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Inverse design of nonlinear mechanical 
metamaterials via video denoising  
diffusion models

Jan-Hendrik Bastek      & Dennis M. Kochmann     

The accelerated inverse design of complex material properties—such as 
identifying a material with a given stress–strain response over a nonlinear 
deformation path—holds great potential for addressing challenges from soft 
robotics to biomedical implants and impact mitigation. Although machine 
learning models have provided such inverse mappings, they are typically 
restricted to linear target properties such as stiffness. Here, to tailor the 
nonlinear response, we show that video diffusion generative models trained 
on full-field data of periodic stochastic cellular structures can successfully 
predict and tune their nonlinear deformation and stress response under 
compression in the large-strain regime, including buckling and contact. 
Key to success is to break from the common strategy of directly learning a 
map from property to design and to extend the framework to intrinsically 
estimate the expected deformation path and the full-field internal stress 
distribution, which closely agree with finite element simulations. This 
work thus has the potential to simplify and accelerate the identification of 
materials with complex target performance.

Creating materials with tailored properties has gained popularity 
across disciplines since additive manufacturing enabled the manipu-
lation of multi-material and cellular architectures across scales. Instead 
of choosing from the limited catalogue of natural materials, engineers 
and designers now have access to the drastically expanded design and 
property spaces of so-called metamaterials, which have been designed, 
among others, to achieve mechanical properties previously not attain-
able. Realizations of metamaterials have various forms, most com-
monly involving the periodic arrangements of small-scale structural 
building blocks1–3.

The physical mechanisms governing the mechanical behaviour 
of such architected materials are mostly well understood, and various 
numerical frameworks such as the finite element (FE) method provide 
accurate structure-to-property relations, predicting the effective mate-
rial properties based on an underlying small-scale architecture. By con-
trast, the inverse problem of identifying possible small-scale designs 
yielding a desired property has remained a challenge. Methods to 

address the latter include topology optimization4–6 and, more recently, 
data-driven algorithms. Most of these approaches have, however, been 
restricted to linear material properties such as the effective elastic  
stiffness in three dimensions7,8 or Poisson’s ratio9. Extensions to non-
linearity (for example, via multi-material configurations) have been 
presented recently10 but involve computationally expensive simula-
tions. To the best of our knowledge, there is no topology optimization 
technique that is suitable for the complex mechanical set-up studied 
here, including large deformation, nonlinear material behaviour includ-
ing plasticity, structural buckling and frictional contact, although these 
are relevant effects in structures undergoing large deformation.

While tuning a material’s stiffness is sufficient for applications 
involving small deformation (such as patient-specific bone implants 
matching the native bone properties, or vibration insulation by attenu-
ating linear waves), controlling the nonlinear response of soft metama-
terials over a finite deformation path can unlock advanced functionality 
for emerging fields such as soft robotics11, tissue engineering12 and 
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space parameterization with minimal constraints (aside from a periodic 
structure) to fully harness the generative power of diffusion models. 
While two-material composites could be generated with randomly 
drawn binary pixels and span a tremendous design space38, the subset 
of structures with a non-trivial stress–strain response is comparably 
small. We therefore consider cellular structures (each pixel represent-
ing solid or void) as our design space to enable interesting mechanical 
behaviour such as buckling—an instability that quickly transitions 
between distinct equilibrium configurations—and contact, arising 
under compressive loads and producing a sudden stiffness increase, 
overall resulting in a rich and possibly non-monotonic stress–strain 
curve. Although modelling these effects using the FE method is chal-
lenging, inversely designing such structures is even more difficult 
due to the sensitivity of, for example, the buckling response to small 
changes in the design. At the same time, incorporating such effects 
guarantees a highly diverse range of achievable stress–strain responses. 
To keep the problem tractable yet without loss of generality, we restrict 
our study to two dimensions and a periodic structure based on a square 
unit cell (UC).

The generation of the dataset used for model training is performed 
as follows (Fig. 1). To generate a random design with a certain level of 
structural features, we sample from a two-dimensional (2D) Gaussian 
random field on a square domain and apply a binary threshold. Values 
above a specific threshold are considered material; those below are 
void. We ensure that opposite boundaries of the domain are connected 
with each other (and repeat the sampling until this condition is met) 
and mirror the pattern sequentially along both edges (Fig. 1) to obtain 
mechanically intricate, periodic structures. Despite its simplicity, this 
stochastic approach produces a diverse dataset of designs with a broad 
range of stress–strain responses. We further induce different levels of 
relative density (or fill fraction) by randomly shifting the threshold 
within a specified range. Higher values promote low-density structures 
prone to buckling, which is important for the aforementioned reasons.

The stress–strain response of each design is obtained from FE 
simulations. As a technologically relevant load case, we place all sam-
ples between two rigid plates and apply a quasi-static compressive 
strain of up to ε = 20% in the vertical direction. Uniaxial compression 
is a frequent load characteristic of, for example, impact applications26, 
the compression of shoe soles39 or so-called passive compliance in 
soft robotics (for example, allowing a soft gripper to adapt its shape 
to the object being grabbed40). By applying periodic boundary condi-
tions along the horizontal directions, we simulate an infinite periodic 
layer of the chosen design, as found in sandwich-type configurations. 
Within the cellular UC, we account for frictional contact and use an 
experimentally calibrated elastoplastic material model 41 (representa-
tive of a thermoplastic resin) to ensure realistic responses. Simulation 
details are provided in Methods.

