indicates the 75th percentile cutoff score for funding designation. Dots 
indicate the median predicted amount of model sensitivity at a given percentile, 
in terms of by how many percentile-ranks a tract can vary. Light shaded portions 
and error bars indicate 95% prediction intervals. Dark shaded portions indicate 
75% prediction intervals (for example, in 95% of predictions, tracts at the 75th 
percentile can vary their score by 44 percentile-ranks).
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Moreover, we found the existing model to potentially underrep-
resent foreign-born populations. The model measures respiratory 
health in terms of emergency-room visits for asthma attacks, which 
underrepresents groups who use the emergency room less or come 
from countries where asthma is less prevalent, yet still have other 
respiratory issues25,26. Consequently, using survey data of chronic 
obstructive pulmonary disease (COPD) to represent respiratory health 
increases the designation of tracts with foreign-born populations of 
30% or higher (Extended Data Figs. 3 and 4).

Critically, the zero-sum nature and high sensitivity of the model 
are conducive to model manipulability. It is feasible for a politically 
motivated internal actor, whether subconsciously or intentionally, to 
prefer model specifications that designate tracts according to a specific 
demographic, such as political affiliation or race. Through adversarial 
optimization—optimizing over pre-processing and aggregation meth-
ods, health metrics and variable weights—we find that the maximum 
increase or decrease a model can be manipulated to favour a specific 
US political party is 39% and 34%, respectively (Fig. 4 and Extended 
Data Fig. 5). Any efforts to mitigate the harms of allocative algorithms 
such as CalEnviroScreen thus need to consider both model sensitivity 
and manipulability.

Mitigation strategies
Because there is no singular ‘best’ model, we propose assessing robust-
ness via sensitivity analysis and incorporating additional models 
accordingly. For example, the California Environmental Protection 
Agency recently decided to honour designations from both the current 
and previous versions of CalEnviroScreen, effectively taking the union 
of two different models. This approach reduces model sensitivity by 
40.7%, and a three-model approach additionally incorporating designa-
tions from our alternative model reduces the model sensitivity by 71.0%. 
Using multiple models also mitigates allocative harm—by broadening 
the category of who is considered disadvantaged, different populations 
are less likely to be in competition with each other for designation.

A potential concern is that increasing the number of desig-
nated tracts may dilute earmarked funds for disadvantaged groups.  

However, incorporating an additional model per our example would 
only increase the number of tracts by 10%, yet reduce model sensitiv-
ity by 51.1%. Doing so would also reduce equity concerns and more 
accurately represent the uncertainty inherent to designating tracts 
(consideration should be given as to whether these benefits outweigh 
the downsides). Furthermore, adding models is only one possible solu-
tion. There are many other ways to equitably address decision-making 
under uncertainty, such as randomizing assignment for tracts near 
the decision threshold (similar to lottery admissions for educational 
institutes), aggregating outputs from multiple models into a singular 
ensemble model, scoring tracts based on both the model output and 
its respective uncertainty measurement, or funding tracts on a tiered 
or sliding-scale system weighted by uncertainty measurements instead 
of using a single hard threshold27–30.

However, reducing model sensitivity is not a complete solution—
transparency and accountability are necessary to reduce harm. The 
agency developing CalEnviroScreen is active in offering methodo-
logical transparency and soliciting feedback, which enables critiques 
such as ours and promotes public discourse. Agencies developing 
similar tools to identify disadvantaged neighbourhoods should fol-
low suit. A safeguard like an external advisory committee comprising 
domain experts and leaders of local community groups could also 
help reduce harm by identifying ethical concerns that may have been 
missed internally. It would also promote equitable representation and 
involvement from the public, aligning with the tool’s goal of advancing 
environmental justice.

Discussion
Our findings are threefold: (1) CalEnviroScreen’s model is both sen-
sitive to change and financially consequential; (2) subjective model 
decisions lead to allocative tradeoffs, and models can be manipulated 
accordingly; and (3) model sensitivity can be mitigated by account-
ing for uncertainty in designations, thereby reducing the need for 
tradeoffs. Concretely, we recommend accounting for uncertainty 
by incorporating sensitivity analyses and potentially including addi-
tional models to increase robustness, and urge for community-based 
independent oversight.

