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Codon language embeddings provide strong 
signals for use in protein engineering

Carlos Outeiral    1   & Charlotte M. Deane    1,2 

Protein representations from deep language models have yielded 
state-of-the-art performance across many tasks in computational protein 
engineering. In recent years, progress has primarily focused on parameter 
count, with recent models’ capacities surpassing the size of the very datasets 
they were trained on. Here we propose an alternative direction. We show that 
large language models trained on codons, instead of amino acid sequences, 
provide high-quality representations that outperform comparable 
state-of-the-art models across a variety of tasks. In some tasks, such as 
species recognition, prediction of protein and transcript abundance or 
melting point estimation, we show that a language model trained on codons 
outperforms every other published protein language model, including some 
that contain over 50 times more parameters. These results indicate that, in 
addition to commonly studied scale and model complexity, the information 
content of biological data provides an orthogonal direction to improve the 
power of machine learning in biology.

Pretrained language models have become indispensable tools  
across many areas of computational protein engineering1. Most labelled 
protein datasets have limited size, therefore vast deep neural networks 
are first pretrained on a large, unlabelled corpus of sequence infor-
mation, such as UniRef2, with a self-supervised reconstruction objec-
tive. Self-supervised training endows the latent variables of the model  
with highly informative features, known as learned representations, 
which can then be leveraged in downstream tasks where limited training  
data is available. Learned protein representations are currently central 
to the state-of-the-art tools for predicting variant fitness3–6, protein 
function7,8, subcellular localization9, solubility10, binding sites11, sig-
nal peptides12, posttranslational modifications13, intrinsic disorder14  
and others15,16, and they have shown promise in the path towards  
accurate alignment-free protein structure prediction17–21. Improv-
ing learned representations is therefore a potential path to deliver 
consistent, substantial improvements across computational protein 
engineering.

Pathways towards more informative representations have  
hitherto followed two main directions. Methods have pursued the 
model of augmented scale, where increasing model capacity monotoni-
cally increases performance22. While initial language models reached 

tens of millions23 or hundreds of millions24 of parameters, later develop-
ments have seen models with over 5 billion weights19,25,26 with parameter 
counts exceeding the size of the training set. Improvements to model 
architecture have also consistently delivered performance gains. For 
example, the use of the T5 architecture in ProtTrans displayed consist-
ent improvements in performance over the basic BERT model8,26. The 
state-of-the-art fitness prediction method, Tranception, modifies the 
attention mechanism to explicitly attend to contiguous sequences of 
amino acids6, increasing robustness and performance on deep muta-
tional scanning benchmarks. Both directions are costly in human and 
computer time, require notable optimization and appear to provide 
diminishing (logarithmic) returns.

An alternative pathway to improve learned representations  
may be to use biological data containing richer signals. While protein  
language models have so far focused on amino acid sequences, there 
is additional information contained in the DNA sequence encoding 
the protein. The language of protein-coding DNA (cDNA) relies on 64 
nucleotide triads, known as codons, each of which encodes a specific 
amino acid or the end of a sequence. Although this 64-codon alphabet 
is highly degenerate, with most amino acids being encoded by up to 
six different codons, current research suggests that codons encoding 
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Results
We developed a protein language model trained on protein-cDNA and 
examined its ability to produce high-quality representations of protein 
sequences. We relied on the fact that the codon space is surjective,  
but not injective, to the amino acid space, therefore the former  
contains an amount of information higher or, at worst, equal to the  
latter (Fig. 1b). To test this hypothesis, we trained a large language model 
with 86 million parameters on a dataset of 9 million non-redundant and 
diverse cDNA sequences identified from whole-genome sequencing 
(Fig. 1c). We refer to this model as CaLM (codon adaptation language 
model). The training set was constructed from the European Nucleotide 
Archive39, with substantial preprocessing to limit redundancy and save 
computational cost. We also established a heldout dataset consisting 
of representative sequences from seven model organisms across the 
tree of life. Details of model architecture, training protocol and dataset 
preprocessing are given in the Methods section.

