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Multi-animal 3D social pose estimation, 
identification and behaviour embedding 
with a few-shot learning framework
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Yaping Zhang    8 & Pengfei Wei    1,3,4 

The quantification of animal social behaviour is an essential step to reveal 
brain functions and psychiatric disorders during interaction phases. While 
deep learning-based approaches have enabled precise pose estimation, 
identification and behavioural classification of multi-animals, their 
application is challenged by the lack of well-annotated datasets. Here we 
show a computational framework, the Social Behavior Atlas (SBeA) used to 
overcome the problem caused by the limited datasets. SBeA uses a much 
smaller number of labelled frames for multi-animal three-dimensional pose 
estimation, achieves label-free identification recognition and successfully 
applies unsupervised dynamic learning to social behaviour classification. 
SBeA is validated to uncover previously overlooked social behaviour 
phenotypes of autism spectrum disorder knockout mice. Our results also 
demonstrate that the SBeA can achieve high performance across various 
species using existing customized datasets. These findings highlight the 
potential of SBeA for quantifying subtle social behaviours in the fields of 
neuroscience and ecology.

Animal modelling is instrumental in human social disorder studies. 
However, failures to capture their specific behavioural biomarkers 
impede our understanding1. The biggest challenge to deciphering 
animal social behaviour is intraspecific appearance resemblance2. One 
direct way to distinguish their identities is through body markers such 

as radio-frequency identification devices3,4. Another way is combining 
depth information with red-green-blue images to reduce the identifica-
tion error caused by body occlusion5. Recently, deep learning-based 
multi-animal tracking approaches, such as multi-animal DeepLabCut6, 
SLEAP7 and AlphaTracker8, have been avoiding the dependency of 
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when animals look similar2. To address this issue, a free-social behav-
iour test model is developed that involves a multiview camera array  
(Fig. 1a). This approach covers more view angles of animals and helps to 
overcome the challenge of frequent occlusion13,14,21,22. The camera array 
is used to capture images of a chequerboard for camera calibration, 
followed by videos of two free-moving animals for the social behav-
iour test (video capture phase 1, Fig. 1a). Finally, the array captures 
videos of single free-moving animals for identification (video capture  
phase 2, Fig. 1a).

After the video acquisition, the multi-animal contour of video 
capture phase 1 and the single-animal pose of video capture phase 2 
are manually annotated for the training of artificial intelligence (AI) 
to output the 3D poses with identities of animals (Fig. 1b,c). Through 
these multistage networks, the tasks of multi-animal video instance 
segmentation (VIS), pose estimation and identity recognition were 
achieved with a relatively small number of manual annotations (Fig. 1d, 
left). By incorporating camera parameters, the above results from vari-
ous camera angles were matched on the basis of geometric constraints 
to reconstruct 3D pose trajectories with identities for each animal  
(Fig. 1d, centre and right).

The process of behaviour mapping involves breaking down the 
trajectories of animals into distinct behaviour modules and obtain-
ing a low-dimensional representation of them13. 3D trajectories are 
separately decomposed into locomotion, non-locomotor movement 
and body distance components (Fig. 1e, top and middle). These par-
allel components are then divided into segments and subsequently 
merged into social behavioural modules using the dynamic behaviour 
metric (Fig. 1e, bottom). To gain insight into the distribution of features 
within social behavioural modules, it is necessary to convert them 
into low-dimensional representations (Fig. 1f). These representations 
incorporate both spatial and temporal aspects, with the spatial aspect 
being captured by low-dimensional embeddings of distance features in 
the SBeA framework (Fig. 1f, left). The temporal aspect is represented 
by the social ethogram (Fig. 1f, right). This approach allows for a more 
comprehensive understanding of the distribution of features within 
social behavioural modules.

A general augmenter for multi-animal pose estimation
The flexible social interactions among animals challenge the creating 
of a comprehensive training dataset for deep learning-based pose 
estimation methods. Inadequately trained deep neural networks tend 
to produce higher tracking errors, particularly in frames with close 
animal interactions2. To address this issue, we introduce a general data 
augmenter COCA (Fig. 2a) in SBeA. Previous studies show that image 
copy-paste can increase the precision of instance segmentation and 
multi-object tracking16,17, which inspires the development of COCA.

Overlap of animals during social behaviour leads to loss of track-
ing in the single-view camera. To address this, SBeA uses a multiview 
camera array to capture video streams, enabling compensation for the 
visual field of cameras (Fig. 2b)13,14,22. Then, background and trajecto-
ries are extracted (Fig. 2c, left top and left middle), and frames with 
close social interactions are extracted for manual contour annotations  
(Fig. 2c, left bottom). YOLACT++ is trained by self-training using approx-
imately 400–800 annotated contour frames (Fig. 2c, centre bottom), 
which enhances its performance while ensuring time-efficiency23,24. The 
well-trained YOLACT++ predicts masks and crops the animal instances 
from video streams. As some trajectories of multiple animals can over-
lap in the same spatial position across different periods, merging 
animal instances, backgrounds, trajectories and masks can generate 
virtual scenarios with various occlusion relationships (Fig. 2c, centre 
top and centre middle). The COCA increases the scale of the training 
dataset without vast manual annotations, producing a VIS dataset with 
successive frames of behaving animals and annotations. To capture the 
spatial-temporal patterns of occluded animals, the VIS with transform-
ers (VisTR) method is modified and applied to the VIS dataset (Fig. 2c, 

body markers or depth information. They maintain animal identities 
by using big-data features of continuous locomotion or appearances. 
Although these advances in deep learning multi-animal pose estima-
tion6,7, identity recognition6,7,9,10 and behaviour classification11 have 
shown good performance in social behaviour analysis, their application 
across various experimental scenarios is limited by the availability of 
high-quality benchmark datasets2,6,7,9,12.

The model’s performance of multi-animal pose estimation is 
decided by the number of labelled frames7. Although there are sev-
eral well-annotated datasets for multi-animal pose estimation6,7, they 
cannot cover diverse social behaviour test models. The frequent occlu-
sion of multiple animals is a challenge for manual data annotations. 
The model’s performance would decrease because manual labels of 
occluded frames are not precise. Combining a multiview camera array 
with three-dimensional (3D) reconstruction technology can improve 
the pose estimation precision when facing occlusions13, but these meth-
ods are designed for a single animal rather than for multiple animals13,14.

Performances of image-based animal identification methods are 
also restricted by data annotations9,10. Animals have similar appear-
ances, making it difficult to distinguish their identities when annotat-
ing identity datasets9. Unsupervised tracking-based methods are the 
alternative solutions to animal identification6,7. They demonstrate high 
performance when the animals are a relatively long distance away from 
each other, but the close interaction of animals can cause an identity 
swap problem2. This frequent close interaction means these methods 
cannot maintain identities for a long time period2.