Our analysis is not a comprehensive audit of CalEnviroScreen. We 
do not identify every potential flaw or ethical concern of the model, 
but instead highlight illustrative examples of how model choices can 
facilitate allocative harm. Only members of a given community can 
fully know how their respective tracts are represented and affected 
by the algorithm. We do not advocate for any particular model over 
another. Such decisions are inherently subjective and should be made 
in consultation with affected communities and relevant experts. Our 
estimates of model sensitivity are probably underestimates, as we do 
not exhaustively specify alternative models. Furthermore, our esti-
mate of the funding impact of algorithmic designation is probably an 
underestimate, as detailed data on relevant private funding sources 
are not publicly available. Our estimate of model bias for foreign-born 
populations may be inaccurate because undocumented immigrants are 
often underrepresented in census data31. We are unable to fully assess 
model sensitivity to the modifiable areal unit problem32—a phenom-
enon where varying the geographical unit of observation can alter 
model output—because we only had data to convert a fraction of the 
variables to a smaller geographical scale (Supplementary Information).

Other limitations of our analysis include the limitations besetting 
the data tool itself: missingness in data and a lack of random measure-
ment error metrics. For example, indoor air quality or regulatory com-
pliance may be important determinants of environmental risk, but are 
not included in CalEnviroScreen33,34. Similarly, CalEnviroScreen meas-
ures outdoor air quality using sensors and interpolation algorithms 
used to infer air quality for areas between sensors, which may result in 
noisier estimates for marginalized communities farther from sensors. 
The degree to which such algorithms can cause allocative harm should 
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be examined35. Overall, missingness in environmental data is more 
pronounced in marginalized communities36. As CalEnviroScreen’s 
data sources lack random measurement error metrics, our uncertainty 
estimates only reflect a specific type of uncertainty: model sensitivity, 
or ambiguity between models21,22. Incorporating random measurement 
error would increase the uncertainty of CalEnviroScreen scores.

Our work draws upon previous literature from a variety of dis-
ciplines. Previous studies related to decision science and composite 
indicator construction recognize model sensitivity, or ambiguity, as 
a measure of uncertainty, and demonstrate how diversity in model-
ling assumptions, or worldviews, can improve robustness19,21,22,37,38. In 
the algorithmic fairness literature, uncertainty has been formulated 
as a driver of algorithmic bias for ranking algorithms, and race has 
been found to be inferred from models that do not include it as a vari-
able5,20,39. Environmental justice theorists have critiqued environmental 
screening algorithms for extractive data practices, the exclusion of 
affected communities from decision-making, the subjectivity of out-
side expertise in allocating community resources, and not including 
race as a variable7,16,17,36,40. Our analysis also draws from frameworks of 
‘distributive justice’, examining how to fairly allocate resources within 
a society41–44. A recent environmental health study has examined how 
environmental screening tools can be improved to mitigate disparities 

in air quality45. Our analysis contributes to the literature by identifying 
technical mechanisms by which subjectivity in the model design of 
environmental screening algorithms contributes to uncertainty in the 
model output and the potential for allocative harm.

More broadly, our findings illustrate how allocative algorithms 
can encode unintentional bias into their outputs. Questions of how to 
allocate scarce resources have always been challenging and subjec-
tive, yet delegating allocation to algorithms may erroneously give the 
appearance of objectivity by obscuring the design choices behind 
the algorithms15,17,46. Any such notion that algorithms are intrinsically 
objective should be rejected. With increasingly high-dimensional 
and high-resolution data, unintentional bias will become both more 
common and more difficult to detect. Both algorithm developers and 
policymakers should acknowledge the subjective process of algorithm 
development and work to minimize harm accordingly.