Codon pLMs capture the biology of the genetic code
We first considered whether the learned representations from the 
codon language model captures the biochemistry underlying the 
genetic code. A model that has extracted meaningful representations 
should recognize the similarity of codons in the same wobble pair,  
a non-trivial task as the model represents individual codons as integers, 
with no features indicating nucleotide composition. The embedding 
should also capture the similarity of codons encoding amino acids with 
similar chemical behaviour, as do amino acids language models24. We 
tested these hypotheses by examining the embedding layer in CaLM 
(Fig. 2b). Dimensionality reduction shows that amino acids with similar  
behaviour cluster in similar regions of space. Clustering captures  
biochemical features that are not directly obvious from class labels: for 

the same amino acid (synonymous) are not used interchangeably. 
Synonymous codon usage has been correlated with protein structural 
features27,28, and nearly 60 synonymous mutations have been linked 
to human disease29. A recent experiment suggested that most syn-
onymous mutations in yeast are strongly deleterious30, although these 
results have since been contested31,32. Codon usage has also been linked 
to protein folding, with ample evidence that changes in the codon 
sequence affect folding dynamics33–36, the folding pathway37 and even 
the amount of correctly folded protein38. This evidence indicates that 
synonymous codon usage contains valuable biological information, 
which could be exploited by machine learning models to enhance the 
signal-to-noise ratio in predictive tasks.

In this work, we demonstrate that pretraining a protein language 
model on codon sequences, rather than amino acid sequences, leads to 
informative protein representations that capture crucial biochemical 
characteristics. We examine the predictive power of these represen-
tations in a number of sequence-level prediction tasks, observing 
that these representations are comparable to, or superior to amino 
acid representations from similarly sized models. In several tasks, we 
observe that codon-based representations outperform all published 
state-of-the-art amino acid representations, including those from 
models with over 50 times more parameters. We conclude that finding 
more biologically informative representations of the data is a meaning-
ful direction towards progress in deep protein engineering that does 
not suffer from the computational onerousness of larger scale, and is 
notably simpler than—but also complementary to—improved model 
architectures. The development of language models based on coding 
DNA paves the way for studying other regulatory properties, such as 
the effect of the codon sequence encoding a protein, which do not lend 
themselves well to traditional amino acid language models.
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Fig. 1 | Extending protein language models to the language of codons.  
a, Current research suggests that model performance may be improved by either 
increasing the number of parameters or improving the architecture of the model. 
In this work, we propose a third, orthogonal dimension: the use of data with 
higher information content, in this case the codon, rather than the amino acid 
sequence. b, The map between the codon alphabet and the amino acid alphabet 

is surjective, but not injective, hence there is more information in the codon 
space. c, Processing of the training data. The original database of 114 million 
cDNA sequences was divided into species and clustered at the protein level. 
d, Scheme of the training and heldout datasets. As heldout, we selected 4,358 
sequences from seven organisms spanning all kingdoms of life, and removed any 
sequence with 40% sequence identity or more from the training set.
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Fig. 2 | CaLM (codon adaptation language model). a, Architecture of CaLM. The 
sequence of codons is mapped to a continuous space via a trainable embedding, 
and passed through 12 layers of transformer encoders and a dense layer. The 
embedding is reversed at the end of the architecture. b, Structure of the learned 
embedding space. Codons with similar biochemical properties (as shown by the 
colours) tend to occupy adjacent regions of space. Codons encoding for the same 
residue (amino acid single letter codes shown over the points) tend to be closer 
(P = 0.017, two-sided permutation test n = 107), as do codons in the same wobble 

group (P = 0.020, two-sided permutation test n = 107). c, Structure of the latent 
space shown on one-third of the sequences in our heldout dataset. The latent 
representations are distributed by species. d, The embedding of the sequences 
in b using ESM2 (ref. 19), showing a lack of structure (Supplementary Fig. 5). 
e, Accuracy of a nearest-cluster-centre classifier at predicting the species of a 
sequence of the remaining two-thirds of the heldout dataset. The codon language 
model is significantly better than any other model (largest P value is 1.8 × 10−5, 
two-sided Welch’s t-test). t-SNE, t-distributed stochastic neighbours embedding.
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example, the codons encoding alanine (‘hydrophobic’) appear close 
to glycine (‘special’), which reflects the small side chain both amino 
acids display. We also observed that pairs of codons that encode the 
same amino acid, or that are in the same wobble pair, are closer in the 
original 768-dimensional latent space than others (P < 0.05, two-sided 
permutation test with n = 107).

