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Reconstructing growth and dynamic 
trajectories from single-cell  
transcriptomics data

Yutong Sha    1, Yuchi Qiu    2, Peijie Zhou1 & Qing Nie    1,3,4 

Time-series single-cell RNA sequencing (scRNA-seq) datasets provide 
unprecedented opportunities to learn dynamic processes of cellular 
systems. Due to the destructive nature of sequencing, it remains challenging 
to link the scRNA-seq snapshots sampled at different time points. Here we 
present TIGON, a dynamic, unbalanced optimal transport algorithm that 
reconstructs dynamic trajectories and population growth simultaneously 
as well as the underlying gene regulatory network from multiple snapshots. 
To tackle the high-dimensional optimal transport problem, we introduce 
a deep learning method using a dimensionless formulation based on the 
Wasserstein–Fisher–Rao (WFR) distance. TIGON is evaluated on simulated 
data and compared with existing methods for its robustness and accuracy 
in predicting cell state transition and cell population growth. Using three 
scRNA-seq datasets, we show the importance of growth in the temporal 
inference, TIGON’s capability in reconstructing gene expression at 
unmeasured time points and its applications to temporal gene regulatory 
networks and cell–cell communication inference.

Single-cell RNA sequencing (scRNA-seq) methods offer a systematic and 
scalable approach to observing dynamics by sampling cells at different 
times1. However, cells are killed during sequencing and time-series 
scRNA-seq only provides unpaired snapshots. As a result, the cell line-
age relationship or cell trajectory between different sequenced times 
is missing and gene expression dynamics of individual cells are not 
traceable. Lineage tracing combined with scRNA-seq can reveal clonal 
relationships; however, it lacks single-cell resolution and is limited to 
in vitro in most cases2–6.

Pseudotime orders cells along differentiation trajectories, based 
on the assumption that developmentally related cells share similarities 
in gene expression7–11. RNA velocity utilizes the spliced-to-unspliced 
mRNA ratio to infer the cell transition direction12. Population balance 
analysis employs spectral graph theory to represent gene expres-
sion dynamics when the cellular system is under steady state13. The 
dynamical systems approach provides a natural way for reconstructing 

trajectory and velocity14,15. CoSpar infers a transition map by using 
additional experimental temporal clonal information16. Dynamo recon-
structs continuous velocity fields of cell transitions by modelling 
unspliced and spliced counts from time-resolved metabolic labelling 
data17. PRESCIENT learns differentiation landscapes by modelling cell 
differentiation as diffusion18. MuTrans utilizes multiscale reduction 
to quantify attractors and their transition probabilities in snapshot 
data, as well as constructing a low-dimensional dynamical manifold19. 
However, these methods usually assume stationarity or equilibrium19,20, 
and cannot capture temporally evolving dynamics, such as develop-
ment. The Fokker–Planck equation can be used for cell population 
dynamics21, but it is challenging to infer the parameters and solve the 
equations efficiently.

Optimal transport (OT), a classic mathematical theory on trans-
porting masses between two distributions22, has been recently used 
for time-series scRNA-seq measurements. Waddington-OT considers 
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death by incorporating it as a separate discrete static unbalanced OT 
model in the continuous setting25. Despite these advances, models 
and computational tools that can incorporate both gene expression 
velocity of each cell and cell population growth simultaneously are 
currently lacking.

Here we propose TIGON (Trajectory Inference with Growth via 
Optimal transport and Neural network) that infers cell velocity, growth 
and cellular dynamics by connecting unpaired time-series single-cell 
transcriptomics data. TIGON is a dynamic, unbalanced OT model. The 
method is based on Wasserstein–Fisher–Rao (WFR) distance, general-
izing OT to measures of different masses31–33. The approach consists 
of three unique features: (1) a dynamic unbalanced OT model that 
can simultaneously capture the velocity of gene expression for each 
cell and the cell population over time, (2) a mesh-free, dimensionless 
formulation based on WFR distance that is readily solvable by neural 
ordinary differential equations (ODEs) and (3) inference of temporal, 
causal gene regulatory networks (GRNs) and growth-related genes.

Through a simulated gene regulatory model, we show the utility of 
TIGON in modelling cell velocity and growth in a unified framework by 
comparing it to the balanced dynamic OT model. We further test and 
compare TIGON on three time-series systems including a lineage trac-
ing dataset with bifurcation, an epithelial-to-mesenchymal transition 

cells drawn from a probability distribution in gene expression space 
and uses OT to infer transport plans between two consecutive time 
points23. Another formulation of OT, known as dynamic OT, where the 
addition of time gives an alternative interpretation with links to fluid 
dynamics, surprisingly leads to a convex optimization problem24. Tra-
jectoryNet connects dynamic OT and continuous normalizing flows to 
infer continuous paths of cellular dynamics25. MIOFlow uses a geodesic 
autoencoder (AE) and a multiscale manifold distance to learn stochastic 
dynamics of snapshots by implementing OT flows on a data manifold26.

In such a model, the concept of velocity is introduced to describe 
the instantaneous change in gene expression over time for each cell. 
Because cell populations may change in time due to cell division and 
cell death (Fig. 1a), a growth term that captures such net change may be 
needed in the model. It is increasingly clear that without incorporating 
growth, the inferred dynamics for cell trajectory are often incomplete 
and less accurate13,27,28. Pioneering works, such as Waddington-OT and 
PRESCIENT, utilize growth hallmark gene expression to approximate 
growth18,23. However, the knowledge bases such as the Kyoto Ency-
clopedia of Genes and Genomes (KEGG)29 and Gene Ontology (GO)30 
may provide distinct gene lists and the inferred growth exhibits con-
siderable dependence on database-selection, as demonstrated in the 
present study. TrajectoryNet is the first method to consider growth/
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Fig. 1 | Illustrative diagram of TIGON. a, Illustrative graph of cell lineage 
dynamics which involves cell growth, transition and GRNs. b, The continuous 
cellular dynamics are described by a time-dependent density ρ(x,t). The input of 
time-series scRNA-seq snapshots generates density ρ at discrete time points.  
c, The density ρ is governed by a partial differential equation involving velocity v 
and growth g that are modelled by two neural networks. DL, deep learning.  
d,e, Outputs and downstream analysis of TIGON. d, Top left, velocity, where each 
dot represents a cell coloured by collection time and length of arrow denotes the 

magnitude of the velocity. Top right, trajectory of each cell. Bottom left, gene 
regulatory matrix of a selected cell or cell type. Bottom right, GRN, where the 
pointed arrows (blunt arrows) denote positive (negative) regulation from the 
source gene to the target gene and the width denotes regulatory strength.  
e, Left, inferred values of growth g are represented by colour. The red arrow 
denotes the gradient of g with its length corresponding to the magnitude. Right, 
the gradient of g determines the contributions of genes to the growth changes. 
Growth-related genes are selected based on those with the largest gradient.
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(EMT) dataset and an induced pluripotent stem cell (iPSC) differentia-
tion dataset with bifurcation. TIGON accurately recovers the velocity, 
trajectory and growth of cells, in addition to inferring temporal GRNs 
and cell–cell communication.