Technical and regulatory solutions will be necessary to address the 
concerns of allocative harm as algorithms continue to be adopted for 
policy use. Although the misuse of such tools could exacerbate exist-
ing inequities, a careful and community-minded approach can lead to 
the broad realization of CalEnviroScreen’s intended goal—furthering 
environmental justice and mitigating the harms done to structurally 
marginalized populations.
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Fig. 3 | Allocative tradeoffs between racially minoritized populations in 
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algorithmically designated tracts are distributed by race and poverty across the 
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would change designation status under the alternative model. The alternative 
model uses a different pre-processing technique, a different aggregation 

technique, and it incorporates additional population health variables. Red 
densities indicate tracts that receive designation under the current model but 
are not designated under the alternative model. Blue densities indicate tracts 
gaining designation under the alternative model. Contours are calculated as the 
smallest regions that bound a given proportion of the data.
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Methods
Data
For our sensitivity analyses, we used census tract-level data obtained 
from the current version of CalEnviroScreen (version 4.0, implemented 
in late 2021), consisting of 8,035 observations with 21 variables measur-
ing different aspects of environmental exposures and population char-
acteristics. The variables measure ozone levels, fine particulate matter, 
diesel particulate matter, drinking water contaminants, lead exposure, 
pesticide use, toxic release from facilities, traffic impacts, cleanup 
sites, groundwater threats, hazardous waste, impaired waters, solid 
waste sites, asthma, cardiovascular disease, low birthweight, educa-
tion, housing burden, linguistic isolation, poverty and unemployment.

For our additional variable analyses, we used the PLACES data-
set from the Centers for Disease Control and Prevention to include 
tract-level variables on estimated prevalence for asthma, cancer, 
chronic kidney disease and coronary heart disease. We obtained demo-
graphic information on tract-level race/ethnicity from the American 
Community Survey.

For the causal analysis specifically, we examined years 2017–2021 
of the California Climate Investments funding dataset, and used CalEn-
viroScreen 3.0 scores (implemented in 2017), as there are not yet suf-
ficient data for funded projects guided by CalEnviroScreen 4.0. We 
calculated the amount of funding allocated to each census tract by 
summing the amount of funding received from different programmes 
for each tract. For funding projects that were attributed to assembly 
districts but not specific census tracts, we made conservative assump-
tions that prioritized non-earmarked funding towards non-priority 
population tracts. We attributed assembly district-level funding to 
tracts using the following steps: (1) funds earmarked for ‘priority popu-
lations’ such as disadvantaged tracts were exclusively attributed to 
their respective tracts within that district; (2) the remaining funds were 
attributed to non-priority population tracts within the district up to 
the amount attributed to priority population tracts; (3) any remaining 
funds after that were distributed equally (more details are provided 
in the Supplementary Information). To attribute districts to tracts 
spanning multiple districts, we followed the methodology listed in the 
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California Climate Investments funding dataset—we solely considered 
them to belong to whichever district contained the largest population. 
For tracts that were missing relevant block-level population metrics, 
we assigned them to districts based on whichever district contained 
more blocks from the given tract. For a single tract that had missing 
population metrics and the same number of blocks for two districts, 
we assigned its district based on geographical area.

Algorithmic audit
We first reproduced the original CalEnviroScreen model based on its 
documentation47, then validated our reproduction on existing data. We 
next identified potential issues in the data tool and conceived plausible 
alternative models. As a general approach, we built alternative models 
(implementing various small changes to the current CalEnviroScreen 
model) and evaluated how they differed from the original model to 
assess the sensitivity of the CalEnviroScreen algorithm to model deci-
sions. Variation was measured in terms of percent change in tracts 
changing designation, that is, the number of tracts changing designa-
tion divided by the total number of tracts multiplied by 100. Details of 
each step of this approach are given in the following.

We assessed changes to (1) the pre-processing method, (2) the 
aggregation method and (3) health metrics, all subjective areas for con-
structing composite indicators. We assessed pre-processing methods 
by changing the existing pre-processing method—percentile-ranking—
to z-score standardization. We assessed the aggregation methods 
by changing the existing aggregation method—multiplication—to 
arithmetic mean.