We then considered sequence representations of different organ-
isms. In Fig. 2c, we display the embeddings of a third of the heldout 
dataset, which contains sequences with at most 40% sequence identity 
to any sequence in the training set. The sequences of prokaryotes 
Escherichia coli and Haloferax volcanii are significantly separated from 
their eukaryotic counterparts (P smaller than numerical precision, 
two-sided Welch’s t-test). The sequences of Saccharomyces cerevisiae 
and Pichia pastoris, which belong to the same order, appear intermixed. 
The region at the centre of the plot where sequences from multiple 
organisms converge is enriched in highly conserved sequences such 
as ribosomal proteins or enzymes involved in the cell cycle. We also 
controlled for artefacts of dimensionality reduction by varying param-
eters and testing multiple algorithms (Supplementary Figs. 3 and 4). 
We compared this clustered structure with representations from amino 
acid language models (Fig. 2d and Supplementary Fig. 5), observing  
a less clear clustering. These findings suggest that codon represen
tations capture richer sequence-level information that is not  
accessible to amino acid sequences alone.

We then tested the ability of the representations to assign cDNA 
sequences to species, using a simplified k-nearest centres classifier 
on the 768-dimensional latent space. Class centres were defined  
using one-third of the heldout set, and tested on the remaining 
two-thirds; the results are shown in Fig. 2e. The sensitivity to the choice 
of dataset splits is analysed in Supplementary Fig. 7. We observe that 
CaLM’s classification accuracy is almost twice as high as the best amino 
acid classifiers, and significantly superior (P < 10−5, two-sided Welch’s 
t-test). Since our model is at the cDNA level, we controlled for the dif-
ferential GC content across different species40, observing that a logistic 
regression classifier would only achieve 48% accuracy, comparable to 
the predictions of amino acid representations. Our results recapitulate 
the well-known biological fact that usage of synonymous codons varies 
substantially throughout the tree of life41,42. We interpret these findings 
as evidence that the latent space in CaLM can capture features of dif-
ferential codon usage that are not evident in the amino acid sequence.

Taken together, our results indicate that the codon language 
model can access biological features that are inaccessible to amino 
acid language models.

Codon pLMs match state-of-the-art property predictors
We next examined whether the additional information contained in 
codon sequences can be used in protein engineering downstream 
tasks. Several benchmarks of language model representations have 
been proposed, such as TAPE23, FLIP43 and PROBE8. However, these 
datasets contain only amino acid sequences, and due to the loss of 
information, mapping amino acid sequences back to codon sequences 
is far from trivial. We therefore consider the performance of protein 
language models in four sequence annotation tasks where it was pos-
sible to recover the original codon sequence (Methods): melting point 
prediction, solubility prediction, subcellular localization prediction 
and function prediction. These datasets are described in detail in the 
Methods section. Performance is assessed by fivefold cross-validation 
(Fig. 3) after subjecting the datasets to a clustering process with tight 
sequence identity cut-offs (dependent on the dataset, but ranging 
between 20 and 50%) to ensure removal of homologous sequences. 
The clustering process ensures that no pair of sequences belonging  
to different clusters has a sequence identity greater than the thresh-
old, thus ensuring that any machine learning model is not memo-
rizing similar proteins, but achieving some generalization. We also  
compare the results to two state-of-the-art families of protein language 

models trained on amino acids: the ESM family of models19,24 and 
the ProtTrans family of models26, which share a similar architecture  
to CaLM, have been widely used in protein engineering applications 
(for example, refs. 5,10) and have achieved top results in protein  
engineering benchmarks such as FLIP43 or PROBE8.

We observe that CaLM outperforms every amino acid language 
model of similar size across all tasks and, in some cases, also amino 
acid language models with over 50 times more parameters. In melt-
ing point prediction, CaLM achieves a Pearson’s R of 0.75 between 
predicted and experimental values, which is substantially better than 
any other method in the dataset. In solubility prediction, CaLM out-
performs every model of the ESM family with which it shares archi-
tecture, and is comparable to the smaller models of the ProtTrans 
family, which are one order of magnitude larger and trained on two 
orders of magnitude more data. In subcellular localization and function 
prediction, the model outperforms all similarly sized architectures 
and is competitive with many models of greater size and complexity. 
Performance is commensurate with models hand-crafted for specific 
tasks, although it is slightly lower than fine-tuned representations. For 
example, when compared against DeepLoc9, the state-of-the-art tool for 
subcellular localization prediction, CaLM achieves a weighted F1 score 
of 0.69 ± 0.02, which is similar to, but still significantly lower than, the 
DeepLoc score of 0.73 ± 0.01.