Using this set-up, we generate 53,007 pairs of unique designs and 
the corresponding stress–strain responses. We also collect the full-field 
stress distribution in the vertical direction, σ22, as well as displacement 
components u1 and u2 (all in the Lagrangian frame), as these data contain 
valuable information about the underlying physics, as also observed in 
ref. 42. The overall effective stress response can be extracted either from 
the nodal reaction forces or directly from the full-field data, as in the 
considered quasi-static setting, internal forces must be in equilibrium 
for any free cut of the UC (for example, for any pixel row; Supplementary 
Section 5.1). We evaluate all fields on a 96 × 96 pixel grid together with 
the overall (average) vertical stress at 11 equidistant strain increments 
between 0 and 20% (see Methods for further details). This strikes a 
reasonable balance between accuracy and computational feasibility 
and provides the training data for the generative model.

Video denoising diffusion model
Diffusion models are trained to reverse a stochastic forward process 
that gradually converts a data point x0 (for example, an image) drawn 

impact energy absorption13. Metamaterials with tailored stress–strain 
responses can, for example, mimic the nonlinear response of human 
fingers14, enable actuation of soft robots via ‘snap-through instabili-
ties’15 or serve as biomimetic scaffolds assisting in artery restoration16.

Unfortunately, the nonlinear setting markedly adds to the com-
plexity of the (inverse) map from property to structure. Extensions 
of topology optimization to nonlinear properties exist17,18 but remain 
challenging due to strong dependence on the initial guess and dis-
cretization19, lack of physical effects such as contact20 and degrading 
solver stability when considering non-trivial mechanisms such as 
post-buckling21. Most importantly, a single optimization study may 
require hours of runtime, which is a prime reason why recent studies 
focused on rather simple design spaces and optimization objectives22,23.

Over the past decade, the rise of deep learning models with their 
unparalleled ability to identify highly nonlinear maps has presented 
a potential alternative. When applied to nonlinear material property 
prediction, deep learning has served as an efficient forward approxi-
mation (replacing costly FE simulations) in combination with genetic 
algorithms to iteratively identify structures with tailored buckling 
strength24 and as-designed deformed configurations25, with extensions 
to the full nonlinear response via shell-like metamaterials and quad-
rilateral structures26,27. However, the considered design spaces have 
remained limited, and predictions may lack physical intuition and rely 
on costly FE simulations to validate up to a hundred generated designs 
and to select the one closest to the desired stress–strain response27. 
In addition, generative models such as variational autoencoders and 
generative adversarial networks have been explored recently, although 
these have mainly been restricted to linear properties28,29 with exten-
sions to the compressive strength30, but far from nonlinear material 
behaviour including plasticity, buckling and frictional contact.

These challenges resemble those addressed recently in the 
image-generation community by (video) diffusion models. Diffusion 
models31 have gained attention due to their ability to generate seem-
ingly photo-realistic images based on text descriptors, a famous repre-
sentative being DALL-E 2 (ref. 32), and have recently been extended to 
generate short video sequences with remarkable results33. Compared 
with variational autoencoders34 or generative adversarial networks35, 
diffusion models offer improved sample quality36 and more stable 
training protocols. This has also been confirmed in the context of 
mechanical optimization37. Such data-driven models operate by itera-
tively removing noise from a sample drawn from a prior distribution 
(typically unit Gaussian), which comes with an increased computational 
cost due to the multiple forward passes required.

The shift from linear to nonlinear material properties can, at a high 
level, be compared with going from image to video generation. In both 
cases, a new data dimension must be learned, which requires some 
notion of consistency—whether in a temporal (consecutive images in a 
video must maintain temporal consistency) or mechanical (stresses in 
consecutive deformation steps must ensure mechanical consistency) 
sense. Analogous to a text descriptor prompting an image sequence, 
the nonlinear target response here serves as input to predict a sequence 
of mechanically deformed microstructural configurations along the 
deformation path, ultimately resulting in the effective stress–strain 
response. This requires the definition of an efficient design/property 
space to be considered as training data for our generative model, the 
key concepts and the considered model architecture of which are sum-
marized in the following.

Results
Generation of metamaterials with diverse properties
As our diffusion framework operates in a data-driven setting, we require 
a large collection of paired mechanical designs and their corresponding 
nonlinear stress–strain responses. The options for potential design 
spaces are virtually unlimited, ranging from truss descriptors7 over 
shells2 to composite structures38. We here consider a pixel-based design 
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from the underlying data distribution x0 ∼ q(x) to a prior distribution 
in T steps, typically a standard Gaussian31,43 𝒩𝒩𝒩0, I) , where I is the  
identity matrix. This can formally be understood as a fixed Markov 
chain with Gaussian transitions parameterized by a given variance 
schedule {βt ∈ 𝒩0, 1)}Tt=1 as

q𝒩x1∶T|x0) =
T
∏
t=1

q𝒩xt|xt−1),

q𝒩xt|xt−1) = 𝒩𝒩𝒩xt; √1 − βtxt−1,βtI).
(1)