Results
Overview of TIGON
In the model, a group of cells is described by a time-dependent density 
ρ(x,t), where ρ(x,t) is the distribution of cell number over gene expres-
sion state x at a time t. The gene expression state x ∈ ℝd  is in the 
d-dimensional gene expression space ℝd. Time-series scRNA-seq data 
is used to generate density functions at the given discrete time points: 
ρi = ρ(x,ti), i = 1, 2,⋯,T using a Gaussian mixture model (Fig. 1b and Meth-
ods). The deep learning-based method in TIGON reconstructs ρ(x,t), 
by interpolating the input time-series densities ρi using a hyperbolic 
partial differential equation (Fig. 1c):13,21,28,31,32

∂tρ (x, t) + ∇ ⋅ (v (x, t)ρ (x, t)) = g (x, t)ρ (x, t) . (1)

The convection term ∇⋅(v(x,t)ρ(x,t)) describes the transport of cell 
density, and the velocity v (x, t) ∈ ℝd  describes the instantaneous 
change of gene expression for cells in gene expression state x at time t 
(Fig. 1d). The growth term, g(x,t), describes the instantaneous popula-
tion change (Fig. 1e). The velocity and growth together determine the 
cell density dynamics. Equation (1) is solved using unbalanced OT by 
optimizing the WFR cost31,32:

W0,T = T
T

∫
0

∫
ℝd

(|v (x, t)|2 + α|g (x, t)|2)ρ (x, t)dx dt. (2)

The WFR distance was previously used for a fluid system utilizing 
quadratic Wasserstein and Fisher–Rao metrics to describe kinetic 
energy and energy of growth, respectively31. Solving equation (1) and 
minimizing objective function in equation (2) require computing 
high-dimensional integrals in gene expression space. To deal with the 
high dimensionality, we obtain a dimensionless formulation for the 
WFR-based dynamic unbalanced OT problem in equation (2) (Lemma 
and Theorem in Methods). Briefly, two neural networks are used to 
approximate velocity v(x,t) ≈ NN1(x,t) and growth g(x,t) ≈ NN2(x,t) (Fig. 
1c). The formulation results in a system of ODEs, which is then solved 
and optimized by neural ODEs34–36 (Methods).

For cell trajectories, TIGON tracks the dynamics from progenitor 
to descendant state by integrating along the velocity field (Fig. 1d). 
The gene analysis describes how the state variable x (genes) inter-
act and contribute to velocity and growth. This can be conducted at 
single-cell resolution or cell-type level by averaging the quantities over 
a group of cells to reduce randomness and enhance inference robust-
ness. The GRN is constructed in a directed, signed and weighted graph 
with self-regulation from the regulatory matrix using the Jacobian of 

velocity J = { ∂vi
∂xj
}
d

i, j=1
, where ∂vi

∂xj
 describes the regulatory strength from 

source j-th gene to target i-th gene (Fig. 1d). In GRN, directions of edges 
illustrate the regulatory relation between source and target genes, and 
signs associated with these edges represent positive or negative regula-
tion—activation or inhibition, respectively—that occurs between genes. 
The contribution of each gene to growth is assessed from the gradient 

of growth ∇g = { ∂g
∂xj
}
d

j=1
. The gradient of growth describes growth 

potential in the gene expression space, with the top ones defined as 
growth-related genes (Fig. 1e).

Each cell in the data usually contains thousands of genes. To effi-
ciently use the TIGON method, we first perform dimension reduction, 
including uniform manifold approximation and projection (UMAP), 
principal component analysis (PCA) and an AE (Methods), to project the 

original data onto a low-dimensional space. The methods PCA and AE 
are reversible and differentiable, allowing for the direct approximation 
of the gradient of growth and computation of the regulatory matrix 
(Supplementary Note 1). TIGON requires the cell population at the 
measured time points as the input. When no prior information is given 
about cell population, we assume the cell population is represented by 
the number of cells collected at each time (Methods).

Benchmark on a three-gene model
We first tested various functionalities of TIGON and performed com-
parisons with several other existing methods for trajectory inference 
or GRN inference. We used an in-silico stochastic model based on a 
three-gene GRN, which consists of three cell states (Fig. 2a and Meth-
ods). The simulation generates two groups of cells with distinct cell 
dynamics (Supplementary Fig. 1a). One group of cells with highly 
expressed gene C remains static over time, illustrating a quiescent 
state that is vital for maintaining tissue balance. Another group of cells, 
initially in state A, undergoes a transition to state B. During transition, 
gene B upregulates cell division to enhance population growth.

Using five snapshots of simulated data (Supplementary Fig. 1a), 
TIGON identifies two groups of cells (Fig. 2b) and growth (Fig. 2c) 
that are consistent with the ground truth (Supplementary Fig. 1a,b). 
The velocity and gradient of growth show consistent directions and 
potentials of cells under transition from state A to state B, indicating 
the cooperative effects between velocity and growth in governing 
cellular dynamics (Fig. 2b,c). The gene analysis identifies gene B as 
the only gene that upregulates growth (Fig. 2d), and reconstructs the 
cell-type specific GRNs for cells under transition from A state to B state 
(Fig. 2e,f and Supplementary Fig. 2a,b). For cells undergoing transition, 
gene A and gene B are found to strongly inhibit each other, while gene 
C shows negligible regulatory strengths and unchanged expression 
near zero. TIGON correctly identifies the toggle-switch interactions 
between gene A and B.

Next, we compared TIGON with three OT-based trajectory infer-
ence methods (Fig. 2g–i). As the transition cells divide, the ratio of 
transition cells over quiescent cells increases (Supplementary Fig. 1c). 
Because of the incorporation of growth and velocity, TIGON accurately 
captures the dynamics of trajectories and the cell population ratios. 
The balanced OT, formed by removing the growth term g from TIGON, 
fails to predict the stationary quiescent cells, and consequently, a false 
transition is observed to compensate for changes in cell population 
(Fig. 2g and Supplementary Fig. 1c). On the other hand, two other bal-
anced OT-based models, TrajectoryNet25 and MIOFlow26, successfully 
circumvent the false transition by employing different objective func-
tions and additional regularization terms (Supplementary Fig. 1d,e). 
However, their computed velocity shows disorganized directions with 
large magnitudes in the quiescent state or the late stage of transition 
state. Moreover, they show a relatively unchanged population ratio, 
which is inconsistent with the ground truth (Supplementary Fig. 1c). 
Overall, TIGON achieves better accuracy in predicting velocity and 
the ratio of cell population between two groups (Fig. 2h,i), whereas 
TrajectoryNet has better accuracy in trajectory prediction (Supple-
mentary Fig. 1f and Supplementary Notes 2 and 3). Furthermore, we 
made comparisons with single-cell pseudotime methods through the 
standard metrics9 used in the benchmark (Supplementary Fig. 1g and 
Supplementary Notes 2 and 3).