New abnormal social behaviour patterns from animal disease 
models cannot be covered by existing behavioural classification data-
sets. Some subsecond behaviours are casually ignored in labelling 
because they are too short13. This means supervised behaviour clas-
sification methods are not suitable for detecting unusual behaviours9. 
Recent advances in unsupervised behaviour classification methods are 
appropriate for revealing subtle behavioural differences13,15, but they 
are only designed for a single animal. AlphaTracker is designed for 
the unsupervised clustering of social behaviour using human-defined 
features12, but these features cannot distinguish the subtle interactions 
constructed by limbs and paws.

To address these challenges, we propose the Social Behavior Atlas 
(SBeA), a few-shot learning framework for multi-animal 3D pose esti-
mation, identity recognition and social behaviour classification. We 
propose a continuous occlusion copy-and-paste algorithm (COCA) 
for data augmentation in SBeA, combined with a multiview camera, to 
achieve multi-animal 3D social pose estimation with a few data anno-
tations (roughly 400 frames)16,17. We propose a bidirectional transfer 
learning identity recognition strategy, achieving zero-shot annotation 
of multi-animal identity recognition with an accuracy rate exceeding 
90% (refs. 18–20). We extend the Behaviour Atlas, an unsupervised 
behaviour decomposition framework, from a single animal to multi-
ple animals, which achieves unsupervised fine-grained social behav-
iour module clustering with a purity exceeding 80% (refs. 13,21,22).  
In a study of free-social behaviour between the autism model and 
normal animals, SBeA enables automatic identification of animals 
with social abnormalities and explores the precise characteristics of 
these abnormal social behaviours. It demonstrates that SBeA can be an 
availably quantitative tool for studying animal social behaviour. SBeA 
can be applied to mice, parrots and Belgian Malinois dogs, showcasing 
its generalization abilities suitable for various application scenarios.

Results
SBeA: multi-animal 3D pose tracking and social behaviour 
mapping
SBeA aims to quantify the behaviour of freely social animals compre-
hensively. It presents two substantial challenges: pose tracking and 
behaviour mapping. Pose tracking involves identifying key body parts 
of each animal and their identities, which is particularly challenging 
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right top)25. Well-trained VisTR can patch raw video streams to display 
only one animal per video (Fig. 2d, left top and left middle). Thus, pose 
estimation models trained for single animals can be used to predict 
single-animal poses (Fig. 2c, right bottom, and Fig. 2d, left bottom). 
Finally, the single-animal poses are merged into multi-animal poses 
(Fig. 2d, left top, middle and bottom).

The subsequent step is the 3D reconstruction (Fig. 2e). The Mou-
seVenue3D system is used to acquire camera parameters (Fig. 2e, left 
top)14,22. On the basis of the epipolar constraint of camera parameters, 
the combination of each animal instance in each camera view is opti-
mized to achieve minimum reprojection error (Fig. 2e, left bottom). In 
the 3D skeleton, the close contact between two animals can be quanti-
fied (Fig. 2e, right top and bottom).

The pose annotation strategy in SBeA linearly increases with body 
points and the number of animals compared with the square increase of 
maDLC6 and SLEAP7 (Fig. 2f). We then create a well-annotated dataset 
Social Black Mice for VIS (SBM-VIS) to compare the tracking perfor-
mance of SBeA with other methods. The close interaction of the test 
dataset is separated according to the distance distribution (Fig. 2g, 
the left orange stem). The pixel root-mean-square error (r.m.s.e.) of all 
data is significantly lower than the close interaction of about 2 pixels of 
different body parts (Fig. 2h). But, compared with maDLC and SLEAP, 
SBeA still has significantly lower r.m.s.e. of animal close interaction 
(Extended Data Fig. 1 and Extended Data Fig. 2). For all the test data, 

SBeA achieves equivalent or lower r.m.s.e. (Extended Data Fig. 1a and 
Extended Data Fig. 2a). For the close contact part, most of the r.m.s.e. 
of SBeA are significantly lower than maDLC (Extended Data Fig. 1b), and 
SBeA has significantly lower r.m.s.e. than SLEAP except for the neck 
(Extended Data Fig. 2b). These results show that SBeA can get higher 
precision with fewer manual annotations than routine multi-animal 
pose estimation methods.

SBeA needs no annotations for multi-animal identification
Accurately distinguishing the identities of free-moving animals is crucial 
for social behaviour tests, particularly in studying treatment-induced 
behaviours in transgenic animal models13,26,27. However, their frequent 
occlusion leads to imprecise identification in manual labelling, espe-
cially for the same breed animals. To address these challenges, we 
propose bidirectional transfer learning in SBeA (Fig. 3a). Transfer 
learning allows artificial neural networks to use previous knowledge 
in new tasks19. For animal segmentation and identification tasks, the 
knowledge between them can be shared and transferred bidirectionally 
with each other. So, the bidirectional transfer learning of them avoids 
unnecessary manual data annotations.

Well-trained VisTR can be used to segment single-animal instances 
from multiple view angles (Fig. 3b). These instances are then cropped, 
cascaded and resized to generate training data for an identification 
model (Fig. 3c, left and centre)28. After that, LayerCAM (where CAM 
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Fig. 1 | The architecture of SBeA. a, Video acquisition for the free-social 
behaviour test. The camera array is used for behavioural capturing and it is 
calibrated by the chessboard images. There are two phases for behavioural video 
capturing including social behaviour test and animal digital identity. Phase 1 
captures the videos of free-social interactions of two mice. Phase 2 captures the 
identities of each mouse in phase 1. b, Data annotation for AI training. The SBeA 
needs the annotations of multi-animal contour and single-animal pose. c, The 
multistage artificial neural networks for 3D pose tracking. d, The outputs of 3D 
pose tracking. The left shows the outputs of AI including video instances, multi-
animal poses and multi-animal identities. The centre shows the combination 

of video instances, multi-animal poses and multi-animal identities with camera 
calibration parameters for 3D reconstruction with identities. The right shows 
the visualization of 3D poses with identities. e, Parallel dynamic decomposition 
of body trajectories. Raw 3D trajectories of two animals can be decomposed into 
locomotion, non-locomotor movement and body distance. After dynamical 
temporal decomposition, these three parts are merged as social behaviour 
motifs for behavioural mapping. f, Social behaviour metric. Social behaviour 
motifs are clustered and phenotyped according to the distribution in social 
behaviour space. M1, mouse 1. M2, mouse 2. Mp, mouse with index p. Mq, mouse 
with index q. Mn, mouse with index n.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | January 2024 | 48–61 51

Article https://doi.org/10.1038/s42256-023-00776-5

stands for class activation maps) is used to evaluate the patterns for 
identification recognition (Fig. 3c, right)29. Before using the identi-
fication model in multi-animal instances, the cascaded and resized 
image frames were prepared (Fig. 3d, right). By using the geometric 
constraint of 3D poses, instances from each frame view angle of each 
animal were matched to construct input frames of the identification 
model (Fig. 3d, left). Finally, the well-trained model output the top 
prediction probabilities to append the identities of instances and 3D 
poses with the visualization of LayerCAM (Fig. 3e).