This allows to sample xt at any time step t via xt = √ᾱtx0 +√1 − ᾱtϵ  
with ϵ ∼ 𝒩𝒩𝒩0, I) and where ᾱt =∏t

i=1 αi, αt = 1 − βt.
We approximate the reverse process q(xt−1∣xt) by a neural  

network pθ(xt−1∣ xt) parameterized by θ. To generate new samples  
x* ∼ q(x), we run the reverse Markov chain to arrive at

pθ𝒩x0∶T) = p𝒩xT)
T
∏
t=1

pθ𝒩xt−1|xt),

pθ𝒩xt−1|xt) = 𝒩𝒩𝒩xt−1;μθ𝒩xt, t),Σ𝒩xt, t)),
(2)

where μθ is the predicted mean and we set the covariance to be purely 

time dependent: Σ𝒩xt, t) =
1−ᾱt−1

1−ᾱt
βtI 43. Such models are typically trained 

to maximize the variational lower bound of the log-likelihood, which 
can be computed in closed form when conditioned on x0. As observed 
in ref. 43, μθ can be decoupled into two terms relating to xt and ϵθ, allow-
ing to simplify and re-parameterize the loss in terms of the  
Gaussian noise as

ℒ𝒩θ) = 𝔼𝔼t,x0 ,ϵ [|ϵ − ϵθ 𝒩xt, t)|] . (3)

To condition the model on some additional input c, we consider 
classifier-free guidance44, not requiring an additional classifier 
pθ(c∣xt). We steer the reverse diffusion process by replacing ϵθ by a 

linear combination of the conditional and unconditional noise esti-
mates, that is

̃ϵθ 𝒩xt, c) = ϵθ 𝒩xt, c = ∅) +w [ϵθ 𝒩xt, c) − ϵθ 𝒩xt, c = ∅)] , (4)

where w ≥ 1 is the guidance weight, allowing to trade-off sample qual-
ity with conditioning augmentation, and ∅ denotes a fixed random 
embedding to represent the lack of conditioning. Details are provided 
in Supplementary Section 2.

Diffusion models map noisy input data to less distorted data, 
making symmetric U-Net architectures45 a common choice for ϵθ. As 
our primary interest is in mapping from a target stress–strain curve to 
a design, training the model on simple images of UCs conditioned on 
the corresponding stress–strain curve is a straightforward approach 
and has been explored in recent work46. In our investigations, we 
observed similar success of such approaches for generating structures 
with a relatively simple stress–strain response (like the ones shown 
in ref. 46). However, the same set-up proved ineffective in modelling 
more challenging responses such as those induced by contact and 
buckling. We attribute this limitation to the highly indirect mapping 
the model must learn—from geometry to response (or vice versa) 
with no direct knowledge of the full deformation history and the 
corresponding internal stress distributions (which in turn dictate the 
sought effective response). To facilitate the training, to improve the 
sample efficiency and to obtain a full-field prediction of the expected 
deformation path and internal stresses for physical validation, we 
train the model not on the UC design but on the full-field data of the 
vertical stresses σ22 for each strain step, as described in ‘Generation of 
metamaterials with diverse properties’. We observed the best results 
when using a Lagrangian frame instead of a Eulerian one (that is, 
evaluating all evolving fields on the undeformed initial configura-
tion), which we additionally supply with the horizontal and vertical 
displacements u1 and u2. This allows us to optionally convert data to 
the Eulerian frame and provide information about the deformation 
path to the model.

FE simulation Stress–strain response

Sampled 2D Gaussian random field Binary thresholding Sequential mirroringa

b
Rigid plates

Connectivity
ensured

Applied displacement

Periodic 
boundary conditions

Stress distribution σ22

5
0

2

4

σ e 
. (

M
Pa

) 6

8

10 15 20
ε (%)

Fig. 1 | Metamaterial generation process. a, A 2D cellular UC is generated by 
sampling from a 2D Gaussian random field, applying a varying threshold to 
extract a binary field and mirroring the resulting pattern when connectivity to 
the boundaries is ensured. b, To obtain the stress–strain response, we place the 
UC between two rigid plates with periodic boundary conditions in the horizontal 
direction and apply a compressive strain of up to 20%. The corresponding stress 

and displacement fields within the UC are computed by FE simulations, and 
the overall effective stress–strain response σeff (indicated in black) is extracted 
from the nodal reaction forces, although they can be equally obtained from the 
full-field data. A representative selection of responses of the generated designs is 
plotted in grey.
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Instead of simply concatenating these data along the image chan-
nels of the U-Net, we distinguish between the two fundamentally dif-
ferent causal relations of the data—space and applied strain—similar 
to recently proposed video generative models33. Here variants of the 
2D (space only) U-Net architecture are extended by a temporal dimen-
sion, which effectively is treated as a batch axis and thus leaves the 
base architecture unaffected. The extension is a temporal attention47 
block (taking the pixels as batch axis and computing self-attention 
over the applied strain steps) after the spatial convolution and atten-
tion (taking the strain steps as batch axis and computing convolutions 
and self-attention over the pixels) to learn physical consistency across 
different strain steps.

