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The removal or cancellation of noise has wide-spread applications in 
imaging and acoustics. In applications in everyday life, such as image 
restoration, denoising may even include generative aspects, which are 
unfaithful to the ground truth. For scientific use, however, denoising must 
reproduce the ground truth accurately. Denoising scientific data is further 
challenged by unknown noise profiles. In fact, such data will often include 
noise from multiple distinct sources, which substantially reduces the 
applicability of simulation-based approaches. Here we show how scientific 
data can be denoised by using a deep convolutional neural network such 
that weak signals appear with quantitative accuracy. In particular, we study 
X-ray diffraction and resonant X-ray scattering data recorded on crystalline 
materials. We demonstrate that weak signals stemming from charge 
ordering, insignificant in the noisy data, become visible and accurate in  
the denoised data. This success is enabled by supervised training of a  
deep neural network with pairs of measured low- and high- 
noise data. We additionally show that using artificial noise does not yield 
such quantitatively accurate results. Our approach thus illustrates a 
practical strategy for noise filtering that can be applied to challenging 
acquisition problems.

In recent years, remarkable progress has been made in the field of image 
restoration through the application of deep learning techniques1–6.  
A central task in image restoration is removing noise from an image7–11, 
where pixel j is composed of the intrinsic signal sj and noise nj, xj = sj + nj. 
A typical benchmark problem has correlated signal between neighbour-
ing pixels whereas the noise is uncorrelated and white. Such denoising 
problems have been the subject of both supervised2,3 and 

unsupervised4,12,13 machine-learning approaches. Supervised algo-
rithms rely on either ground-truth (xj, sj) or noise-2-noise training pairs 
(xj, x′j ). In the latter case, the image pairs have different (or equal) noise 
levels. In both cases, deep convolutional neural networks (CNNs) have 
been successfully applied to images with Gaussian noise1–5. Unsuper-
vised approaches, sometimes dubbed noise-2-self, noise-2-void12 or 
noise-as-clean14, have also been employed. Their realization relies on 
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their respective statistical properties. It is therefore difficult or often 
impossible to simulate experimental noise accurately. The common 
approach to analyse artificially added noise nj to a ground-truth signal sj 
is not directly applicable. Limited experimental training data however 
prevents further progress on this important problem18,19.

In this Article, we present experimental training data recorded by 
X-ray diffraction, (xj, x′j ) = (xLCj , xHCj ), where LC and HC refer to low- and 
high-count statistics, respectively. Two deep CNNs were trained on 
such pairs to remove noise from the LC data. In a further step, the 
performance of the neural networks trained on experimental data was 
compared with the same networks trained on artificial training pairs 
where the HC data were corrupted with synthetic Poisson noise. We 
found that noise filtering of experimental noise—the ultimately rele-
vant task—is significantly improved by training the neural networks on 
experimental data. This fact is particularly evident when analysing 
physical length scales associated with weak signals. As such, we provide 
a noise filtering approach for scientific data with challenging 
signal-to-noise features.

Results
X-ray diffraction data
An example of X-ray diffraction intensities recorded on the 
high-temperature superconductor La1.88Sr0.12CuO4 is shown in Figs. 
1a,d and 2b,c with LC and HC frames, respectively. The experimental 
set-up is schematically depicted in Fig. 2a and further described in 
Methods. Although the data cover volumes of reciprocal space, the 
training is carried out on two-dimensional slices (so-called frames).  

less training information as a ground truth is absent. Unsupervised 
approaches therefore deliver (slightly) inferior performance compared 
with supervised algorithms.

Many scientific disciplines utilize digital data recording. One-, 
two- or three-dimensional data structures can always be transformed 
into a pixel-based picture format. Two-dimensional detectors are com-
mon across experimental fields such as astronomy, materials science 
and medical imaging. Counting of events with time-independent prob-
ability is expected to follow Poisson statistics. As such, virus–cell infec-
tion, radioactivity and particle scattering are events following a Poisson 
distribution. That is, the signal sj and the noise nj are no longer inde-
pendent as the s.d. is given by σj = √sj . Poisson noise can generally be 
reduced by using a sufficient acquisition time. However, long exposure 
times are not always possible. For example, for radiation of molecules, 
proteins, or human tissue, low exposure times are required to avoid 
beam damage15. Diffraction experiments in pulsed magnetic fields, by 
construction, have limited counting times and hence suffer from 
low-count (LC) statistics16,17. Finally, many experiments explore 
multi-dimensional parameter spaces that are almost impossible to 
cover completely with sufficient statistics. Thus, there is clear potential 
in developing robust methods to denoise LC statistics data to produce 
results of comparable quality to what would be obtained from 
high-count (HC) statistics data. By extension, noise filtering can speed 
up exploratory approaches by orders of magnitudes.