We considered the hypothesis that the model may be relying on 
other information rather than the codon sequence. For example, the 
model may be learning stability information from species-level signals 
in the data. Many archaeal proteins are thought to be more stable due to 
the abundance of ion pairs in their structures44, and since CaLM embed-
dings can accurately identify the source species of a protein, it might 
indirectly be using this information in prediction. We controlled for 
this hypothesis by comparing against an identical version of the linear 
regression predictor, but including an additional feature that specifies 
the taxonomic identity of the source species. We observed that CaLM’s 
predictive power increased from R2 = 0.74 to R2 = 0.78, and that while 
the absolute difference from the second best method narrowed from 
six to four percentage points, although it was still significantly better 
(P = 10−3, two-sided Welch’s t-test). The codon model thus demonstrates 
superior performance across various unrelated tasks, and against a 
variety of benchmarks.

We then considered the question of whether the improvement 
in prediction is due to synonymous codon usage. If patterns of codon 
usage contain valuable information, then performance should decrease 
when codon usage is somehow corrupted. We designed an experiment 
where the results in Fig. 3b were repeated under the same conditions, 
but randomly mutating a fraction of the codons of both training and 
test datasets to other codons encoding the same amino acid (synony-
mous mutations). The results are shown in Supplementary Fig. 8. We 
observe that Pearson’s R drops from 0.75 to nearly half its value, 0.39, as 
the sequence of codons is fully randomized, a value that corresponds 
to the worst performance in the benchmark. To further establish the 
importance of synonymous mutations, we monitored changes in pre-
dictive power when single positions of the protein were mutated to a 
synonymous variant, observing that the changes were substantially 
smaller than the inherent variation in the data (Supplementary Fig. 9). 
These results indicate that the model is extracting useful information 
from the pattern of synonymous codon usage that is not available from 
the amino acid sequence.

These findings lead us to conclude that the codon sequence con-
tains valuable information about protein properties that a codon 
language model is able to extract usefully.

Codon pLMs successfully capture features of omics datasets
We then considered whether our codon language model can be used 
to predict transcript and protein abundance as measured by tran-
scriptomics and proteomics experiments. We were motivated by the 
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observation that if the codon language model improved performance 
is due to enhanced biological information, this approach should also 
be successful on other problems where codon usage is important.  
The two tasks in this section are related to cDNA composition as  
codon usage is well-known to present characteristic signatures in 
housekeeping genes45. To test this hypothesis, we constructed two 
collections of datasets: of transcript abundance (for the seven organ-
isms, using RNA sequencing (RNA-seq) datasets referenced in Table 1) 
and protein abundance (for five organisms, as no data was found for  
H. volcanii or P. pastoris in PAXdb46), and evaluated the ability of CaLM  

to recover this information using fivefold cross-validation. These data-
sets are described in detail in the Methods section. We also compared 
all amino acid-level models, as shown in Fig. 4.

We observed that the predictions from the codon model yield 
Pearson’s R2 that are competitive with, or superior to all, amino acid 
language models for any species. On several species, for example when 
predicting protein or transcript abundance in the yeasts P. pastoris and 
S. cerevisiae, the codon language model is substantially superior to any 
other models. The observation that CaLM can match or outperform 
amino acid language models, including those that had over 50 times 
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Fig. 3 | Assessment of codon language models in protein property prediction 
tasks. a, Scheme of the fivefold cross-validation protocol. The data is first 
divided in five groups such that no pair of sequences belonging to disjoint  
groups have more than a certain threshold (between 20 and 50%, depending  
on the dataset) of amino acid identity. In every iteration, a model (a linear or 
logistic regression) is trained on four groups (green) and tested on the fifth  
group (red). b–e, The performance of the model with respect to the task and  

the number of parameters is subsequently shown for melting point prediction 
(b), solubility prediction (c), subcellular localization classification (d) and 
function (e) (Gene Ontology term) classification. We report performance using 
the Pearson correlation coefficient between predicted and true values, or the  
F1 score averaged over the multiple classes and weighted by class support. Data 
are presented as mean values with error bars representing the standard deviation 
calculated from fivefold cross-validation.
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more parameters and were trained on significantly more data, further 
reinforces the hypothesis that codon language models are able to 
capture biological features of the sequences that are inaccessible to 
amino acid language models.

Discussion
In this work, we have shown that protein representations trained  
on codons, rather than amino acid sequences, exhibit significant  
advantage across a variety of downstream tasks. We find that our  
86 million parameter language model outperforms every other  
model of similar capacity, and in many cases, even models with  
over 50 times more parameters. We have provided evidence that 
this performance is due to the codon language model’s ability to  
capture patterns of codon usage across DNA sequences, and that this 
advantage disappears when codon usage information is corrupted.