This architecture (schematically shown in Fig. 2) allows for 
mechanically motivated conditioning of the model on a given non-
linear stress–strain response. The conditioned effective stress at the 
11 strain steps is directly associated with the corresponding full-field 
response as mechanical equilibrium requires that the effective, overall 
stress at any strain level matches the averages of all pixel stress values 
across any row of pixels in the UC. Unlike in video generation, in which 
words, as conditioning, do not directly correspond to specific image 
frames, we can leverage this link in our model architecture by convert-
ing each stress value to a high-dimensional token embedding by a 
(learnable) linear layer and fusing it with the pixel representation via 
cross-attention47 in the spatial attention module of the corresponding 
strain step. In the subsequent temporal attention layer across all strain 
steps, we add a relative position encoding48 to both the strain steps 
and token embeddings, so that the model receives information on 
the strain step order, and we apply ‘pseudo-temporal’ cross-attention 
over the strain steps. Lastly, we augment the conditioning by adding 
a latent representation of the tokens to the diffusion time embedding 
(required as input to the model to indicate the diffusion time step). 
For further details see Methods, Supplementary Sections 3 and 4, and 
‘Code availability’.

Full-field predictions for generated metamaterials
A key advantage of our set-up over other deep learning frameworks  
is its capability to provide physical insight into the deformation 
mechanisms of the generated metamaterial and the associated stress 
response. By reversing the diffusion process conditioned on the desired 
stress–strain curve, we obtain not only a potential design but also a 

predicted full-field σ22 distribution subjected to the applied strain 
throughout the deformation path. This enables us to evaluate the 
proposed deformation mechanism for physical validity and extract 
the predicted stress–strain response by row-wise pixel averaging of 
the internal stress σ22. In contrast to alternative approaches46, our 
framework unifies inverse design and forward prediction in a single 
model without the need for an ad hoc secondary model to evaluate the 
performance of the predicted designs. This also allows for the adoption 
of further design criteria (for example, enforcing a maximum local 
stress to prevent failure).

We demonstrate the ability of the model to predict designs match-
ing a given target stress–strain response by considering 100 responses 
of randomly generated designs (unseen during training). For this and 
subsequent studies, we set the guidance weight to w = 5, as this was 
observed to enhance the match between generated design and target 
response without sacrificing the accuracy of the generated full-field 
predictions. We plot four predictions and their effective responses in 
Extended Data Figs. 1 and 2, respectively, and compute the average 
normalized root mean square error (NRMSE; Methods) of the 
FE-reconstructed response versus the target response as ϵ = 6.98%. 
This is close to the mismatch of ϵ = 2.74% between the predicted and 
target responses, which underlines the model’s ability to propose 
designs and concurrently estimate their mechanical behaviour. The 
agreement between the predicted and true (that is, high-fidelity FE) 
responses suggests an accurate estimate of the stress distribution, 
confirmed both qualitatively in Extended Data Fig. 1 and quantitatively 
with a relative L2 error of ϵL2 = 14.39% , averaged over all samples  
and strain steps. (Extended Data Figs. 3 and 4 and Supplementary  
Section 6.1 summarize a similar study on unconditionally sampled 
designs.)

Inverse design of unseen stress–strain responses
The above results provide only a limited measure of the model’s  
generalization performance: although the conditioned stress–strain 
responses are based on designs not seen during training, they are, on 
average, well represented by samples in the training data. To assess  
the model’s generalization capability, we next examine its performance 
on such responses not closely represented in the training data. We  
create four benchmark examples of diverse stress–strain responses  
that cover a wide range of material responses of engineering interest 
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Fig. 2 | Denoising diffusion model architecture. The denoising diffusion model 
is based on the three-dimensional U-Net video architecture33, which iteratively 
adds information to a Gaussian prior. To include a temporal dimension, each 
spatial convolution and attention layer is followed by temporal attention 

computed over the 11 strain steps. We condition the model by transforming the 
stress–strain response to a token embedding, which is added via cross-attention 
into both spatial and temporal attention layers.
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Fig. 3 | Metamaterial synthesis for four stress–strain responses not 
represented in the training dataset. a–d, The model is conditioned on four 
technically relevant, challenging target responses, considering high stiffness 
in a, non-smooth stress increase in b, high compliance and drastic stiffness 
increase in c, and softening in d. Validation of the predicted effective stress 
response σeff (‘Fwd eval.’; NRMSE with respect to the target response in brackets) 
of the generated designs is achieved by FE simulations (‘FE eval.’), agreeing with 
the predicted response and substantially outperforming the best match in the 

training dataset (‘Best match’). We additionally compare the predicted full-field 
σ22 distribution (indicated in MPa in the Eulerian frame) with the FE ground  
truth and provide the corresponding relative L2 errors. To highlight the range  
of responses in the training dataset, we plot a representative selection in  
grey in a. aThe relative L2 error is numerically inflated due to the small 
magnitude of the stress field and is hence not truly indicative (but included for 
completeness).
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and include the non-trivial mechanisms of contact and buckling.  
For each case, we leverage the probabilistic nature of the model and 
generate ten samples conditioned on the target response and plot 
the best match.

First, we generate a design with high stiffness, strong (nonlinear) 
hardening and large deformability, as used, for example, in impact 
applications. We condition the model with an effective stress response 
20% above the stiffest sample of the training set. As illustrated in  
Fig. 3a, the model generates a structure with a large fill fraction, closely 
matching the ground truth in both the FE-reconstructed response (with 
ϵ = 1.5%; compared with ϵ = 20% of the best match in the training data) 
and the underlying stress distribution (ranging from ϵL2 = 18.2%   
to ϵL2 = 5.8%). Analogously, compliant low-density designs can be 
generated by choosing a target stress–strain response well below  
the most compliant design in the training data (Supplementary  
Section 6.5), which is matched with ϵ = 4.3%.