However, the removal of noise from experimental data is challeng-
ing. This can be attributed to the fact that experimental noise is the 
sum of multiple noise sources, such as Poisson and read-out noise, with 
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Fig. 1 | An example of denoising X-ray diffraction data using a deep CNN. 
a,b, A real experimental LC frame (exposure time 1 s) (a) is used as an input to 
a deep CNN (b) trained to remove the noise. c, The denoised output reveals a 
CDW signal (red), barely visible in the raw LC data. d, The real experimental HC 
frame (exposure time 20 s) for comparison. e, A stack of denoised X-ray intensity 
frames as in c. Arrows indicate the projected reciprocal coordinates Q = (h, k, ℓ). 
f–h, One-dimensional projected scans through Q ≈ (0.23, 0, 8.5) along the h (f), 
k (g) and ℓ (h) reciprocal space axes, in units of r.l.u. For each projected scan, a 

background subtraction has been performed (see main text). Gaussian fits for 
HC and denoised output profiles are indicated by solid red lines. The data points 
depicted in the denoised output profile are computed as the mean value over five 
training runs of the IRUNet neural network with different initial conditions. Error 
bars for LC and HC are shown under the assumption of counting statistics. Error 
bars for the denoised output are shown as the s.d. over the mentioned training 
runs. The clock symbols indicate relative counting time, and the network symbol 
indicates the denoised LC produced by the neural network.
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Therefore, the neural networks do not have access to the 
three-dimensionality of the data set but rely on the two-dimensional 
correlation of pixels in individual frames. The LC (HC) data are recorded 
typically for 1 s (20 s). Such experimental pairs were recorded succes-
sively with all experimental parameters fixed. The entire data set con-
tains 7,134 frame pairs (194 × 242 pixels each) and includes signals with 
intensities varying over six orders of magnitude. Weak two-dimensional 
charge density wave (CDW) order20–22 manifests by vertical rod-like 
shapes. In cuprates, the exact nature of CDW ordering is still being 
debated. On an atomistic level, the CDW in La1.88Sr0.12CuO4 represents 
monoclinic distortions of the fundamental orthorhombic crystal struc-
ture23. Fundamental Bragg peaks (not shown) are more intense and 
distributed circularly over much fewer pixels. The data also contain 
Debye–Scherrer (powder) rings originating from the polycrystalline 
sample environment. Finally, the data include spurions (unidentified 
signal) and dead pixels. Bragg scattering implies a direct connection 
between scattering angle (that is, position on the detector) and inci-
dent photon energy/wavelength. As such, conclusions drawn here are 
invariant under different scattering angles defined by incident photon 
energy or sample (lattice parameter). Furthermore, a different doping 
concentration in our La2−xSrxCuO4 show case would change the charge 
order incommensurability24 but not the overall data content.

The data set is separated into a training, validation and test set. All 
frames containing obvious CDW signals (our main feature of interest) 
are excluded from the training and validation set. These frames are 
instead moved to the test set, which is used for performance evalua-
tion. Overall, the size of the training set is 3,280 pairs while the size of 
the validation set is 820 pairs.

Artificial noise generation
As shown in Fig. 2f, the experimental LC data follow an approximately 
Poisson distribution. Therefore, to complement the experimental LC 
data, we artificially create LC data by adding Poisson noise to the 
experimental HC data. X-ray diffraction data are governed by counting 

statistics, where the probability of a single photon hitting pixel j is 
theoretically given by the Poisson probability distribution for large 
total count N (ideally N → ∞). For a fair comparison, artificial and exper-
imental LC data should be statistically similar. To achieve this, we define 
λf as the ratio between the frame-integrated LC NLC

f  and HC NHC
f  (where 

f is a frame index) and λ = median(λf). Each HC frame is then normalized 
with λ and LC frames being generated by adding the associated Poisson 
noise, resulting in simulated LC frames (Fig. 2d). Notice that signal 
intensities may vary by many orders of magnitude across the detector 
pixels, therefore the HC data typically display an asymmetric probabil-
ity distribution (Fig. 2e).