To evaluate the identification performance of SBeA, we conducted 
experiments with ten mice. The first 4 minutes of videos were used for 
training the identification model, and the last minute was used for vali-
dation. The validation confusion matrix demonstrated that the model 
can identify most of the mice (Fig. 3f). The t-SNE (t-distributed stochas-
tic neighbour embedding) was used to create a two-dimensional (2D) 
feature representation of the identified mice (Fig. 3g). The features of 
mice with ID M4 and M5 were found to be mixed with other classes, as 
quantified by the silhouette coefficient (Fig. 3i). The statistical analysis 
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Fig. 2 | COCA as a data augmenter for multi-animal tracking. a, Concept 
diagram of COCA. From the raw scenario, the instances of background and 
animals can be synthesized with occlusion in a new combination. That achieves 
generation of big data from small data. b, Video capture of two free-moving 
animals. Two animals are put in the transparent circular open field and the 
video streams of behaviour are captured by a camera array. c, COCA as a general 
augmenter for multi-animal patching according to a little manually labelled data. 
Behavioural video streams are separated into backgrounds (top left), trajectories 
(medium left) and manually labelled masks (bottom left). Self-training instance 
segmentation model is used to predict more unlabelled masks from manually 
labelled masks. They are then combined with backgrounds and trajectories to 
generate new scenarios of two free-moving mice. d, Mask and pose prediction. 
Spatial-temporal learning is used for the new scenarios and to predict the masks 
of real mouse instances. Then, the single-animal pose estimation model can be 
used for each animal and, further, the 2D poses of them are merged to achieve 

multi-animal pose estimation. e, 3D pose reconstruction. The camera array 
is calibrated by chessboard images using Zhang’s calibration. Reprojection 
errors of all combination pairs of 2D poses of each animal are optimized for 3D 
reconstruction. The top right shows a 3D view of the 3D poses of two mice in this 
case. The bottom right shows a 2D view of the 3D poses of two mice.  
f, Comparison of the number of manually labelled points of SBeA and maDLC. 
g, Distance distribution of two free-moving mice. Pink stems are distance 
boundaries clustered by k-means (close 60.69, interim 195.03, far 327.47).  
h, Prediction error comparison of all validation data. The differences between all 
and close data are about ±2 pixels (two-way ANOVA followed by a Sidak multiple 
comparisons test, n1 (All) = 14,400, n2 (Close) = 4,602: the adjusted P values 
from nose to tip of tail are <0.0001, 0.0023, <0.0001, 0.0369, 0.1049, 0.0590, 
0.0002, <0.0001, <0.0001, 0.2068, 0.0026, 0.0013, 0.4167, <0.0001, <0.0001 
and <0.0001). Stems represent the mean values of each violin plot. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. NS, not significant.
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of silhouette coefficient demonstrates that even the outlier could 
reduce the silhouette coefficient, such as M2 and M3, the precision 
would not be influenced too much (Fig. 3g–i).

To assess the identification model’s performance in multi-animal 
data, we recorded the free-social behaviours using the above mice. We 
manually verified their identities of mask reprojection images and 3D 
poses frame by frame (Fig. 3j). Although some of the single mouse iden-
tity precisions were lower (Fig. 3i), the overall precision in identifying 
pairs of mice could be higher than 0.85, as seen in the case of the pairs 
of M3 and M4 and M5 and M6.

Unsupervised learning reveals social behavioural structures
Following pose tracking, mapping the trajectories with animal identities 
to a low-dimensional space is necessary to gain insights into behaviour 
(Fig. 4a). We expand our previous work on the single-animal behaviour 
mapping framework, Behaviour Atlas (BeA), to encompass multiple ani-
mals13. The parallel and dynamic behaviour decomposition from BeA is 
adopted in SBeA (Fig. 4b,c). In the social process, the distance between 
animals is an essential component30, which models body position with 
non-locomotor movement and locomotion (Fig. 4b). Then, each compo-
nent is decomposed by dynamic time alignment kernel (DTAK)13 to retain 

the dynamic structures of behaviour (Fig. 4c). To distinguish subtle struc-
tures of social behaviour, the temporal points of decomposition for each 
component are merged through logical addition (Fig. 4d). These steps 
enable the metric of social behaviour, resulting in the transformation of 
continuous pose trajectories into discrete social behaviour modules.

Next, the social behaviour modules are embedded in a 
low-dimensional space for behaviour representation (Fig. 4e,f). The 
distance component is chosen for the feature representation of social 
behaviour modules to keep the social information (Fig. 4e, left). The 
dimensionally reduced distance component by uniform manifold 
approximation and projection (UMAP) is beneficial to improve the 
separation of behaviour atlas13,14,21,22,31. However, with the increase in 
data scale, UMAP would be unacceptable because of limited memory 
space. The residual multilayer perceptron (ResMLP) is combined with 
UMAP for a common feature representation to solve the memory prob-
lem (Fig. 4e, right)32. The distance dynamics are embedded by DTAK 
and UMAP to construct the SBeA (Fig. 4f). To reveal the distributions 
of different social behaviour modules, we modify the watershed algo-
rithm to automatically determine the best cluster density with upper 
and lower boundaries. Finally, the social behaviour modules of the same 
clusters are manually identified and defined (Fig. 4g).
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in the transparent circular open field and the video streams are captured by a 
camera array. The centre shows the well-trained VisTR is reused for the single 
animal. The right shows the output of well-trained VisTR on the single animal. 
c, Single-animal identification model training. The left shows the single-animal 
instances of multiview are cropped, cascaded and resized to an image. The 
centre shows the use of EfficientNet as the backbone to train the multi-animal 

identification classifier. The right shows the identity recognition pattern 
visualization by LayerCAM. d, Multi-animal segmentation with 3D reprojection. 
The left shows mask reprojection of each camera view. The right shows the crop, 
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>0.9999, <0.0001, >0.9999, <0.0001, <0.0001, <0.0001 and <0.0001). j, The 
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***P < 0.001, ****P < 0.0001.
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We conduct supervised validation of SBeA using the PAIR-R24M 
dataset (Fig. 4h)33. We use SBeA to construct the SBeA for the data-
set, and append the three social labels (close, chase and explore) 
defined in the PAIR-R24M dataset (Fig. 4i). The distributions of the 
three social labels are separated and match their similarity relation-
ship. The 121 combinations of subject behaviour labels also show 
distribution patterns in the SBeA (Fig. 4j). The social labels such as 
close and explore are consistent with the close distance distribu-
tion in the distance map, and the chase label is consistent with the 
distance transition zone of the distance map (Fig. 4k). To quantify 
the clustering performance, we use the cluster purity of social and 
subject behaviour labels (Fig. 4l and Supplementary Fig. 7). For the 
upper boundary of clustering, 14 classes are clustered with a mean 
cluster purity of 0.77 ± 0.16 (Fig. 4l). For the lower boundary of clus-
tering, 405 classes are clustered and the probability of cluster puri-
ties greater than 0.95 is significantly higher than for other purities 
(Supplementary Fig. 7). These results indicate that SBeA can classify 
the behaviour clusters with high cluster purity.