Finally, we compared GRNs inferred between TIGON and 12 other 
GRN inference methods (Supplementary Notes 2 and 3). Specifically, 
the 11 methods implemented in BEELINE37 and CellOracle38 were 
included for comparison. Among these 13 methods, TIGON and Cel-
lOracle are the only two methods that consider both causal effects and 
cell-type specific GRNs, while TIGON allows more complete network 
architecture, including the self-regulation for a gene (Fig. 2j, Sup-
plementary Fig. 3 and Supplementary Table 1). Together, we found 
that in both the area under the precision-recall curve and the receiver 
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operating characteristic curve (AUROC), two metrics used in BEE-
LINE benchmark for classifying directed edges in GRN, TIGON has the  
highest values. In addition, TIGON achieves the second and third high-
est value in the Pearson and Spearman correlations, respectively,  
in predicting the weights of GRN’s edges with directions and signs.

Model predictions align with lineage tracing experiments
We applied TIGON to a temporal scRNA-seq dataset in mouse hemat-
opoiesis using a lineage tracing technique39. This dataset uses additional 

barcodes to track clones over time where cells at the same clone are 
descendants of the same progenitor cell at day 0, providing informa-
tion for trajectories and growth of cells (Methods).

Following the original study39, we pick cells in clones committing 
to neutrophils (Neu) and monocytes (M) fates at day 2, 4 and 6 (Fig. 3a). 
The data was first projected to the reduced two force-directed layouts 
(SPRING plots) after batch correction among different experiments. A 
bifurcation is clearly observed where early stage progenitor cells dif-
ferentiate into Neu and Mo fates (Fig. 3a). Regarding the differentiation 
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Fig. 2 | TIGON’s performance on three-gene simulated data. a, Illustrative 
diagram of the GRN of the three-gene model. b,c, Cellular dynamics for cells 
sampled at time = 0. b, Velocity and trajectory of cells. For each cell, its velocity 
is represented by black arrows, and its dynamic trajectory is represented by 
the grey curve. Here 20 randomly sampled cells from initial density at time = 0 
are shown. c, Values of growth and gradient of growth. For each cell, the colour 
denotes its values of growth, and the red arrow shows its gradient of growth. At 
each time point, 100 sampled cells are shown. d–f, Gene analysis for transition 
cells at time = 5. d, Gradient of growth. e, Regulatory matrix. f, GRN displayed 
in a form of weighted directed graph. Pointed arrows (blunt arrows) denote the 
activation (inhibition) from the source gene at the starting point to the target 
gene at the end point. Width of lines denotes the regulatory strength. g, Velocity 

and trajectory inference from balanced OT by moving the growth term in TIGON. 
Identical 20 cells at time = 0 are selected as in b. h,i, Comparisons between  
TIGON and OT-based trajectory inference methods measured by accuracy in 
velocity predictions (h), and accuracy in predicting ratio of cell population  
(i) between transition cells and quiescent cells. The accuracy is measured by the 
m.s.e. The error bars show one standard deviation above and below the mean for 
each method from n = 5 independent repeats. Scatter plots show the accuracy 
from each repeat. j, Comparison of GRN inference methods. GRNs are calculated 
for transition cells at time = 0, 10, 20, …, 40. Barplots show the average GRN 
edge classification accuracy over these time points quantified by the area under 
precision-recall curve (AUPRC). Functionalities of each method are summarized 
in a rectangular box on the top of the bar.
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tendency, the reconstructed instantaneous cell transition velocity 
shows that bifurcation potentials are already detected at the early 
stage (day 2), becoming stronger at the later stages. At the final stage 
(day 6), the majority of cells commit their fates while continuing to 
move toward the distal end in each bifurcation branch. The trajectory 
analysis further demonstrates the bifurcation by tracking differentia-
tion of each cell (Fig. 3b). To examine the predicted growth (Fig. 3c), 
we used shared clonal lineage barcodes to construct the ground truth 
growth for comparison (Fig. 3d, Methods and Supplementary Note 2). 
The Spearman and Pearson correlation between inferred growth and 
ground truth growth have the values of 0.44 and 0.62, respectively.

Next, we compared TIGON with other trajectory inference meth-
ods. The lineage tracing data tracks trajectories for clones of cells, 

while the computational methods infer trajectories for individual 
cells. Thus, the experiments cannot directly provide ground truth for 
computed trajectories. Instead we compared the fate probabilities for 
each cell between experiment and computations. We calculated the 
experimental clonal fate probability for each clone at day 2, based on 
the proportion of their descendant cells committing to Neu fate for 
that clone39. Similarly, the fate probability, defined on each cell at day 2  
from computational methods, is the proportion of its descendant cells 
committed to Neu fate (Supplementary Note 2).

The clonal fate probabilities exhibit binary-like behaviours for 
cells at day 2 (Fig. 3e). The fate probability from TIGON shows a similar 
pattern with clonal fate probability. Unlike clonal fate probability,  
cells with two distinct fates predicted by TIGON are well-separated. 
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Fig. 3 | TIGON’s performance on the lineage tracing dataset. a–c, The data is 
visualized in force-directed layouts (SPRING plots). Cellular dynamics inference 
for velocity (a), trajectory (b) and growth and gradient of growth (c). a,b, Solid 
dots are cells predicted by TIGON where 20 cells were initially sampled from the 
density at day 2 and their snapshots at three time points are shown in different 
colours. The circles denote all observed cells from the scRNA-seq data. c, A total 
of 100 cells randomly sampled from densities at each time point for days 2, 4 and 
6 are shown. d, Comparison between values of growth at day 2 and day 4 inferred 
by clonal barcode and TIGON in SPRING plots. Boxplots show distributions of 
growth for 5,210 cells in a five-number summary, where the centre line shows 
the median, the upper and lower limits of the box which show the IQR, spanning 

from the 25th to the 75th percentiles, and upper and lower whiskers show the 
maximum and the minimum. e, Fate probability for Neu fate estimations for 
day 2 cells using different methods that are listed from left to right in two rows: 
clonal fate probability from lineage barcode, TIGON, TrajectoryNet, MIOFlow, 
population balance analysis (PBA), Waddington-OT (WOT) and FateID. The clonal 
fate probability is taken as the ground truth for comparison. f, Barplots show 
accuracy in predicting clonal fate probability using (top) Pearson correlation 
and (bottom) the AUROC. The error bar for TIGON shows one standard deviation 
above and below the mean from n = 21 independent repeats. Scatter plots show 
the accuracy from each repeat.
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Such binary-like fate probability is also captured by TrajectoryNet25 
and MIOFlow26. In contrast, three approaches used in the original 
study39: population balance analysis (PBA)13, Waddington-OT (WOT)23 
and FateID40, all fail to capture such binary-like behaviour. In particular 
cells away from the branching point show uncertain fates with fate 
probability around 0.5 (Fig. 3e). TIGON and MIOFlow show at least a 
5% higher Pearson correlation with the ground truth clonal fate prob-
ability than those three approaches, and at least a 7% higher AUROC in 
fate classification with a threshold 0.5 (Fig. 3f).