Deep neural network architectures and training
We implement two neural network architectures, referred to as 
VDSR25 and IRUNet26 (see Fig. 1a–c for a schematic illustration). The 
networks learn the intrinsic features of the LC input frames and pro-
duce a denoised output using the HC frames as reference. The VDSR 
architecture relies on stacking many convolutional layers and uses a 
residual learning approach to extract the noise-free data from its noisy 
variant2,27. The IRUNet architecture combines convolutional layers with 
an encoder/decoder framework, utilizing skip connections to reduce 
the vanishing gradient problem and increase accuracy. An Adam opti-
mizer28 with the AMSGrad variant29 is used to improve convergence. All 
frames are normalized by their total intensity, ensuring equal scaling 
between LC and HC frames. During training, we apply data augmenta-
tion in the form of mirroring the frames along the ℓ and k direction and 
randomly adjusting the global brightness of the frames. Additional 
information can be found in Methods.

Analysis
The performance evaluation of the trained neural networks (on test 
data) is illustrated by one-dimensional line cuts (along the reciprocal 
h, k and ℓ directions) through the CDW ordering vector (Fig. 1e–h). This 
involves the summation of pixel intensities within a region of interest 
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Fig. 2 | A comparison of experimental and simulated noise statistics.  
a, A schematic of the experimental X-ray diffraction set-up with scattering angle 2θ. 
b,c, Long exposure time leads to an HC frame (b), while short exposure time leads 
to an LC frame (c). d, A simulated LC frame obtained when adding Poisson noise 
to the experimental HC frame in b. e, The intensity distribution of the HC frame in 

b with fitted Poisson and skewed Voigt profiles. f, The intensity distribution of the 
experimental and simulated LC frame in c and d with a fitted Poisson profile.  
g,h, A zoom of the white dashed rectangular region in b (g) and c (h) encircling the 
CDW reflection. i,j, Zooms of the white dashed rectangular region in c (i) and d (j) after 
denoising using the IRUNet network trained on the respective noise distributions.
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(ROI) and subtraction of neighbouring ROIs (Supplementary Fig. 6). 
This subtraction is applied to eliminate the background surrounding 
the CDW signal, such as powder rings. As the background subtraction 
is not always perfect, the one-dimensional line cuts are composed of 
signal and a small residual ‘background’. To avoid negative residual 
background intensities, a small constant shift was applied. In Fig. 1f–h,  
we analyse the line cuts by fitting a Gaussian model. The resulting 
parameters are the amplitude A, the peak position μ, the s.d. σ and 
the constant residual background C. We furthermore define the signal 
to residual background ratio (SRBR) as A/C. Figure 3 shows the SRBR 
for 50 different examples of CDW order from the test set. Denoising 
using a neural network significantly improves the SRBR of the CDW 
order, oftentimes surpassing the results obtained from the HC data. 
Owing to the random nature of noise, the network is not able to learn the 
small but finite noise component of the HC data, resulting in efficient 
noise removal. These results are summarized in Table 1 in comparison 
with values extracted from the unfiltered LC data. We also compare 
the training with experimental and artificial noise of similar noise lev-
els. Additionally to the SRBR, we calculate the mean absolute error 
between the denoised peak position μh,k,ℓ and the s.d. σh,k,ℓ with the HC 
values. From these results, we conclude that training on experimental 
data greatly improves the noise filtering. This conclusion holds even in 
the case when the amount of artificial training data is larger than the 
amount of experimental training data. A considerable improvement can 
be achieved by employing a multiscale training procedure where the 
artificial training data cover a wide range of statistics (Supplementary 

Table I). A table containing standard image quality metrics describing 
the denoising performance can be found in Supplementary Table III. 
Finally, we observe that both the IRUNet and VDSR networks, on aver-
age, achieve comparable results, despite their different architectures.

Discussion
The removal of experimental noise is the ultimate goal of noise fil-
tering algorithms. Many studies have focused on filtering artificial 
noise from photographs1–6. The artificial noise typically has a single 
statistical distribution (Gaussian, Poisson or Bernoulli), and the pho-
tographs are represented by red–green–blue colour scales from 0 to 
255. Experimental noise poses a much harder problem as multiple 
noise sources are present and the signal can vary by many orders of 
magnitude. This suggests that denoising algorithms should (also) 
be benchmarked on more challenging, experimental data. Here, we 
provide an X-ray diffraction data set where the signal intensity varies 
by six orders of magnitude. Not surprisingly, we find that networks 
trained to remove artificial noise perform well on exactly this task. 
However, this high performance, unfortunately, does not carry over 
to the filtering of experimental noise. Our results suggest that neural 
networks filter experimental noise better when trained on experi-
mental noise rather than artificial noise profiles. This statement is 
especially true when the noise levels of the experimental and artificial 
noise are comparable.