SBeA identifies free-social Shank3B knockout mice
Social behaviour can serve as an indicator of genetic variations that 
underlie neuropsychiatric disorders34. SBeA is well-suited for this pur-
pose, as it allows for a detailed characterization of social behaviour at 
an atlas level. To test whether SBeA could detect genetic differences 
from social behaviour, we used an animal model of autism spectrum 
disorder: Shank3B knockout (KO) mice13,26. While abnormal individual 
behaviours of these mice have been previously identified, the limita-
tions of existing techniques have made it difficult to fully understand 
their abnormal free-social behaviours13,26.

The SBeA with the distance map is shown in Supplementary Fig. 9b. 
The density map is calculated to compare the social behaviour distri-
bution of each group (Supplementary Fig. 9c). The density map shows 
obvious differences across the three groups. The wild-type (WT)–WT 
group shows social behaviour phenotypes with flexible distances from 
close to far, the KO–KO group shows more abnormal social behaviours 
than the WT–WT group and the WT–KO group shows more close social 
interaction than the WT–WT group.
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KO mice. a, The fractions of social behavioural modules of three social groups. 
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according to the dimension of social behaviour modules. b, Dimensional 
reduction of behaviour fractions using PCA after hypothesis testing (two-way 
ANOVA followed by the Tukey multiple comparisons test). In the three groups, 
24 social behaviour modules show significant differences. Three components 
can explain more than 90% variances, and 11 components can explain more 
than 99% variances. c, The construction of phenotype space. UMAP is used to 
reduce the 260 dimensions of social behaviour modules to three dimensions 
according to e. Different coloured dots represent different social groups. The 
phenotypes of three social groups can be separated in phenotype space. d, The 
merging of social behaviour modules according to behavioural feature angles 
and b. First, 24 social behaviour modules with significant differences are mapped 
to PCA feature space, and then the angular separation is calculated to construct 
the angle spectrum. Further, hierarchical clustering is used to cluster the angle 
spectrum into 11 clusters according to b. e, The comparison of behavioural 

fractions of three social groups: 24 social behaviour modules with significant 
differences are manually identified (mean ± s.d., two-way ANOVA followed by 
Tukey multiple comparisons test, n = 20, adjusted P values from left to right 
(group A versus group B, group A versus group C and group B versus group C) 
are >0.9999, <0.0001, <0.0001, 0.9990, <0.0001, <0.0001, >0.9999, <0.0001, 
<0.0001, 0.9939, 0.0002, <0.0001, >0.9999, <0.0001, <0.0001, 0.9919, 0.0016, 
0.0010, 0.8210, 0.0055, 0.0331, 0.0001, 0.0029, 0.7179, 0.8213, 0.0438, 0.1703, 
0.9882, <0.0001, <0.0001, 0.2691, 0.0323, 0.6000, 0.5677, 0.0952, 0.0057, 
0.6034, 0.0101, 0.1239, 0.0733, 0.0145, 0.8183, 0.2698, 0.0184, 0.4735, 0.1217, 
0.0011, 0.2511, 0.4016, 0.0397, 0.4864, 0.5691, 0.0001, 0.0054, 0.0005, <0.0001, 
<0.0001, 0.6728, 0.0297, 0.2076, 0.0175, 0.7233, 0.1220, 0.0445, 0.2145, 0.7555, 
0.0222, 0.4986, 0.2810, 0.1373, 0.8823 and 0.0454). f, The visualization of 
merged social behaviour modules. With the assistance of d, nine social behaviour 
modules are merged and identified from 24 social behaviour modules. The 
colour of mice represents the behaviour cases with the highest mean fraction in 
e. The orange 3D mice represent KO mice and green 3D mice represent WT mice. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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The 260 identified social behaviour modules were clustered to 
reveal their coincident patterns (Fig. 5a). Principal component analysis 
(PCA) was used to determine the percentage variability explained by 
each principal component to compare the three groups (Fig. 5b). The 
results indicated that three components could account for 90% of the 
variance, while 11 components could account for 99% of the variance. 
Further, UMAP was used to construct the phenotype space according 
to the social behaviour modules, with the dimension number set to 
three based on the 90% variance explanation, owing to the more robust 
feature representation of nonlinear dimensional reduction (Fig. 5c). 
The distributions of the three groups in the phenotype space were 
found to be segregated, matching the distribution of the density map 
(Supplementary Fig. 9c).

Further, SBeA was used to identify subtle social behaviour modules 
that distinguish KO and WT mice and 24 social behaviour modules 
showed significant differences (Fig. 5e). The angle spectrum cluster-
ing was proposed and used to reduce the redundancy of these results  
(Fig. 5d). The social behaviour modules were merged on the basis of 
their angular separation of features, resulting in the human identifi-
cation of nine social behaviours (Fig. 5f and Extended Data Table 1).

The nine social behaviours highlighted significant differences 
among the three groups. The WT–WT group exhibited more allog-
rooming, a prosocial behaviour, than the WT–KO and KO–KO groups35. 
Conversely, allogrooming was rare in unstressed partners and even 
rarer in Shank3B KO mice, suggesting an antisocial behavioural pheno-
type36. The exploring behaviour of the WT–WT group was significantly 
higher than that of the KO–KO group, which displayed reduced motor 

ability or social novelty13,26. In the WT–KO group, social behaviour 
with significant differences was divided into two parts, namely peer 
sniffing and independent grooming. Peer sniffing was observed more 
frequently in the WT mouse, particularly when the KO mouse was 
grooming or in locomotion, indicating a behavioural phenotype of 
curiosity. Furthermore, the KO mouse could induce higher interest 
in the WT mouse than vice versa. Independent grooming could be an 
imitation of the WT mouse by the KO mouse, and in the KO–KO groups, 
the higher incidence of independent grooming could be attributed 
to the increased individual grooming of each mouse. In addition to 
increased independent grooming, two abnormal behaviour pheno-
types, namely synchronous behaviours and two kinds of immobility, 
were observed. The synchronous behaviours displayed five subtypes, 
including grooming, hunching, rearing, sniffing and micromovement, 
indicating greater behaviour variability in free-social conditions com-
pared to individual spontaneous behaviour of KO mice13. These findings 
demonstrate that SBeA can differentiate genetic mutant animals on the 
basis of social behaviour and identify genetic mutant-related subtle 
social behaviour modules.