Reconstructing cellular dynamics in EMT
We next applied TIGON to a time-series scRNA-seq dataset from an 
A549 cancer cell line, in which cells were exposed to TGFB1 to induce 
EMT at the first five time points41. Cells collected at different time 
points were cultured in vitro with the identical initial cell numbers so 
that the numbers of cells collected at different time points directly 
represent the dynamics of cell population. We trained an AE with a 
ten-dimensional latent space, and used the latent space as the input for 
TIGON. To visualize outputs, we further projected the ten-dimensional 
latent space to two-dimensional UMAP. The time-series data indicates 
the early stage epithelial cells differentiate into intermediate state and 
then the final mesenchymal state (Fig. 4a). The inferred trajectories 
show similar transition dynamics. The reconstructed gene expression 
space from the latent space via AE shows decreasing expression level 
for two epithelial (E) markers (CDH1 and CLDN1) and increasing values 
for four mesenchymal (M) markers (VIM, CDH2, FN1 and MMP2) over 
time, indicating that TIGON can reconstruct dynamic gene expression 
(Fig. 4c, Supplementary Fig. 4a and Supplementary Note 1). Moreover, 
the patterns of TIGON-inferred growth exhibit higher values at the 
intermediate stage compared to the epithelial (E) or mesenchymal (M) 
stage (Fig. 4b), aligning with the previously reported strong stemness 
in intermediate stage cells42,43.

We further study GRNs involving in those two E markers and four 
M markers. Inhibitions from E markers to M markers were observed, 
especially to VIM and FN1 (Fig. 4d,e and Supplementary Fig. 4b,c). To 
study the temporal causal effects of transcription factors (TFs) on 
their target genes, we found that SNAI1, a canonical TF in EMT, exhibits 
positive regulation on VIM and FN1 (Fig. 4f). This finding aligns with the 
results of a previous study44. More potential target genes of SNAI1 were 
predicted from our GRN analysis (Fig. 4f and Supplementary Fig. 4d). 
To study the growth-related genes (Fig. 4g), we found that five out of 
the top ten growth-related genes are involved in cell growth reported 
in the UniProtKB database45. Specifically, they are ANGPTL4, JUNB, 
C2orf82, NMB and B4GALT1. Interestingly, B4GALT1 has been reported 
to be involved in epithelial cell proliferation45.

The inferred cellular dynamics provide single-cell gene expres-
sion levels at the unmeasured time points (Methods). Here we used 
CellChat46 to explore the cell–cell communication changes between 
E, M and intermediate state over time. At day 1, there is a noticeable 
upregulation in the COLLAGEN, FN1, SPP1 and LAMININ signalling 
pathways (Fig. 4h,i). An interesting observation is that COLLAGEN and 
SPP1 are downregulated at day 2, followed by upregulation at day 3,  
which contrasts with the downward trend perceived when consider-
ing the original measurement points (days 1, 3 and 7). Specifically, the 
COLLAGEN outgoing strength from the intermediate state decreases 
on day 2, then its outgoing strength from the M state increases on day 3  

(Supplementary Fig. 5), while SPP1 follows a similar trend. Those cel-
lular communication results require TIGON’s ability to reconstruct 
information at the unmeasured time points.

To study consistency across different dimension reduction 
methods, we analysed PCA and AE using two to ten dimensions for 
TIGON (Supplementary Figs. 6–9 and Supplementary Note 4). In 
higher dimensions, the computed velocity shows consistent direc-
tion, with the value of the cosine similarity greater than or around 0.5 
(Supplementary Fig. 7a). As the dimensionality increases, the mean 
squared error (m.s.e.) for velocity between two different dimensions 
using the same dimension reduction method diminishes, suggestive 
of higher consistency (Supplementary Fig. 7b). We then calculated 
the Pearson correlation of the inferred growth between every pair 
of different dimension reductions, which yields values around 0.5 
or higher (Supplementary Fig. 7c). The Pearson correlation of GRNs 
remains positive across all dimension reduction methods, exceeding 
or hovering around 0.5 when the dimension is greater than two (Sup-
plementary Fig. 7d). For the gradient of growth, the correlation is 
similarly above 0.5 for dimensions greater than two (Supplementary 
Fig. 7e). Taken together, TIGON yields relatively consistent results 
across different dimension reductions and a wide range of latent 
space dimensions.

Last, we compared TIGON with two other trajectory inference 
methods, MIOFlow26 and scVelo12. Unlike the velocity inferred from 
TIGON and MIOFlow, the velocity learned from scVelo seems to show 
unorganized directions, inconsistent with the temporal transition 
patterns (Fig. 5a–d). While using KEGG annotations of cell cycle and 
apoptosis genes which were also highly variable in the dataset to esti-
mate growth, an approach described in a previous work18, the cells at 
the final stage achieve highest potential to divide (Fig. 5e,f and Sup-
plementary Note 2). It is different from the experimental observations 
where smaller numbers of cells were observed at day 7 indicating low 
dividing potential (Fig. 5e,f)41. Using cell cycle and apoptosis genes 
from GO draws opposite conclusions to KEGG: the growth decreases 
during EMT. The inferred growth from the GO gene list may better 
fit with experimental observations. Nonetheless, the estimation of 
growth from genes highly depends on prior knowledge (for exam-
ple, gene sets). Without prior knowledge of cell cycle and apoptosis 
genes, TIGON provides an unbiased approach in learning cell transition  
and growth.

Identifying bifurcation of directed differentiation in iPSCs
Finally, we studied single-cell qPCR datasets at eight time points, 
showing a bifurcation process for differentiation of iPSCs in cardio-
myocytes47 (Fig. 6a,b). The lineage-branching emerges after day 3 sug-
gesting a bifurcation from a progenitor state to either a mesodermal 
(M) state or an endodermal (En) state.

TIGON reconstructs the instantaneous cell velocity and transition 
trajectory in driving the bifurcation process (Fig. 6a,b). At the early 
stages, cells have similar directions of velocity, but the heterogene-
ity increases over time. At the branching time (day 3), cells show two 
distinct directions of velocity, and they are segregated into M and 
En fates, respectively. During differentiation the two groups of cells 
remain well-separated. Large values of growth were observed near 
the branching time from day 2 to day 3 (Fig. 6c), suggesting a strong 
dividing potential at this point.