Second, we consider a more complex target response exhibiting 
an abrupt stiffness increase midway through the loading path (at 10% 
applied strain; Fig. 3b), which necessitates a change in deformation 
mode. Such stiffness changes can be leveraged, for example, in soft 
robotic grippers49. The design proposed by the model indeed closely 
matches the target response (ϵ = 1.4%) and decidedly outperforms the 
closest match in the training data (ϵ = 10.1%). Moreover, we observe that 
the generated design contains a fillet in its interior, which establishes 
contact at 10% strain in both forward prediction and FE simulation, 
leading to the desired stiffness increase.

Third, we consider the more exotic target of a highly compliant 
response until 15% strain, followed by a marked stiffness increase. 
(Such behaviour can be caused by contact within the UC but is also 
characteristic of, for example, structural transformations in met-
als50.) While, as expected, the generated design is not as close as 
the previous targets (ϵ = 14.1%), it considerably outperforms the 
best match in the training set (ϵ = 39.6%). The initial compliance and 
sudden stiffness increase are realized through a delicate interplay of 
an almost purely rotational, auxetic response of an inner segment 
of the UC and the subsequent emergence of contact at the critical 
strain level where hardening sets in (Fig. 3c). Although this does not 
readily translate into general design guidelines, it highlights that 
the model allows us to accurately discern the physical rationale 
behind the proposed design in terms of the full-field deformation 
and stress response, unlike previous work that mainly focused on 
the direct property–structure map without such insight. Moreover, 
the model can introduce unseen contact mechanisms to match 
unseen responses, while contact has so far been a challenge for, 
for example, computational topology optimization51. Of course, 
contact is represented in our dataset. Never theless, we emphasize 
that the trained model creates designs that go substantially beyond 
simple ‘interpolation’ of the seen structures, such as simple altera-
tions in relative density (which we have verified in Supplementary 
Section 6.8).

Fourth, we consider a response with notable softening, which is 
utilized, for example, in snapping and release mechanisms. As illus-
trated in Fig. 3d, the model’s design again outperforms the best match 
(ϵ = 2.4% versus ϵ = 8.3%). The response is accommodated by a buckling 
mechanism. Interestingly, the relative L2 error of the predicted stress 
fields greatly increases in the post-buckling regime. This, however, 
stems from the symmetric buckling mode of the design and the fact 
that the FE simulation buckles to the right while the model predicts 
buckling to the left. (Buckling is highly sensitive to the design (unlike 
contact): when a vertical column is compressed in two dimensions, 
it can buckle to the left or to the right and is sensitive to the smallest 
imperfections.) In this case, we cannot reasonably expect the model 
to match this response. Instead, this demonstrates its temporal con-
sistency and logically completes the deformation trajectory—once 
buckled to the right, the post-buckling follows this trend. (An example 

of a generated design with a predicted deformation mode match-
ing the FE simulation is shown in Supplementary Section 6.6.) We 
provide the full image sequence predictions of the considered four  
target responses in Extended Data Fig. 5 and in video form in Supple-
mentary Videos 1–4. In Extended Data Figs. 6 and 7 and Supplementary 
Section 6.7, we present additionally generated designs for selected 
responses and compare them with the underlying ground truth, overall 
observing notable differences and hence showcasing the generative 
capabilities of the model.

Discussion
Soft robots and biomimetic structures, among others, require 
materials with precise nonlinear mechanical functionality—a chal-
lenge for conventional optimization techniques due to the complex 
inherent deformation mechanics including buckling and contact. 
Gradient-based optimizers may become numerically unstable due to 
the nonlinear and non-convex objective function. This issue worsens 
when considering contact, which leads to abrupt, non-smooth kinks 
in the stress response. Our model, inspired by generative video mod-
elling, is particularly suited to this nonlinear setting and overcomes 
many of these challenges, although being, from a mechanical per-
spective, comparably simple to implement. It accurately captures 
the non-trivial mechanics at play and unifies an efficient surrogate 
forward model with the ability to generate unseen metamaterial 
designs exhibiting complex nonlinear responses, which must lever-
age buckling and contact. This is accomplished by training the model 
on the complete deformation trajectory rather than solely on the 
underlying designs (akin to extending image to video generative 
models), which may suffice for linear conditioning but is inadequate 
for complex nonlinear situations (see the ablation study in Supple-
mentary Section 7).

The complex target responses may be associated with multiple 
designs, posing a challenge for direct optimization. Addressing this 
one-to-many mapping is a recurring issue in inverse problems across 
disciplines, for which the probabilistic nature inherent in the diffusion 
architecture is ideally suited. By repeatedly generating samples for 
identical target responses, our model proposes a variety of designs 
(which may be checked for secondary objectives such as manufactur-
ability). Our work further demonstrates the efficacy of video diffusion 
models when data of different modalities, such as the effective stress–
strain response and the full-field internal stress distribution, must be 
synthesized and optimized—a task where conventional optimization 
techniques may fail. Alternatively, our framework can also comple-
ment such classical methods by identifying a favourable initial guess 
that is then further refined (as topology optimization schemes depend 
strongly on the initial guess).