SBeA is robust across species in different environments
To assess the generalizability of SBeA to different animal species and 
experimental settings, the behaviours of birds and dogs were captured 
with varying device configurations22. The animals were prepared to have 
as similar appearances as possible (Fig. 6a,e, top), and it was difficult 
for human experimenters to separate two animals from the randomly 
selected frames. Videos were manually annotated to train the AI of the 
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Fig. 6 | SBeA for the applications across species such as birds and dogs. 
a–d, SBeA is used for birds. a, The preparation of birds. Two parrots with 
inconspicuous appearance differences are used for the social behaviour test. 
After video recording of identity and free-social behaviour by camera array, 
the contours and poses are manually annotated, then 19 body parts are defined 
for 3D pose tracking. b, The social poses and identities outputs of SBeA. c, The 
social ethogram and SBeA of birds. d, The 3D social behaviour cases of birds. 

e–h, SBeA is used for dogs. e, The preparation of dogs. Two Belgian Malinois with 
inconspicuous appearance differences are used for the social behaviour test. 
After video recording of identity and free-social behaviour by camera array, the 
contours and poses are manually annotated: 17 body parts are defined for 3D 
pose tracking. f, The social poses and identities outputs of SBeA. g, The social 
ethogram and SBeA of dogs. h, The 3D social behaviour cases of dogs.
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pose tracking component of SBeA (Fig. 6a,e, bottom), using 19 body 
parts for birds and 17 body parts for dogs, based on previous stud-
ies37,38 (Fig. 6b,f). Then, they were mapped to the social ethogram and 
behaviour atlas (Fig. 6c,g). In total, 34 and 15 social behaviour classes 
were identified for birds and dogs, respectively, and their typical cases 
were visualized in 3D (Fig. 6d,h). The 3D pose tracking of birds showed 
clear identification of their claw touching their rectrix, while the 3D 
pose tracking of dogs was robust to occlusion even in the lying posture.

Discussion
SBeA is a few-shot learning framework for 3D pose estimation, iden-
tification and behaviour embedding of multiple free-social animals. 
It builds on the BeA framework, extending it to enable multi-animal 
pose estimation and social behaviour clustering13,14,21,22. SBeA reduces 
the labour required for annotation of pose estimation and identifica-
tion6,7,9. It also overcomes the issue of occlusion and reconstructs 3D 
behaviours accurately using a camera array. SBeA resolves the chal-
lenge of animal identification over extended frames, facilitating the 
study of close social interactions2. The framework is versatile and has 
been successfully applied to Shank3B KO mice, where it has revealed 
abnormal social behaviours and a reduction in social interest. SBeA’s 
cross-species application has been verified in birds and dogs. In sum-
mary, SBeA represents a breakthrough in deep learning-based pose 
estimation and identification, offering numerous potential applications 
in animal behaviour research.

Although the benchmark datasets are critical to the advances 
in deep learning tools6, the large labelled data number could render 
them unfeasible20. SBeA gets rid of the dependency on large datasets 
and achieves results by only using hundreds of labelled frames to 
track 3D poses and identities of multiple animals in millions of new 
frames. Recent studies have shown the precision increasing of large 
transformer models in human pose estimation39,40, but the benchmark 
datasets of animals are still too small to apply them6. The data genera-
tion strategy in SBeA can be a bridge between small animal datasets 
and large models. The phenotypes of social behaviour are diverse, 
which are difficult to comprehensively predefine in a dataset13,33,41. The 
unsupervised clustering in SBeA provides an unbiased way to classify 
undefined social behaviour modules and supports the building of a 
comprehensive social behaviour dataset.

maDLC and SLEAP are two excellent tools that can be applied to 
many animal models6,7, but they do not include the mechanism for 
maintaining animal identities during long-term experiments, which 
influences the accuracy of building a behavioural representation rely-
ing on animal identities2. SBeA incorporates the identity recognition 
approach of idTracker.ai and TRex, using deep neural networks to 
directly learn the appearance features of animals10,42. This results in 
the alleviation of the identity swap problem, which can detect frames 
with higher error rates. Additionally, SBeA provides an extension of 
2D tracking tools to 3D tracking, which is critical for making accurate 
inferences about animal behaviour2,14,22.

One potential area for future research to improve SBeA is to 
develop an end-to-end model that can reduce storage consump-
tion. The identity videos available in this context may contain suf-
ficient information to train a deep learning model for tasks such as 
multi-animal segmentation, identification and pose estimation. Fur-
thermore, the behaviour atlas of a single animal could be combined 
with a SBeA of multiple animals. An algorithmic bridge from BeA to 
SBeA could facilitate not only social behaviour analysis, but also other 
forms of analysis within the field.

Methods
Experiments of mice, birds and dogs
There are four experiments in this study. The first is the free-social 
behaviour test of two WT mice for the program design of SBeA. In total, 
32 adult male C57BL/6 mice (7–12 weeks old) are used for the free-social 

behaviour test. The mice were housed at 4–5 mice per cage under a 12 h 
light–dark cycle at 22–25 °C with 40–70% humidity, and were allowed 
to access water and food ad libitum (Shenzhen Institutes of Advanced 
Technology, Shenzhen, China). Before the social behaviour test, the 
mice had tail tags added using a black marker pen. The tail tags were 
constructed of horizontal and vertical lines. The horizontal line repre-
sented one, and the vertical line represented five. Using the combina-
tion of horizontal and vertical lines, the mice were marked according 
to the sequence of the experiment. After that, the mice were put into a 
circular open field made of a transparent acrylic wall and white plastic 
ground, with a base diameter of 50 or 20 cm and a height of 50 cm for 
5 min or 15 min identity recording one by one using MouseVenue3D. 
Then, the mice were paired and put into the same circular open field 
for the free-social behaviour test.

The second test is the free-social behaviour test of mice with differ-
ent genotypes. Five adult (8 weeks old) Shank3B KO (Shank3B−/−) mice 
on C57BL/6J genetic background and five adults (8 weeks old) male 
C57BL/6 mice, were used in the behavioural experiments. Shank3B−/− 
mice were obtained from the Jackson Laboratory ( Jax catalogue no. 
017688) and were described previously26. The mice were housed at 4–5 
mice per cage under a 12 h light–dark cycle at 22–25 °C with 40–70% 
humidity, and were allowed to access water and food ad libitum (Shen-
zhen Institutes of Advanced Technology). The mice had tail tags added 
as mentioned above. After that, the mice were put into a circular open 
field with a base diameter of 20 cm introduced before for 5 min identity 
recording. Then the mice were paired in WT–WT, WT–KO and KO–KO 
groups and put into the same circular open field for the free-social 
behaviour test. The combinations of groups and the sequence of experi-
ments were randomly generated by customized MATLAB code.