Fig. 4 | TIGON’s performance on the EMT scRNA-seq dataset. Results were 
obtained from a ten-dimensional latent space from AE. a,b, Visualization of 
TIGON’s outputs on UMAP space. a, Trajectories of 20 cells that are initially 
sampled from the density at 0 h, where solid dots show their snapshots at five 
time points. Circles show the observed cells from the scRNA-seq data. b, Values 
of growth for all observed cells. c, Trajectories and velocity for cells at gene 
expression space. Identical cells in a are shown in c. d,e, Regulatory matrix (d) 
and GRN (e) for six EMT marker genes for cells at 8 h. f, Regulatory matrix for top 

20 target genes of an EMT TF SNAI1 for cells at 8 h. g, Gradient of growth for top 
ten growth-related genes for cells at 8 h. h, Barplots of information flow for the 
four signalling pathways with highest information flow inferred by CellChat.  
i, Chord diagrams from CellChat for cell–cell communications between epithelial, 
intermediate and mesenchymal cells at different time points. The inner thinner 
bar colours represent the targets that receive signal from the corresponding 
outer bar. The inner bar size is proportional to the signal strength received by  
the targets.
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In this system, NANOG, SOX17 and HAND1 are marker genes for 
stem cells, En state and M state, respectively (Fig. 6d). The inferred 
GRNs in the three cell types consistently indicate self-activation 
for all three marker genes and mutual inhibitions between any 
pair of these marker genes (Fig. 6e–h and Supplementary Fig. 10). 
Interestingly, the toggle-switch interaction between HAND1 and 
SOX17, self-activation and mutual inhibition between two genes, 
was previously reported47. We then analysed the contribution of 
genes to the growth (Fig. 6f ). The top five candidates at day 2 are 
all previously reported as growth-related genes in the UniProtKB 
database45. Specifically, PTCH1 is in a pathway playing a role in cell 
growth48, PDGRA and FSTL1 are growth factors49,50, NANOG is a TF 

involved in embryonic stem cell proliferation51 and HRT2 promotes 
the cell growth52.

To study the effect of dimension reductions, we further performed 
TIGON on the top eight principal components (PCs) (Supplementary  
Fig. 11). We found an ‘elbow’ around eight for the explained variances 
ratio versus PCs, suggesting that the majority of the information is cap-
tured using the first eight PCs (Supplementary Fig. 6f). Similar to the 
study in four PCs, the bifurcation takes place after day 3 and the largest 
growth is observed near the branching time from day 2 to day 3. The 
inferred growth yields a Pearson correlation of around 0.6 or higher (Sup-
plementary Fig. 12e). The three marker genes indicate self-activation 
and mutual inhibition to each other (Supplementary Fig. 11d,e),  
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Fig. 5 | Comparisons of TIGON with trajectory inference or growth inference 
methods on the EMT scRNA-seq dataset. Results were obtained from three-
dimensional UMAP space. a,b, Visualization of TIGON’s outputs. a, Trajectories 
of 20 cells that are initially sampled from the density at 0 h, where solid dots 
show their snapshots at five time points. Circles show the observed cells from the 
scRNA-seq data. b, Values of growth. At each time point, 100 cells are randomly 
sampled from the density. c, Comparisons of (top) inferred velocity and (bottom) 
growth. d, Velocity for all observed cells from the scRNA-seq data inferred by 
(left) TIGON, (middle) MIOFlow and (right) scVelo. e, Values of growth for all 

observed cells inferred by (left) TIGON, (middle) KEGG and (right) GO. f, Violin 
plots for inferred values of growth at different time points: (left) TIGON, (middle) 
KEGG and (right) GO. The width of the violin plot corresponds to the density of 
the data, showing a visual representation of the distribution at different growth 
values. Inside each violin, the white dot shows the median. The thick central bar 
of the box plot represents the IQR, spanning from the 25th to the 75th percentiles. 
The thin grey whiskers extend from the IQR to the maximum and minimum 
values within 1.5 times the IQR. Sample sizes for each time point from day 0 to day 
7 are 577, 885, 788, 754 and 129, respectively.
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suggesting consistent inference of GRNs. The top growth-related genes, 
such as NOTCH1 and FGF12, are known to be linked to growth, even 
though their order in the list is different from the study of four PCs.

Discussion
TIGON is a deep learning method for extracting dynamical and gene 
mechanistic information from time-series single-cell transcriptomics 
data, allowing the coupling between the velocity of gene expression for 

each cell and the population growth. The dynamic unbalanced OT based 
on WFR distance shows promise for integrating temporal datasets while 
capturing cell division and death. As an efficient high-dimensional 
mesh-free deep learning method for the OT problem, TIGON may have 
other applications such as time-series single-cell ATAC-seq data or 
spatial transcriptome data. The computational methods in TIGON 
for solving dynamic unbalanced OT can be also applied to other areas 
such as image-image translation53,54.
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Using reversible dimension reduction is important for TIGON 
to analyse dynamics of individual genes and their GRNs. Three meth-
ods, including AE, PCA and reversible UMAP55 (Supplementary Fig. 12 
and Supplementary Notes 4 and 5), have been examined for various 
datasets. For gene analysis, reversible and differentiable dimensional 
reductions are required, such as AE and PCA. The dimension of the 
latent space usually needs to be greater than two to ensure the accuracy 
and reliability of results. The ‘elbow’ plot in PCA or a similar plot for 
reconstruction errors in AE are useful tools to determine an appropri-
ate dimension (Supplementary Fig. 6).

The objective function in TIGON combines reconstruction errors 
and the cost function in WFR distance31,32. TIGON presents an optimal 
approach by combining short and long-term reconstruction errors to 
reduce the integration errors at different temporal scales (Supplemen-
tary Fig. 13 and Supplementary Note 6). Furthermore, different weights 
between Wasserstein and Fisher–Rao in WFR can produce consistent 
outputs ensuring the robustness of TIGON (Supplementary Figs. 14 
and Supplementary Note 7).

Traditional mesh-based methods suffer from the curse of dimen-
sionality in solving the high-dimensional dynamic OT problem. For a 
uniform spatial mesh with N grids at each dimension, the O(Nd) calcu-
lation is needed for a d-dimensional system, which is often infeasible 
for high dimensions. Deep learning frameworks provide an efficient 
solution to such high-dimensional systems56. In this work, we have 
shown that the dimensionless solver in TIGON can directly solve the 
OT problem in ten dimensions. Solving a higher-dimensional prob-
lem (for example, 103–104 dimensions) will likely lead to additional 
computational challenges, such as stiffness in ODEs and large memory 
requirements. Development of efficient, stable and accurate numeri-
cal solvers57 coupled with memory-efficient neural ODEs35 methods 
may be critical.

Different experiments or techniques in transcriptomics data 
collection often lead to batch effects for different samples. We either 
used the low-dimensional representation from the original study 
where the batch correction has been performed or applied the Seurat 
protocol to remove batch effects. Since TIGON requires dimension 
reduction as a preprocessing step, a robust low-dimensional repre-
sentation of the data is critical. In addition, TIGON requires adequate 
numbers of cells and time points (Supplementary Fig. 15 and Sup-
plementary Note 8). Moreover, a small variance for the initial cell 
density is necessary to capture gene expression or low-dimensional 
space (Supplementary Fig. 16).

Cell populations may change over time due to cell division and 
death, which is important to include in the dynamical modelling of 
scRNA-seq data13,58. TIGON provides a fully unbiased approach to infer 
growth without the need for a preselected list of growth genes. The 
positive cosine similarity between velocity and gradient of growth 
in the transition cells in our study shows important synergy between 
growth and transition that needs to be considered in the model (Sup-
plementary Fig. 17 and Supplementary Note 9).