Training models on cDNA comes at a negligible extra training 
cost, and appears to increase performance on all sequence-level 
tasks considered. Since high-throughput protein sequencing is done 
almost exclusively by translation of DNA sequences, the original coding 
sequences are publicly available and can be used for training, although 
they have not been subject to the same standards of processing and 
annotation as protein sequence databases such as UniRef2. We sug-
gest that using cDNA, instead of simply amino acid sequences, to train 
protein language models poses a clear pathway towards improving 
computational protein engineering.

Codon language models may also provide valuable evolutionary 
signals for alignment-free protein structure prediction, particularly 
in methods such as ESMfold19 and OmegaFold18 that rely on language 
models to predict relationships between parts of the protein. Models 
based on cDNA may recover wider evolutionary relationships, such 
as synonymous mutations, which are evident at the nucleotide level  
but not at the amino acid level. Synonymous codon usage is known to 
relate to structural features27,28, and the connection between codon 
usage and protein folding33,36 may provide valuable signals to methods  
that are known to not capture the physics of folding47. We sug-
gest that incorporating codon language models in the pipelines of 
alignment-free protein structure prediction may well provide a route 
with negligible cost towards accelerating high-accuracy protein struc-
ture prediction.

We propose two main directions towards further improvements 
in protein representation quality. One is increased scale. The results in 
this paper have used a simple model with only 86 million parameters, 
a size that pales in comparison to the standard model size in the latest 
publications. The dataset used is also relatively small: merely 9 million 
sequences, in comparison to the 125 million used in the ESM family of 
models19,24 or the almost half a billion in some ProtTrans models26. There 
exists a clear pathway towards improving representation quality by 
training billion-parameter models on datasets comprising hundreds 
of millions of DNA sequences.

The other potential direction for improvement is the development 
of multimodal models combining amino acid and coding sequences. 
Our ablation experiment showed that, in the absence of codon usage 
information, model performance decays substantially, to the point that 
it is inferior to every amino acid model in our dataset. However, since 
the model indirectly has access to the amino acid sequence, it should 
in principle have access to the same information as amino acid-only 
models. This divergence may be due to the lack of amino acid-level 
signals during training, so training models that combine amino acid 
and codon sequences could improve overall model performance.

The importance of richer data has previously been explored in 
the domain of applied machine learning. Highly respected papers 
have shown the importance of higher quality data in vision48, natural 
language49 and multimodal architectures50. In biology, much attention 
has been devoted to the impact of dataset biases51, but in comparison 
little to no attention has been paid to the importance of richer inputs 
in protein engineering. Our results indicate that, concomitantly with 
advances in computational power and model architecture, leveraging 
richer biological data provides a clear direction towards improving the 
power of machine learning in biology.

The development of large language models trained on cNA will 
enable the study of properties of the protein that are not directly estab-
lished by the amino acid sequence. For example, codon usage has been 
linked to protein folding, with experimental evidence that changes in 
the codon sequence affect folding dynamics33–36, the folding pathway37 
and even the amount of correctly folded protein38. Careful selection 
of the sequence of codons is a key objective in protein science, where 
the specific sequence of cDNA expressed can have a dramatic effect 
on yield. The codon-based language model presented in this Article 
represents a first step towards using machine learning methods to 
study these and other properties of proteins that have hitherto not 
been addressed by amino acid language models.

Methods
Datasets
Training and test data for unsupervised pretraining. We generated 
a large corpus of cDNA data to pretrain CaLM using an unsupervised 
masked language modelling objective. We downloaded the coding 
sequences of all organisms available in the European Nucleotide 
Archive with a timestamp of April 2022 (114,214,475 sequences). We con-
sidered only high-quality sequences pertaining to assembled genomes 
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Fig. 4 | Assessment of codon language models at predicting the results 
of omics datasets. a, Transcript abundance prediction results for the 
seven organisms represented in our heldout dataset. b, Protein abundance 
prediction results on five of the seven organisms in our dataset, which were 
represented in the PAXdb repository46. In both cases, the codon language 
model shows comparable or better performance to the best language models, 
and outperforms all language models of similar parameter count. We report 
performance using the Pearson correlation coefficient between predicted and 
true values. Data are presented as mean values with error bars representing the 
standard deviation calculated from fivefold cross-validation.
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(data code ‘CON’). We filtered this dataset to remove all sequences with 
unknown nucleotides (symbols ‘N’, ‘Y’, ‘R’ and others), with a start codon 
different from ATG, containing interstitial stop codons or where the 
number of nucleotides was not a multiple of three. To reduce redun-
dancy while maintaining a representative dataset of codon variation 
across the tree of life, we grouped the entries by organism, translated 
the cDNA to protein sequences and clustered the sequences of every 
organism at 40% amino acid identity using CD-HIT52. We tested that the 
clustering step did not filter out highly conserved proteins by verifying 
that nearly all of the members of the Clusters of Orthologous Genes 
database53 had representative BLAST matches in the dataset (Supple-
mentary Fig. 2). After backmapping clustered sequences to cDNA, the 
full dataset consisted of 9,858,385 cDNA sequences.