We assessed health metrics based on our concerns of public health 
biases perpetuated by the algorithm. First, we noted that the existing 
method of measuring health indicators strictly by emergency-room 
visits may be skewed towards populations who use the ER dispropor-
tionately often, and so we tested including tract-level survey indicators 
of health in the model, namely asthma and cardiovascular health26. 
Second, we noted that only using asthma as a measure of environmental 
vulnerability with respect to respiratory health may not be fully reflec-
tive of those with respiratory health issues, so we tested including 
survey indicators for COPD. The inclusion of survey indicators of health 
were weighted such that categories of respiratory health, cardiovascu-
lar health and low birthweight were equally weighted. Finally, we noted 
that low birthweight, cardiovascular and respiratory issues are not the 
only health-related ways in which populations may be vulnerable to 
environmental exposures, and so we tested including other indicators, 
such as chronic kidney disease and cancer.

Our alternative models were pre-specified and designed based on 
the changes listed above: changing pre-processing to standardization, 
changing aggregation to averaging, and including survey indicators of 
health for cardiovascular health, asthma, COPD, chronic kidney dis-
ease and cancer. We evaluated the overall model sensitivity by assess-
ing the different combinations of model specifications by varying 
pre-processing (z-score standardization versus percentile ranking), 
aggregation (multiplication versus averaging) and health variables 
(including versus excluding the additional health variables we speci-
fied)—calculating the number of distinct tracts that change designation 
across all models. We trained a smooth nonparametric additive quantile 
regression model on the range (that is, minimum and maximum values 
across models) for each tract to obtain prediction intervals48.

Empirical strategy
We used a sharp regression discontinuity design with local linear regres-
sion as the functional form to estimate the effect of algorithm desig-
nation on total funding received49. We selected the bandwidth using 
the Imbens–Kalyanaraman algorithm50. The treatment variable was 
a binary indicator for each tract denoting whether it was designated 
as disadvantaged by the algorithm. The outcome variable was the 
log of total funding received per tract. The forcing variable was the 

CalEnviroScreen percentile rank for each tract. Covariates included 
the aggregate pollution burden and population characteristics indica-
tors from CalEnviroScreen, and tract-level race and poverty estimates 
from the American Community Survey. As robustness checks, we esti-
mated the treatment effect with varying bandwidths, functional forms, 
covariate adjustments and dataset configurations. We also estimated 
the treatment effect with a propensity score matching approach51, 
and a linear model causal forest (Supplementary Information)52. All 
parenthetical values reported in the main text are 95% confidence 
intervals, and were calculated by multiplying standard errors by the 
97.5th percentile point of the standard normal distribution.

Adversarial optimization
We formulated our optimization strategy as follows:

max
W,p,a

ϕd( f(W, p, a))

s.t.0.1 ≤ wi ≤ 0.9

p ∈ {0, 1}

a ∈ {0, 1}

where f is the CalEnviroScreen algorithm designating tracts as disad-
vantaged, ϕd is a function totalling the number of tracts belonging 
to a chosen demographic d (for example, political affiliation, race), 
W = {w1, …, wn} is a vector of weights for each variable in the CalEnvi-
roScreen algorithm, p is an indicator variable denoting pre-processing 
options (percentile-ranking versus z-score standardization), and a is 
an indicator variable denoting the aggregation methods (multiplica-
tion versus averaging). Weight variables were restricted to be between 
0.1 and 0.9 to prevent extreme individual weight values. We used the 
Hooke–Jeeves method to solve the optimization problem53.

Political affiliation at the tract level was determined by party affili-
ation in terms of assembly district. For tracts that spanned multiple 
assembly districts, we attributed those tracts to the districts in which 
most of their population belonged, in line with how the Climate Change 
Investments fund attributes tract-level funding to tracts spanning mul-
tiple districts. Race was determined by percentage of the population 
for each tract being of a given race. We calculated the percent change 
in designated tracts for the party with fewer tracts.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
All data used in this work are publicly available online, and all datasets 
used are archived at https://doi.org/10.7910/DVN/EVWNC2 (ref. 54).  
The CalEnviroScreen data are available at https://oehha.ca.gov/calen-
viroscreen. The CDC PLACES data are available at https://www.cdc.
gov/places/index.html. The Climate Change Investments funding 
dataset is available at https://www.caclimateinvestments.ca.gov/
cci-data-dashboard. American Community Survey data are available 
at https://www.census.gov/programs-surveys/acs/data.html.