Prior knowledge may be further considered to improve model 
accuracy25. For example, cells with different levels of potency may be 
identified by cell annotation to incorporate growth heterogeneity using 
different regularizations. RNA velocity may be added to constrain the 
transition velocity, and unspliced counts information may be useful to 
regularize the gene regulatory functions59. While TIGON reconstructs 
velocity and growth simultaneously, other important factors, such as 
signals from the microenvironment and communication among cells, 
may be important to include. Direct incorporation of cell–cell com-
munication in the model remains challenging, particularly, for a large 
number of interactive cells in the high-dimensional gene expression 
space60,61. Applications of cell–cell communication inference methods, 
such as CellChat46 or exFINDER62, to single-cell gene expression inferred 
at unmeasured time points by TIGON, can produce dynamic cell–cell 
communication networks. For example, some cell–cell communication 

links may be similar at the measured time points; however, substan-
tial changes take place between those points due to gene dynamics 
involved in such communications. Overall, TIGON provides an effective 
framework to connect temporal measurements for predicting novel 
dynamics that may not be seen directly from the data.

Methods
Data preprocessing
To efficiently use TIGON, for lineage tracing39, EMT41 and iPSC47 data-
sets, data was first projected to a low-dimensional space and taken 
as input for the TIGON method. We adopted the reduced two force- 
directed layouts (SPRING) space for lineage tracing data with batch 
correction39. For the EMT and iPSC datasets, four dimension reduc-
tion methods, including PCA, UMAP, reversible UMAP55 and AE, were 
employed. Specifically, AE was implemented in Pytorch packages63 and 
the other three methods were implemented using Seurat packages64. 
After obtaining the data at the low-dimensional space, each axis of the 
reduced space was scaled to [−2,2]. We have shown that the dimension-
less solver in TIGON is capable to directly solve the OT problem around 
ten dimensions.

The time-series data was preprocessed before dimension reduc-
tion. For the EMT dataset, we obtained the processed Seurat (v.3)64 
object from the original paper41. In the Seurat object, the data has been 
scaled and regressed out the potential batch effects from different 
experiments. For iPSC dataset, we obtained the log2Ex values from 
the original work with batch correction. Next, the top 3,000 highly 
variable genes in EMT were kept, and all 96 genes in iPSCs were used. 
When applying PCA, the log-transformed matrix was standardized such 
that each gene has zero mean and unit variance over all cells. UMAP and 
reversible UMAP used top 30 PCs. AE takes the log-transformed matrix 
without standardization, and details of its architecture and training 
procedure are discussed in Supplementary Note 1.

For lineage tracing dataset, we followed the original computa-
tional work to pick cells in clones committing to neutrophils (Neu) and 
monocytes (M) fates at days 2, 4 and 6 (ref. 39). For the EMT dataset, 
we picked data at the first five time points that are exposed to TGFB1 
to induce EMT41. For the iPSC dataset47, data at all eight time points 
were used.

Reconstruction of cell density
We first reconstructed cell densities generated from the time-series 
data within a d-dimensional space, using either the original gene 
expression space or the low-dimensional space obtained from dimen-
sion reduction. Suppose the time-series discrete data are given by

(t1,C1) , (t2,C2) ,⋯ , (tT,CT) (3)

where Ci = {c( j)ti }
Ni

j=1
∈ ℝNi×d  is a set of Ni independent and identically 

distributed samples drawn from the distribution at a d-dimensional 
space at time ti. If no prior information about the mass is given, the 
number of samples Ni is proportional to the relative cell population. 
Here, we assume that when calculating the relative cell population 
changes over time, the variability introduced by sequencing tech-
niques, such as cells not successfully sequenced, is negligible. We 
generated the density ρti using a Gaussian mixture model that combines 
Ni Gaussian distributions with identical weights, each corresponding 
to a sample point. Each of these distributions has its mean at a corre-
sponding sample point and a covariance matrix that is a scaled identity 
matrix Σ = σI ∈ ℝd×d with a constant standard deviation σ for all sample 
points. The density ρti is then obtained by the mixture Gaussian distri-
bution multiplied by the relative population with respect to initial time 
point t1, which is Ñi.

For the lineage tracing dataset, one set of initial cells were cultured, 
and one portion of all remaining cells were collected for sequence at 
each time point. They are 50%, 30% and 100% for day 2, day 4 and day 6, 
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in the experiment, respectively. The relative cell population is Ñ1 = 1, 
Ñ2 = N2/30%

N1
 and Ñ3 = N3/70%

N1
, for day 2, day 4 and day 6, respectively.

For the EMT dataset, samples collected at different time points 
were cultured from the identical initial number of cells. In this case, the 
numbers of samples at different time points are directly proportional 
to the total cell population. Similar to the iPSC dataset, the relative cell 
population is defined as Ñ1 = N1

N1
= 1, Ñ2 = N2

N1
, …, ÑT = NT

N1
.

Dynamic optimal transport
This section presents brief reviews of dynamic OT introduced by 
Benamou and Brenier24. This framework models the transport in a 
continuum sense utilizing the fluid dynamic framework. Suppose the 
data is subject to a smooth and time-dependent density ρ(x,t) ≥ 0, the 
spatial-temporal dynamics of the density is governed by the continu-
ity equation

∂tρ + ∇ ⋅ (vρ) = 0 (4)

for all t ∈ [0,T], x ∈ ℝd  and the initial and final conditions:

ρ (⋅,0) = ρ0,ρ (⋅,T ) = ρT (5)

where v (x, t) ∈ ℝd describes the velocity field of the density movement. 
The transport map from the initial to final conditions is not unique, 
and OT adds a transport cost function being minimized to further 
constrain the optimization problem.

Considering the transport cost function between two points as 
the squared Euclidean distance, c(x,y) = |x−y|2, the cost function for 
dynamic OT is:

T
T

∫
0

∫
ℝd

|v (x, t)|2ρ (x, t)dxdt. (6)

The minimized cost function is equivalent to Wasserstein distance 
in the case with p = 2 (ref. 24).

Dynamic unbalanced optimal transport
A major constraint of dynamic OT is the assumption of the unchanged 
total mass. The mass conservation is not an appropriate approach in 
modelling biological systems for population distributions that involve 
birth (mass creation) and death (mass destruction). The unbalanced 
OT is increasingly used for connecting a time-series of densities with 
different mass. It introduces a growth term g (x, t) ∶ ℝd × [0,T ]→ℝ  to 
the continuity (equation (4)):

∂tρ + ∇ ⋅ (vρ) = gρ,

ρ (⋅,0) = ρ0,ρ (⋅,T ) = ρT
(7)

WFR distance31,32 has been used to constrain the transport dynam-
ics with respect to both kinetic and growth energy. It minimizes the 
combination of quadratic Wasserstein and Fisher–Rao metrics simul-
taneously. The function being minimized for WFR distance in period 
[0,T] is:

W0,T = T
T

∫
0

∫
ℝd

(|v (x, t)|2 + α|g (x, t)|2)ρ (x, t)dxdt, (8)

where the minimum of T∫T0∫ℝd |v (x, t)|2ρ (x, t)dxdt refers to the square of 
Wasserstein metric, and the minimum of T∫T0∫ℝd |g (x, t)|2ρ (x, t)dxdt  
refers to the square of Fisher–Rao metric. α is a hyperparameter to 
balance the effects of transport and growth explicitly, that is between 
quadratic Wasserstein and Fisher–Rao metrics. α = 1 was mainly exam-
ined in this work. Different values of α lead to consistent behaviours 
(Supplementary Fig. 14 and Supplementary Note 7).