To enable rigorous testing of the model capabilities and gener-
alization power, we built an independent heldout dataset containing 
sequences of seven model organisms spanning the tree of life: three 
eukaryotic multicellular organisms (Arabidopsis thaliana, Drosophila 
melanogaster and Homo sapiens), two eukaryotic unicellular organ-
isms (S. cerevisiae and P. pastoris), a bacteria (E. coli) and an archaea 
(H. volcanii). We queried GenBank for all cDNA sequences of every 
model organism according to the highest-quality assembly available, 
clustered them at 40% amino acid identity and sampled 7.5% of the 
clustered sequences using random sampling stratified by protein 
abundance. Since no proteomic data was available for all organisms, 
we used transcript abundance measured by RNA-seq as a proxy for 
protein abundance (see Table 1 for data sources). Since we want the 
heldout dataset to be sufficiently dissimilar from the training set, we 
used nucleotide BLAST to identify training set sequences with 40% 
sequence identity or higher to any sequence of the heldout set and 
removed them. After removing homologous sequences, the training set 
consisted of 8,771,938 sequences and the heldout of 4,358 sequences.

Evaluation datasets. To test the quality of the representations, we 
constructed several datasets to test the predictive performance of the 
learned representations. These datasets overlap with many published 
benchmarks of learned protein representations. With the exception 
of the transcriptomics dataset, where the sequence of codons can be 
inferred from the transcript, all available datasets reported only amino 
acid sequences. To obtain codon information, we mapped UniProt 
IDs to European Nucleotide Archive entries using UniProtKB54 and 
ignored all entries without a match. We also removed all sequences with 
unknown nucleotides, containing interstitial stop codons or where the 
number of nucleotides was not a multiple of three.

Melting temperature. We assess the ability of learned representations 
to predict protein stability using the database of melting tempera-
tures reported in the FLIP set of benchmarks43. This dataset was con-
structed from a collection of proteome-wide denaturation experiments 
reported in the Meltome Atlas55. Measured melting temperatures range 
between 30 and 90 °C, with most of the support in the range between 
30 and 55 °C. We used the same splits and homology removal protocol 
as in FLIP43, where data was clustered at 20% sequence identity.

Subcellular localization. We assess the ability of learned representa-
tions to identify the target location of a protein in the cell using the 
SwissProt localization dataset9, which is also part of the FLIP set of 
benchmarks43. The SwissProt localization dataset contains ten labels, 
corresponding to extracellular, cytoplasm, cell membrane, endoplas-
mic reticulum, Golgi apparatus, lysosome or vacuole, mitochondrion, 
nucleus, peroxisome and plastid. As expected from the type of the data-
set, there is substantial variance in class numerosity, ranging from 0.7% 
of the proteins being present in the peroxisome, to 3% being present in 
the Golgi, lysosome and/or vacuole or plastid, to 35% in the cytoplasm 
or 25% in the extracellular. We used the same clustering as the original 
authors. Although cluster sizes were slightly different due to UniProt 

IDs that could not be mapped to cDNA sequences, we noted that fold 
size variance was small enough to justify conserving the original splits.

Solubility. We assess the ability of learned representations to identify 
soluble proteins using a custom dataset derived from solubility profil-
ing experiments by Sridharan et al.56. As a proxy for solubility, we used 
the average protein abundance determined in the SDS-treated fraction 
of the experiment, that is, in the absence of ATP. The target variable is 
the fold enrichment with respect to the control; 99% of the proteins 
have an enrichment of ten or less, with about two-thirds of the protein 
between 0 and 1 (61%) and another third between 1 and 2.5 (34%). We 
clustered the sequences at 40% amino acid identity using CD-HIT52.