The third is the free-social behaviour test of two birds. One male 
and one female Melopsittacus undulatus (about 26 weeks old) were 
used in this experiment. They were housed in a conventional environ-
ment and fed regularly (Shenzhen Institutes of Advanced Technology, 
Shenzhen, China). The birds were first put into a circular open field with 
a base diameter of 20 cm for 5 min of identity recording one by one, and 
then put together for 15 min free-social behaviour test and recording.

The fourth is the free-social behaviour test of two dogs. Two female 
Belgian Malinois dogs (13 weeks old) were used in this experiment. They 
were housed in Kunming Police Dog Base of the Chinese Ministry of 
Public Security, and their behaviour test was finished in the State Key 
Laboratory of Genetic Resources and Evolution, Kunming Institute of 
Zoology, Chinese Academy of Sciences. The dogs were first put into a 
2 × 2 m2 open field made by fences one by one for the identity recording. 
Restricted by the locomotion of the animals, only 6 and 11 min identity 
frames were captured by MouseVenue3D, and both of them were used 
for identification. Then, they were both put into the open field for a 
15 min free-social behaviour test.

All husbandry and experimental procedures of mice and birds in 
this study were approved by the Animal Care and Use Committees at 
the Shenzhen Institute of Advanced Technology, Chinese Academy of 
Sciences. All husbandry and experimental procedures of dogs in this 
study were approved by the Animal Care and Use Committees at the 
Kunming Institute of Zoology, Chinese Academy of Sciences.

SBM-VIS dataset
The free-social behaviour of two C57BL/6 mice introduced above 
is captured by the first version of MouseVenue3D. The first 1 min 
frames of four cameras are annotated as the SBM-VIS dataset, which 
is 7,200 frames in total. To accelerate the data annotation, we used 
deep learning for assistance. Here, 30% of the contours are manually 
labelled, and the rest are labelled by YOLACT++ after being trained 
by the manually labelled 30% contours and then checked by humans. 
Next, the single-animal DeepLabCut is used to predict the poses of 
masked frames with a human check. Groups of 18 frames are gathered 
for a video instance and saved in YouTubeVIS format43, and the poses 
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are saved as a .csv file. The identities across different cameras are 
corrected by human annotators. This SBM-VIS dataset is available in 
figshare44, and other data for method comparison reproduction are 
also available45.

New scenario generation for VIS
The new scenario generation for VIS is divided into several steps: 
contour extraction, trajectory extraction, dataset labelling, back-
ground calculation, model self-training and video dataset generation. 
After that, it can be input into the instance segmentation model for 
large-scale training. Suppose the number of animals in the video is n. 
Conda virtual environment configuration includes OpenCV v.4.5.5.62, 
Python v.3.8.12 and Pytorch v.1.10.1. The computer was configured with 
Intel(R) Xeon(R) Silver 4210 R CPU at 2.40 GHz and NVIDIA RTX3090 
graphical processing unit (GPU).

In the animal contour step, image thresholding is first carried out 
and then the contour in the image is extracted. The following formula 
is used to determine whether the frame is social or not, where i stands 
for a frame, Ri stands for the judgement result of this frame and numi 
stands for the number of contours in this frame:

Ri =
⎧⎪
⎨⎪
⎩

social,numi < n ∩ numi > 0

non − social,numi = n

error,others

(1)

When extracting the animal trajectory, due to the influence of 
noise, all the contour centre points are recorded as the candidates of the 
animal frame centre point, and the closest point to each animal in the 
previous frame is selected from multiple centre points as the true centre 
point of this frame. Then, the Hungarian matching idea is used to remove 
the matching points successfully to optimize the animal trajectory.

For dataset annotation, different manually annotated datasets 
were used for different animals. We manually annotated 272 images in 
the 50 cm mice open field experiment, 805 images in the 20 cm mice 
open field experiment, 600 images in the birds experiment and 800 
images in the dogs experiment.

For background calculation, the non-mask position (the back-
ground) of each image is extracted and fused into the final background 
image using the labelled dataset. The above operation is repeated for 
all datasets to obtain a clean background image.

The labelled dataset is used for YOLACT++ round training, and the 
trained model is used to predict video frames. The predicted 
high-quality frames will be added to the original dataset for the next 
round of training. Among them, the selection method for high-quality 
frames is as follows: i represents a certain frame, fi is the segmentation 
result of the frame i, fi−1 is the segmentation result of the frame i − 1,  
F is the calculation process of scoring matrix of all segmentation results 
in two frames where the calculation idea refers to the Hungarian match-
ing idea and the calculation result is Gi:

Gi = F( fi, fi−1) (2)

Then, all Gi are merged and clustered, and the class with the higher 
overall matrix score is selected as the high-quality frame class and 
added to the training dataset. YOLACT++ selects the ResNet50 model 
as the pretraining model, and the maximum number of iterations is 
150,000 generations. The training process takes about 5 h. After YOL-
ACT++ finishes training, its final model is used to predict the results 
for all frames.

The video dataset required for instance segmentation training 
is subsequently generated. The dataset is divided into three parts, 
which are the real dataset, the social area dataset and the randomly 
generated dataset. The real dataset is the continuous high-quality 
frames predicted and filtered by YOLACT++, which are written into the 

video dataset after data enhancement, where the data enhancement 
is performed by flipping the image left and right. Because there are 
many occlusions during social interaction and the performance of the 
model decreases, it is necessary to generate multiple datasets in the 
social area. Here, consecutive frames of animals in the social area are 
selected and augmented to generate the social area dataset, where N 
forms of enhancement are generated by data augmentation, as shown 
in equation (3), where C represents combination (that is, the combina-
tion of different masks is selected for flipping in each frame). A stands 
for alignment (that is, all masks are aligned to occlusion):

N = (
i=0
∑
n
Cin) × An

n (3)

As the number of real data and social area datasets may be far 
from enough to complete the model training task, some datasets in 
the animal activity area are randomly generated after this step. In this 
part, the real animal trajectory in the video, the obtained animal mask 
and the background calculated in the previous step are used for data 
collection, and the video dataset is written after data enhancement. 
Here, 14,940 video datasets were generated for the 50 cm mice open 
field experiment, 15,130 for the 20 cm mice open field experiment, 
5,970 for the bird experiment and 41,755 for the dog experiment.