Dimensionless formulation
Numerical solvers may become computationally inefficient for 
high-dimensional problems. TIGON provides a dimensionless formula-
tion for the high-dimensional dynamic unbalanced OT (equation (7))  
with its cost function (equation (8)).

Continuity equation with growth term
We first converted the high-dimensional continuity equation with the 
growth term into a system of ODEs based on a set of sample points 
outlined in the Lemma. The dynamics of density is then decomposed 
into each sample point along its trajectory x(t).

Lemma: If density ρ (x, t) ∶ ℝd × [0,T ] → ℝ+ , velocity field 
v (x, t) ∶ ℝd × [0,T ] → ℝd  and growth g (x, t) ∶ ℝd × [0,T ]→ℝ satisfy

{
∂tρ (x, t) + ∇ ⋅ (v (x, t)ρ (x, t)) = g (x, t)ρ (x, t)

ρ (x,0) = ρ0 (x)

for all 0 ≤ t ≤ T where {
dx(t)
dt

= v (x, t)
x (0) = x0

, then we have d(lnρ)
dt

= g − ∇ ⋅ v.

Proof:

∂ρ
∂t

= gρ − ∇ ⋅ (vρ) = gρ − ∇ρ ⋅ v − ρ∇ ⋅ v

dρ
dt

= ∇ρ ⋅ dx
dt

+ ∂ρ
∂t

= ∇ρ ⋅ v + ∂ρ
∂t

= ∇ρ ⋅ v + gρ − ∇ρ ⋅ v − ρ∇ ⋅ v

= gρ − ρ∇ ⋅ v

So that d(lnρ)
dt

= g − ∇ ⋅ v

Cost function in WFR
Then, we derived an equivalent dimensionless form of the cost func-
tion in WFR metric:

W0,T = T
T

∫
0

∫
ℝd

(|v (x, t)|2 + α|g (x, t)|2)ρ (x, t)dxdt

= T𝔼𝔼x0∼ρ0

T

∫
0

(|v (x, t)|2 + α|g (x, t)|2)ρ (x, t)dt

(9)

where 𝔼𝔼x0∼ρ0 [⋅] denotes that the expectation for random variable x0 
followed distribution ρ0. We assume the characteristic curves do not 
intersect, and the derivation is given in the theorem below:

Theorem: If smooth density ρ (x, t) ∶ ℝd × [0,T ] → ℝ+, velocity 
field v (x, t) ∶ ℝd × [0,T ] → ℝd and growth rate g (x, t) ∶ ℝd × [0,T ]→ℝ 
satisfy

{
∂tρ (x, t) + ∇ ⋅ (v (x, t)ρ (x, t)) = g (x, t)ρ (x, t)

ρ (x,0) = ρ0 (x)

for all 0 ≤ t ≤ T where {
dx(t)
dt

= v (x, t)
x (0) = x0

, then for any measurable function 

f (x, t) ∶ ℝd × [0,T ] → ℝd, we have

T

∫
0

∫
ℝd

f (x, t)ρ (x, t)dxdt = 𝔼𝔼x0∼ρ0

T

∫
0

f (x, t) e∫
t
0 g(x,s)dsdt.
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Proof:
Let σ(x0,t) = x(t), then by Jacobi’s formula

∂
∂t
|||
∂σ
∂x0

||| = Tr (adj ( ∂σ
∂x0

) ∂
∂t

∂σ
∂x0

)

= Tr (adj ( ∂σ
∂x0

)
∂( ∂σ

∂t )

∂x0
)

= Tr (adj ( ∂σ
∂x0

) ∂v
∂x

∂σ
∂x0

)

= Tr ( ∂σ
∂x0

adj ( ∂σ
∂x0

)∇v)

= |||
∂σ
∂x0

|||∇ ⋅ v

The fourth equation utilizes the symmetric property of the trace: 
Tr(AB) = Tr(BA). The last equation utilizes the property of determinant: 
det(A)I = A adj(A). Then we have:

d
dt
(ρ |||

∂σ
∂x0

|||) =
dρ
dt
|||
∂σ
∂x0

||| + ρ
d
dt
(|||

∂σ
∂x0

|||)

= ( ∂ρ
∂x
v + ∂ρ

∂t
) |||

∂σ
∂x0

||| + ρ
|||
∂σ
∂x0

|||∇ ⋅ v

= (∇ρ ⋅ v + gρ − ∇ ⋅ (vρ)) |||
∂σ
∂x0

||| + ρ
|||
∂σ
∂x0

|||∇ ⋅ v

= gρ |||
∂σ
∂x0

|||

Let ρ |||
∂σ
∂x0

||| = M (t), then M (t) = M (0) e∫
t
0 g(x,s)ds

∫
ℝd

f (y, t)ρ (y, t)dy = ∫
ℝd

f (σ (x0, t) , t)ρ (σ (x0, t) , t)
|||
∂σ
∂x0

|||dx0

= ∫
ℝd

f (σ (x0, t) , t)ρ (σ (x0,0) ,0) e∫
t
0 g(x,s)dsdx0

= 𝔼𝔼x0∼ρ0 f (x, t) e∫
t
0 g(x,s)ds

Reconstruction errors
The Lemma allows the computation of density dynamics at each tra-
jectory x(t) with an initial value. The model needs to minimize the 
reconstruction errors between the estimated density and the ground 
truth density. The reconstruction errors take the m.s.e. between the 
ground truth and the estimated density of a set of sample points at 
multiple time points.

To calculate the estimated density, a ground truth density at a 
different time point needs to be taken as the initial conditions. Without 
loss of the generality, we consider a pair of time points ti < tj, where 
estimated density at tj is obtained by integrating the ground truth 
density at ti using the equivalent form of equation (7) in the Lemma. 
We picked a set of samples from the ground truth density at later time 
xtj ∼ ρtj, and integrated them backward to the early time point ti along 
the trajectory:

̂xti = xtj +
ti

∫
tj

v (x, t)dt (10)

The value of ground truth density for these samples at ti, ρti ( ̂xti ) 
is obtained. Then we integrated the density from these sample points 
forward to xtj. The value of the estimated density for the same initial 
samples was calculated:

lnρ̃tj (xtj ) = lnρti ( ̂xti ) −
ti

∫
tj

dlnρ
dt

dt, (11)

where ρ̃tj denotes the estimated density at tj. In equations (10) and (11), 
we integrated back and forth between ti and tj, which follows the pro-
cedure for training normalizing flows34. This technique allows that the 
sample points xtj = x (tj) follow the distribution of the ground truth. 
Suppose we have K samples, the reconstruction error is denoted as

Rti ,tj =
1
K

K
∑
k=1

[ρ̃tj (x
(k)
tj ) − ρtj (x

(k)
tj )]

2
. (12)

We consider short-term reconstruction error, Rti ,ti+1, and long-term 
reconstruction error, Rt1 ,ti+1. The combined reconstruction errors 
facilitate robust and accurate results by minimizing errors at different 
time scales (Supplementary Note 6). The combined reconstruction 
error includes both types of errors at different time points:

R =
T−1
∑
i=1
Rti ,ti+1 +

T−1
∑
i=1
Rt1 ,ti+1 (13)

Deep learning-based dimensionless solver  
in TIGON
Now we take everything together to derive the deep learning-based 
dimensionless solver for TIGON, including forward propagation via 
the ODE solver, and backward propagation through neural ODEs.