Gene ontology. We assess the ability of learned representations to 
predict protein function using a Gene Ontology dataset originally 
published in the PROBE set of benchmark tasks8. The dataset relies 
on experimental annotations from UniProtKB and/or SwissProt and 
UniProtGOA and considers gene ontology groups from all three groups 
of annotations: that is, molecular function, cellular compartment and 
biological process. We used the original folds and splits, which were 
clustered at 50% sequence identity.

Transcriptomics. We assess the ability of learned representations to 
predict transcript abundance using a custom dataset built from RNA-seq 
data. We collected RNA-seq datasets for all seven model organisms 
from the Gene Expression Omnibus, the EMBL-EBI Expression Atlas, 
the primary literature and the Sequence Read Archive (data sources 
are reported in Supplementary Table 1, the corresponding assemblies 
of all organisms are reported in Supplementary Table 2). We estimated 
transcript abundances of all proteins in the assembly in transcripts per 
million, and mapped these values to the sequences in the heldout data-
set. The target variable is the natural logarithm of the transcript count 
per million, which ranges between −5 and 13, with most of the proteins 
(90%) contained between 0 and 10. As this transcriptomic data was 
used to build the heldout dataset, no further clustering was applied.

Proteomics. We assess the ability of learned representations to pre-
dict transcript abundance using a custom dataset built from mass 
spectrometry protein abundance quantification experiments. We 
queried the Protein Abundance Database (PAXdb)46 for data on the 
seven model organisms used in this work. Samples for A. thaliana,  
D. melanogaster, E. coli, H. sapiens and S. cerevisiae. Dataset coverages 
were greater than 95% for all five organisms except for A. thaliana with 
76% coverage. This data was used to assign protein abundances to all 
proteins in the heldout dataset for these organisms. The target vari-
able is the estimated number of copies per cell annotated in PAXdb, 
which ranges between 0 and 105, with most proteins (98.5%) contained 
between 0 and 103 copies per cell.

Model details
Model architecture. CaLM is a language model inspired by the ESM 
family of architectures19,24 (see Supplementary Fig. 1 for a detailed 
architectural diagram). The model consists of three parts: a learnable 
embedding, a stack of transformer encoder layers and a prediction 
head. The input sequence is a vector of T tokens, integers that each 
represent a codon or a special character. For example, the number 11 
corresponds to the start codon ‘AUG’, whereas the number 68 repre-
sents a special character ‘〈mask〉’ used for masking. The alphabet is 
composed of the 64 codons, plus five special characters: ‘〈mask〉’ for 
masking, ‘〈cls〉’ indicating the start of a sequence, ‘〈eos〉’ to indicate 
the end of a sentence, ‘〈pad〉’ for padding and ‘〈unk〉’ for potentially 
unknown codons. No previous knowledge is given to the model: codons 
are represented in an abstract manner and there is, for example, no 
previous knowledge that codons ‘AUG’ (token number 11) and ‘AUA’ 
(token number 8) differ only on a single nucleotide.
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The vector of tokens, with dimensions of [T] is mapped into a  
learnable latent space of dimension 768 by the embedding layer, lead-
ing to a matrix of size [T, 768]. This matrix is then passed through 
multiple layers of transformer encoders, following the architecture of 
Devlin et al.57. The central ingredient in the transformer architecture 
is the scaled dot-product attention operation, which can be described 
as follows:

A = softmax (QK
T

√dk
)V (1)

In equation (1), Q, K and V are [B, dk]-dimensional matrices referred 
to as queries, keys and values, respectively, which are projections of the 
input vectors using learnable linear transformations. The self-attention 
process is repeated across multiple parallel heads that are later com-
bined. In our work, transformer layers contain 12 attention heads, 
with dimension 768, leading to dk = 64. Since the multi-head atten-
tion layer is equivariant to permutations of the input tokens, we use 
rotary positional embeddings58 to enable learning of sequential fea-
tures. The self-attention block is complemented by residual blocks, a 
feed-forward neural network and layer normalization steps, resulting 
in a final output with the dimension [T, 768] (see Supplementary Fig. 1 
for more details). Following ref. 24, we use prenormalization to increase 
stability and no dropout24. The feed-forward neural network at the end 
of the transformer block has dimension 3,072.