To illustrate the generality and robustness of this work, we apply 
the trained network to resonant inelastic X-ray scattering (RIXS) data. 
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Fig. 3 | The enhancement of the SRBR when using CNN denoising via the 
IRUNet network trained on experimental data. Multiple frames containing 
CDW signals analysed along the reciprocal directions h (left), k (centre) and  
ℓ (right) in a similar fashion to Fig. 1f–h. The SRBR of the CDW reflection in the 

HC frame is plotted against the SRBR of the LC frame and its denoised version. 
We observe that the denoising of the LC frames improves the SRBR and, in many 
cases, even leads to better results than the HC data (scattered data points above 
the dashed diagonal line).

Table 1 | Average Gaussian fitting results of different training and evaluation protocols using multiple frames from the test 
set containing CDW signals

μh (×102) μk (×102) μℓ (×10) σh (×102) σk (×102) σℓ (×10) SRBRh SRBRk SRBRℓ

LC 0.66 (05) 1.94 (13) 2.48 (37) 0.18 (04) 1.17 (13) 2.85 (54) 0.39 (07) 0.41 (04) 0.31 (07)

IRUNet

Poisson → Poisson
Poisson → Exp.
Exp. → Exp.

0.29 (03)
0.75 (04)
0.19 (03)

0.56 (09)
0.87 (11)
0.65 (07)

1.08 (12)
4.17 (14)
1.47 (12)

0.14 (02)
0.31 (04)
0.31 (03)

0.75 (10)
1.65 (13)
0.69 (08)

1.03 (15)
1.37 (17)
1.50 (15)

0.90 (10)
1.02 (25)
1.41 (24)

0.96 (03)
0.95 (13)
1.00 (02)

1.13 (04)
0.97 (04)
1.21 (05)

VDSR

Poisson → Poisson
Poisson → Exp.
Exp. → Exp.

0.38 (02)
0.46 (03)
0.32 (02)

0.58 (08)
0.72 (14)
0.63 (08)

1.01 (11)
2.62 (11)
1.11 (11)

0.14 (02)
0.19 (02)
0.16 (02)

0.78 (09)
1.28 (18)
0.73 (08)

1.23 (14)
1.18 (14)
0.95 (14)

0.95 (08)
0.94 (07)
0.97 (09)

1.05 (02)
1.15 (03)
1.09 (02)

1.22 (05)
1.24 (05)
1.25 (04)

The first column indicates the used training and evaluation methodology, for example, training on artificial Poisson noise and evaluation on experimental noise (Poisson → Exp.). Values given 
for training and evaluation on experimental noise are additionally highlighted in bold for visual guidance. The Gaussian peak position μα and s.d. σα with reciprocal space direction α = (h, k, ℓ) are 
given as the mean absolute error between the Gaussian parameter obtained from the denoised and the one obtained from the HC signal (the lower the better). Values for the SRBRα are given 
as the absolute ratio of the Gaussian parameter obtained from the denoised and the one obtained from the HC signal (the higher the better). Values for μα as well as values for σα are scaled as 
indicated. Because of the broader peak in the ℓ direction, a scaling of 10 for μℓ and σℓ has been chosen over a scaling of 100.
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X-ray diffraction and RIXS are fundamentally different experimental 
techniques (Methods). Figure 4 shows a raw RIXS spectrum recorded 
on SrTiO3 with different counting statistics as indicated (top panels). 
The bottom panels show the corresponding denoised output obtained 
from a CNN trained on experimental X-ray diffraction data exclusively. 
As the used RIXS detector does not offer single-photon sensitivity, the 
signal is not expected to follow pure Poisson statistics. Despite the dis-
similar experimental technique, different sample and different noise 
distribution, the trained neural network achieves a visible noise reduc-
tion and consequently enhances the SRBR. The successful denoising of 
RIXS data likely stems from the rich variation of signals (powder rings, 
charge order and lattice Bragg peaks, spurious and dead pixels) and 
noise sources in the X-ray diffraction training data.

Our results, therefore, encourage the collection of even more 
diverse training data with different compositions of noise sources 
from other scattering, spectroscopy and microscopy techniques. 
Small-angle neutron and (resonant inelastic) X-ray scattering data30 
would be obvious choices to extend the training data. Data obtained 
from spectroscopies7,8 and microscopies9,10 such as angle-resolved 
photoemission electron spectroscopy31 and transmission electron 
microscopy32,33 could also help expand the amount and variety of 
training data. Furthermore, the application of transfer learning34 using 
a pre-trained model might prove beneficial in reducing the amount of 
distinct training data needed. By applying our method to future stud-
ies, a large amount of beamtime could be saved, or a fixed beamtime 
budget could be used more efficiently by, for example, being able to 
probe a larger parameter space.