We note that the presented framework in its current set-up is 
confined to generating responses for the specific boundary conditions 
and constitutive law used during training (based on the application 
scenario, it may be interesting for metamaterials, for example, to 
consider periodic boundary conditions in all directions). In principle, 
it is straightforward to extend the current framework by conditioning 
the model not only on the target properties but also on diverse load 
scenarios and the (base) material response. This requires additional 
training data and probably extends the training time. Operating in 
a latent space52 and at step-wise increasing resolutions53 could bal-
ance the increased computational complexity, presenting an inter-
esting direction for future work. Moreover, alternative design spaces 
such as trusses7 provide a more compact design parameterization 
for three-dimensional structures and low fill fractions. As trusses can 
naturally be represented by graphs, graph diffusion models, mainly 
used in molecule design, can serve as a viable model architecture. 
Lastly, the presented framework admits extension to related fields 
such as fluid dynamics, serving both as a surrogate simulator and 
nonlinear optimizer.
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Methods
We here provide details of the data-generation procedure, the methods 
employed for creating the metamaterials under consideration and 
the FE set-up to evaluate the nonlinear mechanical response of UCs. 
We further present the model architecture as well as the training and 
sampling protocol. Additional explanations can be found in Supple-
mentary Information.

Design generation
We generate a random mechanical metamaterial by sampling a 2D 
Gaussian random field on a square domain based on the algorithm 
proposed in ref. 54. To do so, we sample complex Gaussian noise for a 
centred (even) N × N grid of Fourier coordinates

𝒦𝒦 = {𝒩k1, k2) ∈ ℤ2 ∶ −N/2 ≤ k1 < N/2, −N/2 ≤ k2 < N/2}

and introduce spatial correlation by a power law of the type 
P𝒩k1, k2) ∝ 𝒩k21 + k22)

−α/2
, where we set α = 3 to ensure sufficient smooth-

ness for manufacturable structures. This representation is  
converted to the corresponding real N × N pixel set 𝒳𝒳 by considering 
the standardized real part of the inverse discrete Fourier transform. 
Next, we convert it to binary values (1 representing material and 0 
representing void) by considering a threshold t sampled as t ∼ 𝒰𝒰𝒩0, tmax) 
with tmax = 3/5, which was chosen to increase the variance (in terms  
of sparsity) of the sampled structures. Lastly, we check for the con-
nectedness of the four boundaries of the square grid, which is  
defined as given if there exists a single material domain that covers  
at least 10% of the pixels (rounded down) of each side. This avoids 
structures with extremely sparse connectivity (and hence questionable 
manufacturability). We repeat the process until a valid structure  
has been found. The metamaterial is created by mirroring the found 
structure sequentially along the vertical and horizontal boundaries to 
ensure periodicity. Although we focus on only periodicity in the hori-
zontal direction in the examples presented in this work, the generated 
structures can also be tessellated along the vertical direction to pro-
duce 2D tessellations. Note that the Gaussian random fields are by 
construction periodic, so they can also be tessellated without mirror-
ing. However, we found that mirroring generates in general more 
diverse stress–strain responses and further simplifies the mesh genera-
tion for periodic boundary conditions, which is why we chose this 
procedure. The pseudocode of this process is given in Algorithm 1 in 
Supplementary Section 1.

FE simulations
To evaluate the stress–strain responses of the generated structures, we 
use Abaqus CAE 2020. All of the following steps are implemented via 
user subroutines. Note that we apply a smoothening of the boundary 
of the generated pixel structures to bypass issues with the meshing, 
presented in Supplementary Section 1.2. We generate a mesh compat-
ible with periodic boundary conditions (that is, featuring matching 
nodes on opposite boundaries) and select three-node linear (CPE3) 
and four-node bilinear elements with reduced integration and hour-
glass control (CPE4R) using default settings. The mesh was refined 
until sufficient convergence in the stress distributions and overall 
stress–strain responses was observed. We consider plane-strain condi-
tions to represent the realistic scenario of an extruded structure in the 
out-of-plane dimension (thus avoiding challenges with out-of-plane 
buckling under compression).

The metamaterial is virtually positioned between two rigid hori-
zontal platens, to which we attach the nodes on the top and bottom 
boundary. We assume lubricated surfaces, so that nodes may slip hori-
zontally relative to the horizontal platens. Within the UC, we consider 
frictional self-contact with a friction coefficient kfric = 0.4. Owing to 
the presence of large deformations including buckling and contact, 
an implicit dynamic solver is chosen for numerical stability. We ensure 

a quasi-static simulation by setting the mass density to ρ = 10−8, apply-
ing displacements with a smooth amplitude from time t = 0 to t = 1 
and confirming that the kinetic energy (ALLKE) does not exceed 1% of 
the internal energy (ALLIE) for all strain steps. We furthermore verify 
that artificial energy measures (ALLAE and ALLSD), introduced for 
stability reasons, do not individually exceed 1% of the internal energy 
across all strain steps. In general, we use unitless values for all lengths 
in simulations (due to size invariance) and stresses are presented in 
units of megapascals.