3D pose reconstruction of multi-animals
Here, we use the multiview geometry method in computer vision for the 
3D reconstruction of multiple animals. The basic projection formula 
between 2D points and 3D space points is as follows.

s
⎡
⎢
⎢
⎢
⎣

x

y

1

⎤
⎥
⎥
⎥
⎦

= K [
R t

0 1
]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X

Y

Z

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4)

Here, s represents the scaling factor, x and y are the points in the 
image, K is the camera internal reference, R is the rotation matrix, 
t is the translation matri, and X, Y and Z represent the coordinates 
of the 3D points. First, all two-dimensional skeleton information 
about the multi-animal and multiview is read, and the points in the 
two-dimensional file with too low a confidence rate are directly set to 
null value. Then, the relative position parameters between multiple 
cameras are read and the triangulation algorithm is used for the 3D 
reconstruction of a single animal. The basic principle is as follows:

α1 = K1[R1t1]P

α2 = K2[R2t2]P

…

αn = Kn[Rntn]P

(5)

Here, α1 to αn represent the two-dimensional points with the same 
content in different cameras, K1 to Kn represent the internal parameter 
matrix of different cameras, R1 to Rn represent the rotation matrix of 
different cameras, t1 to tn represent the translation matrix of different 
cameras and the three-dimensional point P can be solved by combining 
these equations, so we use the singular value decomposition to solve 
the least-squares regression problem.

Next, as the appearance of animals in different views is very similar, 
the identities of instance segmentation may be swapped and the wrong 
3D point coordinates may be calculated. Therefore, we first obtain 
the full permutation index list of all 2D points of multiple animals in 
each view angle, and then obtain the 3D point coordinates in all cases. 
Eventually, the point with the smallest error is selected as the final 
multi-animal 3D skeleton point.
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Pattern visualization of animal identification by LayerCAM
LayerCAM can generate the CAMs of each layer of convolutional 
neural network-based models29. The LayerCAM of each layer of the 
EfficientNet-based identity recognition network is averaged to output 
a global visualization pattern of animal identities. To further compare 
the feature weights of different body parts of animals, the 2D poses are 
used for the body part location of identity frames. From the 2D poses to 
identity frames, there is a coordinate transformation. The transformed 
2D poses on identity frames Pt can be calculated as:

Pt = Kr[K1b(P1 + B1b),K
2
b(P2 + B2b),… ,Kcamb (Pcam + Bcamb )] (6)

where Kr is the resized matrix of cascade frames, Kb is the scale matrix 
of the bounding box of single camera view, Pcam is the raw 2D poses, Bb 
is the bias matrix of the bounding box of single camera view and the 
index cam is the camera number. The Kb is decided by the size of frames 
and the bounding box size of the cropped animal instance. To reduce 
the disturbance of 2D pose estimation, a box centred on Pt of each 
transformed 2D pose crops the LayerCAM value. And the mean value 
of them represents the CAM weights of each body part.

Parallel decomposition of trajectories
The parallel decomposition of trajectories includes three parts.

The first part is the decomposition of non-locomotor movement. 
Let Xm

ij  be the behaviour trajectories of animals m with i frames and  
j dimensions, so the non-locomotor movement component YNM can be 
calculated as follows:

YNM = {Xm − J 1N

N
∑
n=1

Xm
nj} (7)

where J is all one vector, and N is the number of frames. After this step, 
the centre of the body of the animals can be aligned together.

The second part is the decomposition of locomotion. The locomo-
tion component YL can be calculated as follows:

YL = {∂X
m

∂i } (8)

The third part is the decomposition of distance. The distance 
component YD can be calculated as follows:

YD = √(X1 − X2)2 (9)

Feature representation of distance dynamics
The distance dynamics YDD can be calculated as follows:

{
YDD = fUMAP(YD), i < Ithres
YDD = fResMLP(YD), i ≥ Ithres

(10)

where fUMAP(·) is the UMAP mapping including the parameters n_neigh-
bors set to 199, and min_dist set to 0.3, Ithres is the threshold of frames 
set to 200,000 and fResMLP(·) is the feature representation including 
ResMLP. For fResMLP(·), first, the YD is randomly sampled to YDs according 
to Ithres. And the rest of YD is YDr. Then, YDs and YDDs = fUMAP(YDs), the UMAP 
of YDs, is used to train ResMLP for feature encoding. After the training, 
the ResMLP predicts the YDDr from YDr, and the YDD can be recombined 
by YDDs and YDDr according to the sample point.

The ResMLP is based on the residual module and multilayer per-
ceptron46,47. The residual block is constructed by a multilayer per-
ceptron with two layers. Each layer has 64 neurons, and two residual 
blocks are stacked to construct the residual part. The head of ResMLP 
is one 1D convolution layer and one global max pooling layer for the 
feature encoding of distance dynamics48. The output part of ResMLP 

is constructed by one fully connected layer with one sigmoid layer 
for the continuous value representation49. The activation function of 
ResMLP uses rectified linear unit layers49. The optimizer of ResMLP is 
Adam, the initial learning rate is set to 0.001, the mini-batch size is set 
to 2,000 and the epoch number is set to 100 (ref. 50). The final r.m.s.e. 
of validation is 0.02–0.06, and the training time of ResMLP is about 
4 min on NVIDIA GeForce RTX3090 GPU.

The time consumption comparison of ResMLP
After the manual time consumption test of UMAP, the quadratic func-
tion is used for the estimation time comparison. The coefficient of the 
quadratic function is 0.00002. The time consumption of ResMLP is 
estimated as a linear function with a slope set to 0.000008 and an inter-
cept set to 240 based on the training and prediction time of ResMLP. 
The functions of the time consumption are as follows:

TUMAP = kUMAPy2D (11)

TResMLP = kResMLPy2D + bResMLP (12)

where TUMAP is the time consumption of UMAP, kUMAP is the coefficient 
of quadratic function, yD is the number of distance components, TResMLP 
is the time consumption of ResMLP, kResMLP is the slope of ResMLP and 
bResMLP is the intercept.

The distance map
Let YE be the low-dimensional embedding of the SBeA, and YDM be the 
distance of YE. The YDM can be calculated as follows:

Y j
DM = 1

q j − pj + 1

qj

∑
i=pj

yiD (13)

where j is one of the points in YDM, p is the start time point of Y j
DM and  

q is the end time point of Y j
DM.

The map to body distance
The body distance is equivalent to YDM. The map distance YEM can be 
calculated as follows:

Y j
EM = arg min( Jy j

E − YE) (14)

where yE is one point of YE. The map to body distance YMB can be calcu-
lated as follows:

Y j
MB =

Y j
EM

Y j
DM

(15)

The adaptive watershed clustering
The variable of watershed clustering on 2D embeddings is the kernel 
bandwidth kb, which decides the density. The adaptive watershed 
clustering is designed to automatically choose the best density. The 
best density is determined by the stable number of clusters cst. To get 
cst, the clusters under certain kb are first calculated as:

cin = fWC(YE, kib) (16)

where fWC(·) is the watershed clustering and cn is the number of clusters. 
Then, the cst is calculated as:

cst = c
fMode(

|||
dcin
di
|||)

n (17)

where fMode(·) is the mode function. The cs is the lower bound of 
watershed clustering with a larger kernel bandwidth. To improve 
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the sensitivity of watershed clustering for the subtle differences 
of social behaviour, a threshold uthres is set to 0.9 to restrict kb in 
more fine grain. So, the number of sensitivity clusters cse can be 
calculated as:

cse = arg max (
|
|
|
dcin
di

|
|
|
− uthres × (fMax (

|
|
|
dcin
di

|
|
|
) − fMin (

|
|
|
dcin
di

|
|
|
))) (18)

where fMax(·) is the maximum function and fMin(·) is the minimum  
function. The cst and cse together determine the lower and upper bound 
of watershed clustering.