Methods
X-ray diffraction
The training data were recorded on a La1.88Sr0.12CuO4 single crys-
tal35 at beamline P21.1 at the PETRA III storage ring at the Deutsches 
Elektronen-Synchrotron in Hamburg. The scattering intensities were 
recorded using a DECTRIS PILATUS3 X CdTe 100k detector. This detec-
tor provides 195 × 487 pixels per frame and a bit depth of 32. Each pixel is 
associated with a horizontal and a vertical scattering angle from which 
reciprocal space coordinates can be reconstructed as described in ref. 23.  
The CNN training is independent of this reconstruction that is done 
to extract correlation lengths. The diffractometer was operated with 
100 keV photons, and the sample was cooled to around 30 K, where a 
CDW order is fully developed. The charge order has a short correlation 

length along the c-axis directions. Hence, along the reciprocal c-axis (ℓ), 
the CDW order manifests by a long rod of scattering intensity.

RIXS
The oxygen K-edge RIXS spectra were recorded at the I21 beamline36 
at the Diamond Light Source on a SrTiO3 crystal. Linear vertical light 
polarization and a photon energy of ~531 eV were used. The sam-
ple temperature was 20 K, and the momentum transfer was set to 
(h, k, ℓ) = (0, 0, 0.245) reciprocal lattice units (r.l.u.).

Loss function
During each training epoch, the performance of the neural networks 
was determined by comparing the denoised output with the HC frame. 
The used loss function L is given by a combination of the mean absolute 
error and multiscale structural similarity (MS-SSIM)7,37. We find that this 
loss function results in a better overall denoising performance when 
compared with other losses such as the mean squared error (L2 loss) 
(Supplementary Fig. 1).

CNNs
Although networks for three-dimensional data structures exist38, we 
employed architectures designed for uncorrelated two-dimensional 
images. A comprehensive review of deep learning and CNNs applied 
to noise filtering of images is given in ref. 11. Generally, many networks 
display comparable performance. In this work, we implemented two 
different neural network architectures, referred to as VDSR25 and IRU-
Net26. For the VDSR architecture, we did not include the final addition 
layer as we do not find a significant performance change (Supplemen-
tary Table II). The weights of the convolutional layers are randomly 
initialized using the He method39. For the VDSR model, we make use of a 
parametric rectifying linear unit39 after each convolutional layer, while 
a normal rectifying linear unit is used in the IRUNet architecture. The 
VDSR network was trained for 150 epochs using a batch size of 8 and an 
initial learning rate of 5 × 10−4. The IRUNet network was trained for 200 
epochs using a batch size of 16 and an initial learning rate of 5 × 10−4. 
The learning rate was decreased after a certain number of epochs to 
ensure good convergence. For the VDSR model, we multiplied the 
learning rate by 0.5 after every 50 epochs. For the IRUNet model, the 
learning rate was multiplied by 0.5 after 150 epochs. The total training 
duration of the VDSR and IRUNet models was on average around 20 and 
10 h, respectively, on an Nvidia Tesla P100 GPU with 10 GB of VRAM 

0

200

400
En

er
gy

 lo
ss

 (m
eV

)

a

0

200

400

En
er

gy
 lo

ss
 (m

eV
)

Lo Hi

t

b

4t

c

1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5

Intensity
(a.u.)

Detector channel Detector channel Detector channelIntensity
(a.u.)

Intensity
(a.u.)

40t

Fig. 4 | RIXS spectra recorded on SrTiO3. a–c, Top row: RIXS spectra with counting statistics of 1 (a), 4 (b) and 40 (c) times 3 min (t). Left: counting intensities as 
detector channel versus energy loss. Right: horizontally projected RIXS spectra. Bottom row: corresponding denoised neural network outputs. The arrows in c 
highlight three inelastic peaks.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | February 2024 | 180–186 185

Article https://doi.org/10.1038/s42256-024-00790-1

using TensorFlow 2.4.1. A discussion of the receptive field of the neural 
networks can be found in Supplementary Section G.

Data availability
The experimental data used in this work can be found at https://doi.
org/10.5281/zenodo.8237173 (ref. 40).

Code availability
The code used for the set-up and training of the neural networks is 
available at https://doi.org/10.5281/zenodo.10245374 (ref. 41).
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