We record the horizontal and vertical displacement components 
(u1 and u2, respectively), as well as the vertical stress component σ22 
on a 96 × 96 pixel grid at 11 equidistant strain increments from the 
undeformed configuration to the total applied vertical strain in the 
Lagrangian (undeformed reference) frame. Note that instead of taking 
the initial step at 0% strain, we consider all fields at 0.2% strain, as this 
provides information on the small-strain response of the structure 
instead of trivial all-zero values. To compute the effective, overall 
stress response (which is the net vertical force per initial (undeformed) 
area on the top or bottom surfaces) at any strain level, we record the 
vertical reaction forces (RF2) of those nodes in contact with the upper 
rigid surface. Details on the considered base material can be found in 
Supplementary Section 1.3. All simulations were carried out on the 
Euler high-performance cluster of ETH Zurich.

Spatial 2D U-Net architecture
We refer to ‘Code availability’ for full technical details and below  
provide a high-level summary of the denoising diffusion model  
architecture. The PyTorch framework55 was used throughout our 
implementation. Diffusion models iteratively remove noise from data,  
typically images. Consequently, their input and output dimensions 
must be equal, making U-Net architectures a prevalent choice. Our 
model builds on the work of ref. 33 and its implementation provided 
by ref. 56, which, in turn, are based on derivations of the original 2D 
U-Net architecture45. This encoder–decoder architecture incrementally 
reduces spatial information while increasing latent feature information 
before reversing this operation by reducing the latent representation 
back to the spatial domain. In our work, each down- and upsampling 
pass comprises two ResNet57 blocks consisting of a series of convolu-
tional layers and sigmoid-weighted linear unit activation functions58, 
spatial linear self-attention59 (to reduce computational complexity) 
across the (latent) pixel representation, and a down- or upsampling con-
volutional layer. The middle block between the encoder and decoder 
equally consists of two ResNet blocks with a (full) spatial self-attention 
layer in-between. We use 4 feature map resolutions (96 × 96 → 12 × 12) 
with expanding latent dimensions (64 → 512). Each attention block 
consists of 8 attention heads, each with a dimension of 32. We sum-
marize the most relevant hyperparameters in Supplementary Table 2 
in Supplementary Section 3.

Extension to temporal three-dimensional U-Net architecture
We extend the 2D U-Net by incorporating a temporal dimension33, 
where we understand the ‘temporal’ dimension as the applied strain 
steps. In all building blocks described above, the temporal dimension 
is treated as a batch dimension and therefore does not affect the set-up. 
The key difference is that we insert a temporal self-attention layer at the 
beginning before the encoder–decoder architecture and additionally, 
after every spatial attention layer, which treats the spatial dimension as 
batch axes and performs attention over the 11 strain steps. We consider 
relative positional encoding48 to pass information on the strain step 
order to the model.

Conditioning on nonlinear stress–strain responses
To condition the model on the stress–strain response, we convert all 11 
scalar stress values at the corresponding strain steps to an embedding 
via a (learnable) linear layer. Note that we omit the corresponding strain 
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value as we keep these fixed in this work, thus providing no further 
information, although a future extension can explore adaptive step-
ping techniques, such as sampling more densely at strain steps with 
substantial deformation changes. These token embeddings are con-
catenated to the spatial attention tokens at the corresponding strain 
step for cross-attention, while we concatenate all 11 token embeddings 
with a relative positional encoding to the temporal attention tokens in 
the temporal attention layer. Note that for cross-attention, we derive 
the queries from the pixel embedding but the keys and values from 
the conditioning embedding. To further enhance the conditioning, 
we average all 11 token embeddings over the strain steps and convert 
this to a latent representation by a two-layer multilayer perceptron and 
sigmoid-weighted linear unit activation function58, which transforms 
this representation to the same dimension as the latent embedding 
of the diffusion time step t. The latter is necessary for the model to 
determine the current step of the denoising process. We add both 
embeddings and incorporate them into the ResNet blocks.

Training protocol
We first pre-process the data as follows. We apply a min–max normali-
zation to transform all input data x (that is, stress and displacement 
distributions) and conditioning (that is, stress–strain responses) to 
the range [−1, 1], that is

xi ←
2 [xi −min𝒩x)]

max𝒩x) −min𝒩x) − 1, (5)

where the min and max operators are applied across all correspond-
ing data points. For the stress and displacement fields, we con-
sider all corresponding pixel values for all strain steps in the entire 
training dataset. For the stress–strain responses, we consider the 
minimum and maximum recorded stress response for all strain 
steps in the entire training dataset. Note that we store the image/
video data generated with Abaqus in the gif format to reduce stor-
age requirements.

We provide the training hyperparameters in Supplementary Table 4  
and the loss plots in Supplementary Section 4. The model was trained 
on the Euler high-performance cluster of ETH Zurich, utilizing  
parallel and mixed precision processing. We use the Accelerate  
library from Hugging Face to facilitate the training set-up, which was 
conducted on eight Nvidia Quadro RTX 6000 graphics processing 
units, each equipped with 24 GB GDDR6 memory. The training process 
took approximately 70 h.