The vector at the end of the stack of 12 transformer layers is 
referred to as a ‘representation’ and is also of size [T, 768]. The repre-
sentation vector is the main focus of the paper, although the model is 
trained alongside a language head that predicts the probability of every 
token at a given position using this representation vector as input. The 
language head consists of a feed-forward neural network, followed by 
layer normalization and a product by the inverse learned embedding 
matrix. In our work, the language head is a simple feed-forward neural 
network that maps the 768-dimensional latent space of the representa-
tion to the number of tokens. The output logits, when transformed via a 
softmax, provide an uncalibrated probability distribution over codons. 
The language model is trained using a masked language modelling 
(MLM) objective57:

ℒMLM = ∑
i∈ℳ

logP(xi|xi,M;θ) (2)

For each sequence x, we sample a percentage of the set of positions 
ℳ  where the true token at index i is replaced with another token and 
we independently minimize the negative log likelihood of the true 
codon given the masked sequence.

Model training. We trained the model using dynamic masking59. In 
every training batch we masked 25% of the input tokens at random. Of 
the masked tokens, 80% were substituted by a special token ‘〈mask〉’ 
indicating masking, 10% were substituted by another codon at ran-
dom and the remaining 10% were left untouched. Sequences were 
trimmed to a maximum size of 1,024 tokens, a number that we found 
empirically to be sufficiently large to enable efficient learning while 
preserving computational efficiency. This is consistent with other 
published models, as 96% of all UniParc entries have fewer than 1,024 
amino acids24. Sequences larger than 1,024 codons were subsampled 
at random at every batch. The size of all sequences in every batch was 
padded to the maximum sequence in the batch.

We trained the model using the AdamW optimizer with a learning 
rate of 1 × 10−4 and default parameters otherwise. The learning rate 
was warmed up from 0 to 10−4 during the first 1,000 gradient steps, 
and subsequently decayed with a cosine function that reaches zero 
after 120,000 steps. Gradients were accumulated to an effective batch 
size of 1,000 examples, or approximately 256,000 tokens. To monitor 

training, 1% of the training set was reserved at random as validation. 
The model reported in this work was trained on four NVIDIA Quadro 
RTX4000 GPUs for 40 days (66,000 gradient steps, 14 full epochs). 
Training was manually stopped after observing no validation loss 
improvement for 8,000 steps.

Model evaluation
Embedding visualization. We used the t-distributed stochastic neigh-
bours embedding method to reduce the dimensionality of token and 
sequence embeddings and enable visualization. We used the implemen-
tation of t-distributed stochastic neighbours embedding in sci-kit learn 
v.0.23.2 (ref. 60) with default parameters. To ensure reproducibility, 
we performed sensitivity analysis on the perplexity hyperparameter, 
as well as comparisons with an alternative dimensionality reduction, 
uniform manifold approximation and projection, which are reported 
in the Supplementary Information. Plots reported in the main text 
use the default values of the sci-kit learn implementation, as well as a 
maximum of 10,000 iterations to ensure convergence.

Source prediction. Protein source prediction was benchmarked with a 
simple nearest-centroid algorithm. We divided the heldout dataset into 
two splits: parameter estimation (33%) and test (66%). Using the para
meter estimation set, we computed the centroid of all sequences cor-
responding to a given species. At the test stage, we assigned a sequence 
to a species according to the centroid with the smallest L2 distance.

Property prediction. We tested the models using fivefold cross- 
validation. Splits were done using sci-kit learn v.0.23.2 with default 
parameters and shuffling, except in the subcellular localization task 
where we used the splits published by DeepLoc. Sequence represen-
tations were built using the default parameters of each model and 
mean-pooled. To ensure that machine learning models trained on 
embeddings with a vast spread of dimensionalities (320 dimensions 
for ESM2-6, to 5,120 dimensions in ESM2-48), we applied a dimension-
ality reduction step to a fixed size of 320 dimensions using principal 
component analysis61. We used elastic regression for all tasks, except 
function prediction, where we used a support vector machine to follow 
the results reported in ref. 8.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We have made available, in our website, the training set (http://opig.stats. 
ox.ac.uk/data/downloads/training_data.tar.gz), the heldout set (http://
opig.stats.ox.ac.uk/data/downloads/heldout.tar.gz) and the weights 
of the trained model (http://opig.stats.ox.ac.uk/data/downloads/
calm_weights.pkl). All datasets used for validation of the models pre-
sented in this article are available at https://github.com/oxpig/CaLM.

Code availability
The code required to reproduce the results in this study is available at 
https://github.com/oxpig/CaLM, and also at the CodeOcean capsule 
submitted alongside this paper62.
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