First, two fully connected neural networks are used to estimate 
velocity v(x,t) and growth rate g(x,t) in the continuity equation (equa-
tion (7)) where the input is a sample point x and time t.

Then the cost function in WFR metric is computed by summing up 
the cost between all pairs of consecutive time points:

W =
T−1
∑
i=1
Wti ,ti+1 . (14)

Specifically, Wti ,ti+1 is defined as the following:

Wti ,ti+1 = (ti+1 − ti) 𝔼𝔼xi∼ρti

ti+1

∫
ti

(|v (x, t)|2 + α|g (x, t)|2) e ∫
t
ti
g(x,s)dsdt

(15)

where x = x(t) is the trajectory satisfying

{
dx(t)
dt

= v (x, t)

x (ti) = xi
(16)

The reconstruction error is computed using equation (13). Then 
the loss function is taken as the weighted sum of cost and reconstruc-
tion error:

Loss = W + λdR (17)

with hyperparameter λd. In particular, the samples for computing 
loss are randomly selected every epoch during training to enhance the 
model robustness.

Temporal integral (equation (15)) and ODEs (equation (16)) were 
numerically solved by an ODE solver DOPRI5 method, a Runge–Kutta 
method with adaptive step size. The gradients of the loss function 
with respect to the parameters in two neural networks for v(x,t) 
and g(x,t) were computed by naive method in neural ODEs34 with 
a memory-efficient implementation35. The Adam optimizer was 
employed to update the gradient65.

The deep learning-framework in TIGON was implemented with 
a Pytorch package63. The two neural networks took the same archi-
tectures. Specifically, a fully connected layer is followed by a Tanh 
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activation function, except the output layer, which has no activation 
function. The hyperparameters used for each dataset are summarized 
in Supplementary Table 2. The pseudocode of the workflow of the 
training process in our method is presented in the Supplementary 
Information pseudo code.

Three-gene simulation model
In the three-gene simulation model, its GRN structure is described  
in Fig. 2a. This regulatory relationship is modelled by a system of  
stochastic ODEs:

dA
dt

= CAA2+S
1+CAA2+HBB2+HCC 2+S

− dAA + σ̂Aξt

dB
dt

= CBB2+S
1+HAA2+CBB2+HCC 2+S

− dBB + σ̂Bξt

dC
dt

= CCC2

1+CCC 2 − dCC + σ̂Cξt

(18)

The genes A and B mutually inhibit each other and have 
self-activation for their own expression, which form a toggle switch66. 
There is an external signal, S, that provides sources to activate both A 
and B with constant strengths that are independent of gene expression 
levels. Gene C strongly inhibits both A and B expression. A(t), B(t) and 
C(t) are a concentration of genes at time t. CA, CB and CC are strengths 
of self-activation for three genes, and HA, HB and HC are strengths of 
inhibition from A, B and C. The signal, inhibition and self-activation are 
modelled by hill functions. In addition, dAA, dBB and dCC are degrada-
tions for genes A, B and C, respectively. σ̂ξt  is the additive white noise 
for stochastic effects on gene expression. The probability of cell divi-
sion is positively correlated with gene B: g = B2

1+B2
%. Every time a cell 

divides, two cells inherit the gene expression state of their parent cell, 
(A(t), B(t), C(t)), with independent perturbations σ̂d𝒩𝒩 (0, 1) on each 
gene, and make cell transition independently afterward.

In this work, we used one set of parameters: CA = HA = 0.5, 
CB = HB = CC = 1, HC = 10, dA = dB = dC = 0.4, σ̂A = σ̂B = 0.05 and σ̂C = 0.01, 
σ̂D = 0.014. We generated two groups of initial cells which are inde-
pendent and identically distributed from two normal distributions 
N([2,0.2,0],0.01) and N([0,0,2],0.01) in the three-dimensional gene 
space. The stochastic differential equation was solved by the Euler–
Maruyama method using the time step Δt = 0.2. At each time step, we 
corrected the negative expression to be 0. The training data for TIGON 
took data at time t = 0, 10, 20, 30 and 40, and the input densities were 
generated by a Gaussian mixture model with standard deviation σ = 0.2.

Computations of RNA velocity
RNA velocity was calculated on the EMT dataset. We obtained the pro-
cessed Seurat (v.3)64 object and the loom file with spliced and unspliced 
mRNA counts for each cell and gene from the original paper41. We fol-
lowed the procedure recommended by scVelo to compute RNA velocity 
for the EMT dataset12. We selected the top 2,000 highly variable genes 
and normalized the mRNA counts within each cell using the function 
scv.pp.filter_and_normalize in scVelo. The first- and second-order 
moments were computed using the top 30 PCs and the top 30 near-
est neighbours with the funciton scv.pp.moments. The RNA velocities 
were then computed using the function scv.tl.velocity function with 
mode = ‘dynamical’.

Temporal cell–cell communications inference
For the EMT dataset, the generated data for temporal cell–cell com-
munication inference was inferred from cellular dynamics learned on 
the ten-dimensional latent space of AE. Specifically, 1,000 cells were 
randomly sampled from initial density and the states of the cells at 
16 h and days 1, 2, 3, 5 and 7 were further predicted via integration of 
inferred velocity. Those generated temporal data were then projected 
back to the 3,000 highly variable gene space via the decoder of AE.

We merged the cells from six time points into one Seurat object64. 
We then followed the procedure in Seurat to find the clustering. We 
scaled and ran PCA on the data using ScaleData and RunPCA in Seurat. 
The three clusters were then computed using the top ten PCs, top 150 
nearest neighbours and 0.1 resolution with the functions FindNeigh-
bors and FindClusters. The three clusters were annotated as epithe-
lial, intermediate and mesenchymal states based on the time where 
the cluster including most of the cells from early time points was an 
epithelial state, the cluster including most of the cells from day 7 was 
a mesenchymal state and the remaining cluster was an intermediate 
state. CellChat46 was then performed to compute the temporal cell–cell 
communication among the three states.

Reporting summary
Further information on the research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data for the single-cell lineage tracing was downloaded from https://
github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_
on_transcriptional_landscapes_links_state_to_fate_during_differentia-
tion (ref. 39). Data for TGFB1-induced EMT from A549 cancer cell line was 
downloaded from https://github.com/dpcook/emt_dynamics (ref. 41).  
Data for single-cell qPCR dataset of iPSCs toward cardiomyocytes 
was downloaded from https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5338498/bin/pnas.1621412114.sd02.xlsx (ref. 47).

Code availability
All source codes and models are publicly available at https://github.
com/yutongo/TIGON (ref. 67).
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