Sampling protocol
As the model does not directly predict binary pixels but stress and 
displacement distributions (which may be close to zero at the initial 
deformation stages), we require a robust method of extracting the 
underlying (undeformed) structure. We achieve this by considering the 
vertical displacement u2 of the upper left quarter (corresponding to the 
grey area in Fig. 1a) of the predicted field, which is sufficient to extract 
the full topology due to symmetry. For each pixel, we check whether its 
value is within a 2% tolerance around zero displacement (relative to the 
maximum displacement range) across all strain steps. If so, we consider 
it void (and otherwise material). We found this method to be highly 
robust, as the upper boundary of the structure is compressed and thus 
all ‘material pixels’ will probably undergo some level of displacement 
(exceeding the set tolerance). We remove any disconnected subdo-
mains of the obtained design (although these were rarely observed). 
Further details on the effective stress response prediction and the 
mitigation of accuracy losses are provided in Supplementary Section 5.

Error measures
To obtain an objective and scale-invariant error norm of the stress–
strain curves, we consider the NRMSE computed as

ϵ (σpred
eff ,σtrue

eff ) =

√√√√√√
√

‖
‖σ

pred
eff − σtrue

eff
‖
‖
2

‖
‖σ

true
eff

‖
‖
2 , (6)

where σeff ∈ ℝ11 is the vector collecting the effective stress values σeff  
at the 11 strain steps, and ∥⋅∥ is the Euclidean norm.

For the full-field responses, we compute the analogous relative  
L2 error per strain step as

ϵL2 (σ
pred
22 ,σtrue22 ) =

√√√√√√
√

‖
‖σ

pred
22 − σtrue22

‖
‖
2

‖
‖σ

true
22

‖
‖
2 , (7)

where σ22 ∈ ℝN×N  denotes the σ22 stress values of the discretized pixel 
grid in the Lagrangian frame for the corresponding strain step, and ∥⋅∥ 
is the Frobenius norm.

Data availability
The training and validation dataset (consisting of pairs of full-field data 
and the effective stress–strain response) and the pre-trained model are 
available in the ETHZ Research Collection60 at https://doi.org/10.3929/
ethz-b-000629716.

Code availability
The code used to train the model and generate new metamaterial 
designs conditioned on a given stress–strain response is available at 
https://github.com/jhbastek/VideoMetamaterials and on Zenodo61.
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Extended Data Fig. 1 | Comparison of the full-field σ22 predictions and FE 
ground truth (indicated in [MPa]) for four generated structures (a-d) with 
conditioning. Fields are shown in the Eulerian frame for all eleven strain steps, 

including the corresponding relative L2-error. *The relative L2-error at ε = 0.2% is 
numerically inflated due to the small magnitude of the stress field and is hence 
not truly indicative (but included for completeness).
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Extended Data Fig. 2 | Comparison of the target, predicted, and true effective 
stress responses σeff. with conditioning. Target responses are indicated with 
•, predicted responses with ▴, and FE-reconstructed responses with a solid line. 

The shown responses refer to the four samples presented in Extended Data Fig. 1, 
including the corresponding NRMSE of the FE-reconstructed and target response 
(in brackets).
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Extended Data Fig. 3 | Comparison of the full-field σ22 predictions and FE 
ground truth (indicated in [MPa]) for four generated structures (a-d) without 
conditioning. Fields are shown in the Eulerian frame for all eleven strain steps, 

including the corresponding relative L2-error. *The relative L2-error at ε = 0.2% is 
numerically inflated due to the small magnitude of the stress field and is hence 
not truly indicative (but included for completeness).
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Extended Data Fig. 4 | Comparison of the predicted and true effective  
stress responses σeff. without conditioning. Predicted responses are indicated 
with ▴ and FE-reconstructed responses with a solid line. The shown responses 

refer to the four samples presented in Extended Data Fig. 3, including the 
corresponding NRMSE of the predicted and FE-reconstructed response  
(in brackets).
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Extended Data Fig. 5 | Comparison of the full-field σ22 predictions and FE 
ground truth (indicated in [MPa]) for the four structures presented in  
Fig. 3a–d. Fields are shown in the Eulerian frame for all eleven strain steps, 

including the corresponding relative L2-errors. *The relative L2-error is 
numerically inflated due to the small magnitude of the stress field and is hence 
not truly indicative (but included for completeness).
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Extended Data Fig. 6 | A variety of designs proposed by the diffusion model 
for a given non-smooth target response. We plot the effective stress response 
σeff. of the original design of the target response (‘Ground truth’) presented in  
Fig. 3b with three synthesized designs from the video diffusion model (‘Pred. 1-3’;  

NRMSE with respect to the target response in brackets). We also provide the 
FE evaluation of the original and generated designs in terms of the full-field 
σ22-distribution (indicated in MPa in the Eulerian frame) and the corresponding 
relative L2-errors of the predicted σ22-distribution, where applicable.
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Extended Data Fig. 7 | A variety of designs proposed by the diffusion model 
for a given target response with negative stiffness (buckling). We plot 
the effective stress response σeff. of the original design of the target response 
(‘Ground truth’) presented in Fig. 3d with three synthesized designs from 
the diffusion model (‘Pred. 1-3’; NRMSE with respect to the target response 
in brackets). We also provide the FE evaluation of the original and generated 

designs in terms of the full-field σ22-distribution (indicated in MPa in the Eulerian 
frame) and the corresponding relative L2-errors of the predicted σ22-distribution, 
where applicable. Note that for Pred. 1 and Pred. 2 the predicted deformation 
buckles in the opposite direction of the FE evaluation (leading to seemingly  
high errors).
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