The cluster purity
The cluster purity is an indicator quantifying the uniformity of a cluster. 
Let P = {p1,p2,… ,pN}  be the ground truth indexes of all data, the 
Q = {q1,q2,… ,qN} is the cluster indexes of all data and N is the number 
of clusters, so the cluster purity CP can be calculated as:

Ci
P =

∑pi ∩ qi
∑pi ∪ qi

(19)

The cluster gram of grouped mice
To reveal the inherent patterns of behaviour fractions of each group, 
the cluster gram is first stacked group by group. Then, all the behaviour 
fractions are normalized according to the dimension of the subject and 
sorted by hierarchical clustering according to the dimension of the 
social behaviour module. The clustering tree is normalized for better 
visualization. Further, the behaviour fractions of each group are sorted 
according to Euclidean distance for the similarity metric. The initial 
row of each group for sorting is chosen by the maximum change rate 
Rm. The Rm can be calculated as:

Rm = ∑
|
|
|
dsim
di

|
|
|

(20)

where sm is the sorted social behaviour fractions by hierarchical 
clustering.

The angle spectrum clustering
The angle spectrum clustering is proposed and used to merge similar 
subclusters of behaviour in feature vector space. Let V be the feature 
vector matrix of social behaviour modules in PCA space, the angle 
spectrum As can be calculated as:

Asij = arccos (
vi ⋅ vj

|vi| × |vj|
) (21)

where v is one of the feature vectors in V. Then, the As is clustered 
by hierarchical clustering according to the 11 components of 99%  
variance explanation.

Statistics
Before hypothesis testing, data were first tested for normality by the 
Shapiro–Wilk normality test and for homoscedasticity by the F test. 
For normally distributed data with homogeneous variances, para-
metric tests were used; otherwise, non-parametric tests were used. All 
the analyses of variance (ANOVA) have been corrected by the recom-
mended options of Prism v.8.0. No data in this work have been removed. 
All related data are included in the analysis.

The usage of ChatGPT
ChatGPT was used to improve the language of this paper. The authors 
confirm that all changes were carefully reviewed to ensure that no 
changes to the content of the paper occurred in this process.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for result reproduction are provided with this paper. They 
are available in figshare with the hyperlink to the dataset (https://
figshare.com/projects/Social_behavior_atlas/162718), and DOI of 
the dataset (https://doi.org/10.6084/m9.figshare.22314994.v1). 
The SBM-VIS dataset44 is available under https://doi.org/10.6084/
m9.figshare.24597111.v1. The PAIR-R24M dataset33 is available under 
https://doi.org/10.6084/m9.figshare.14754374.v2

Code availability
We provide a code repository of SBeA at https://github.com/YNCris/
SBeA_release (https://doi.org/10.5281/zenodo.8238067)51. This reposi-
tory includes SBeA_tracker and SBeA_mapper. SBeA_tracker achieves 
3D pose tracking, which has a software interface to guide its usage. 
SBeA_mapper achieves the atlas mapping of social behaviours from 
3D pose trajectories with different configurations. It also contains the 
code to replicate the figures of this paper.
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Extended Data Fig. 1 | Performance comparison of SBeA and maDLC.  
a, Prediction error comparison of all test data. The RMSE of most of the body 
parts of SBeA is significantly lower than maDLC (two-way ANOVA followed by 
Sidak multiple comparisons test, N = 14400, adjusted P values from Nose to Tip 
Tail are <0.0001, <0.0001, <0.0001, 0.3810, >0.9999, 0.9972, 0.9975, >0.9999, 
<0.0001, 0.0025, >0.9999, 0.9928, <0.0001, <0.0001, <0.0001, and <0.0001). 
b, Prediction error comparison of close contact. The RMSE of all of the body 

parts of SBeA is significantly lower than maDLC or even with maDLC (two-way 
ANOVA followed by Sidak multiple comparisons test, N = 4602, adjusted P values 
from Nose to Tip Tail are <0.0001, <0.0001, <0.0001, 0.3060, <0.0001, 0.0040, 
0.0267, 0.9775, 0.7650, 0.9838, 0.0002, 0.2037, >0.9999, <0.0001, <0.0001, and 
<0.0001). Stems represent the mean values of each violin plot. RMSE: root-mean-
squared error, n.s.: no significant difference, *: P < 0.05, **: P < 0.01, ***: P < 0.001, 
****: P < 0.0001.
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Extended Data Fig. 2 | Performance comparison of SBeA and SLEAP.  
a, Prediction error comparison of all test data (two-way ANOVA followed by Sidak 
multiple comparisons test, N = 14400, adjusted P values from Nose to Tip Tail 
are <0.0001, <0.0001, <0.0001, 0.8054, <0.0001, <0.0001, 0.0030, <0.0001, 
0.4651, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, and <0.0001). 
b, Prediction error comparison of close contact (two-way ANOVA followed by 

Sidak multiple comparisons test, N = 4602, adjusted P values from Nose to Tip 
Tail are <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, 
<0.0001, <0.0001, <0.0001, <0.0001, <0.0001, >0.9999, <0.0001, <0.0001, and 
<0.0001). Stems represent the mean values of each violin plot. RMSE: root-mean-
squared error, n.s.: no significant difference, *: P < 0.05, **: P < 0.01, ***: P < 0.001, 
****: P < 0.0001.
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Extended Data Table 1 | Social behavior definitions for manual labelling

The definition of social behavior of mouse, bird, and dog refers to the Mouse Ethogram database (www.mousebehavior.org), and ref. 1–5. 1. Kort, R. et al. Shaping the oral microbiota through 
intimate kissing. Microbiome 2, (2014). 2. Clucas, B. Patterns of Behavior: Konrad Lorenz, Niko Tinbergen, and the Founding of Ethology. J Mammal 87, (2006). 3. Kaminski, J. & Marshall-Pescini, 
S. The Social Dog: Behavior and Cognition. The Social Dog: Behavior and Cognition (2014). doi:10.1016/C2012-0-06593-3. 4. de Chaumont, F. et al. Real-time analysis of the behaviour of 
groups of mice via a depth-sensing camera and machine learning. Nat. Biomed. Eng. 3, 930–942 (2019). 5. Wu, Y. E. et al. Neural control of affiliative touch in prosocial interaction. Nature 599, 
262–267 (2021).
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