Code availability
All code written for this work and a list of packages used are available 
at https://github.com/etchin/allocativeharm (ref. 55). All analyses were 
conducted using R (version 4.2.3).
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Extended Data Fig. 1 | Analysis pipeline. CES denotes CalEnviroScreen, and RDD denotes regression discontinuity design. Supplementary sensitivity analyses are not 
depicted (see Supplement).
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Extended Data Fig. 2 | Allocative tradeoffs between populations in poverty 
and racially minoritized populations. Comparison of how algorithmically 
designated tracts are distributed by race and poverty across the current 
CalEnviroScreen model and an alternative model, among tracts that would 
change designation status under the alternative model. The alternative model 
uses a different pre-processing technique, different aggregation technique, and 
incorporates additional population health variables. Red densities indicate tracts 

that receive designation under the current model but are not designated under 
the alternative model. Blue densities indicate tracts gaining designation under 
the alternative model. Contours are calculated as the smallest regions that bound 
a given proportion of the data (highest density region). Dots indicate individual 
tracts. Similar to Fig. 3, except includes data of individual tracts (dots) and varies 
the y-axis on poverty within racial group and poverty overall.
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Extended Data Fig. 3 | Low correlations between health indicators used 
by CalEnviroScreen and an alternative data source. CalEnviroScreen uses 
tract-level emergency room visits for asthma and heart attacks as health metrics. 
Comparison data are indicators provided by CDC PLACES: tract-level survey data 

on history of asthma and coronary heart disease. Contours are calculated  
as the smallest regions that bound a given proportion of the data  
(highest density region).
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Extended Data Fig. 4 | Pairwise discordance between CalEnviroScreen and 
an alternative model, across tracts with varying levels of foreign-born 
populations. The alternative model (YCOPD) uses survey data of chronic 
obstructive pulmonary disease (COPD) as a measure of respiratory health 
compared to the current CalEnviroScreen model (YAsthma), which uses emergency 
room visits for asthma. Higher levels indicate YCOPD designating more tracts 

as disadvantaged for a given foreign born population percentage. Shaded 
bars indicate 95% confidence intervals, and black line indicates a smoothing 
spline from pointwise mean estimates of pairwise discordance. The models are 
comparable for tracts with fewer than a 30% foreign-born population, suggesting 
model bias against tracts with high immigrant populations.
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Extended Data Fig. 5 | Adversarially optimized distribution of 
algorithmically designated tracts by race. Blue densities represent designated 
tracts by the existing CalEnviroScreen model and red densities represent 
designated tracts by adversarially optimized models, among all algorithmically 

designated tracts for each model. Plot on the left compares with a model 
adversarially optimized to increase white populations designated for funding; 
plot on the right compares with a model adversarially optimized to increase 
racially minoritized populations designated for funding.
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Extended Data Table 1 | Model sensitivity measured as percentage of total tracts that change designation under different 
model specifications

‘Scaling’ refers to using z-score standardization instead of percentile ranking for pre-processing variables. The ‘Additional health metrics’ row refers to whether additional population health 
variables were incorporated. ‘Overall’ refers to measuring model sensitivity when taking the union of designations from all possible model specifications across scaling, mean, and health.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00793-y

Extended Data Table 2 | Table of effect size estimates from a sharp regression discontinuity approach with varying 
functional forms, bandwidths, and covariate adjustments

Sensitivity analyses were conducted by varying over model specifications (functional form, bandwidth, and covariate adjustments), as well as across different specifications of the funding 
dataset: (A) All projects funded from 2017–2021; (B) All projects that explicitly note their funding decisions were based on CalEnviroScreen 3.0.; and (C) All projects funded from 2017–2021 
except for projects related to the high-speed rail initiative. Point estimates represent the estimated percent increase in funding resulting from receiving designation. Values in parentheses 
represent 95% confidence intervals. IK refers to the optimal bandwidths computed using the Imbens-Kalyanaraman algorithm. ‘All’ refers to adjusting for tract-level race, poverty, and 
CalEnviroScreen’s two primary indicators of pollution burden and population characteristics. Bolded text represents the effect size of the main analysis.
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