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Spatially embedded recurrent neural 
networks reveal widespread links between 
structural and functional neuroscience 
findings

Jascha Achterberg    1,5 , Danyal Akarca    1,5 , D. J. Strouse2, John Duncan1,3,6 & 
Duncan E. Astle    1,4,6

Brain networks exist within the confines of resource limitations. As a result, a 
brain network must overcome the metabolic costs of growing and sustaining 
the network within its physical space, while simultaneously implementing 
its required information processing. Here, to observe the effect of these 
processes, we introduce the spatially embedded recurrent neural network 
(seRNN). seRNNs learn basic task-related inferences while existing 
within a three-dimensional Euclidean space, where the communication 
of constituent neurons is constrained by a sparse connectome. We find 
that seRNNs converge on structural and functional features that are also 
commonly found in primate cerebral cortices. Specifically, they converge 
on solving inferences using modular small-world networks, in which 
functionally similar units spatially configure themselves to utilize an 
energetically efficient mixed-selective code. Because these features  
emerge in unison, seRNNs reveal how many common structural and 
functional brain motifs are strongly intertwined and can be attributed to 
basic biological optimization processes. seRNNs incorporate biophysical 
constraints within a fully artificial system and can serve as a bridge between 
structural and functional research communities to move neuroscientific 
understanding forwards.

As they develop, brain networks learn to achieve objectives, from simple 
functions such as autonomic regulation, to higher-order processes 
such as solving problems. Many stereotypical features of networks are 
downstream consequences of resolving challenges and trade-offs they 
face, across their lifetime1,2 and evolution3–5. One example is the optimi-
zation of functionality within resource constraints; all brain networks 
must overcome metabolic costs to grow and sustain the network in 

physical space, while simultaneously optimizing that network for infor-
mation processing. This trade-off shapes all brains within and across 
species, meaning it could be why many brains converge on similar 
organizational solutions4. As such, the most basic features of both brain 
organization and network function—such as its sparse and small-world 
structure, functional modularity, and characteristic neuronal tuning 
curves—might arise because of this basic optimization problem.
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behaviour emerge in the first place? To address this question, we need 
to be able to manipulate experimentally how neural networks form, as 
they learn to achieve behavioural objectives, to establish the causality 
of these relationships. Computational models allow us to do this8. They 
have shown that network modularity can arise through the spatial cost 

Our understanding of how the brain’s structure and function 
interact largely comes from observing differences in brain structure, 
such as across individuals6 or following brain injury7, and then system-
atically linking these differences to brain function or behavioural out-
comes. But how do these relationships between structure, function and 
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Fig. 1 | Task structure and seRNNs. a, We use regularization to influence 
network structure during training to promote smaller network weights and 
hence a sparser connectome. b, Through regularization, we embed RNNs in 
Euclidean space by assigning units a location on an even 5 × 5 × 4 grid. We show 
a schematic of a six-node network in its space. c, We similarly embed RNNs in a 
topological space, guiding the pruning process towards efficient intra-network 
communication operationalized by a weighted communicability measure (see 
main text). The weighted communicability term is shown for the same network. 
d, When these constraints are placed within a joint regularization term, networks 
are incentivized to strengthen short connections, which are core to the networks 
topological structure, and weaken long connections, which are peripheral. 
Networks are generally incentivized to weaken connections while optimizing 
task performance. e, In the main study, we trained 1,000 L1-regularized RNNs as a 
baseline. L1 networks optimize task performance while minimizing the strength 
of their absolute weights (W). The network receives task inputs from an eight-

unit-wide fully connected feed-forward layer and represents its choice as one of 
four choice units in the output layer. We compare these with 1,000 seRNNs,  
which include both Euclidean and topological constraints in their regularization 
term, by multiplying the weight matrix (W) by its Euclidean distance (D) and 
weighted communicability (C). Elements of the resulting matrix are summed, 
forming the structural loss. We minimize the sum of the task loss and the 
structural loss. To the right, we show the evolution of W, D and C matrices over 
training. f, Networks solve a one-step inference task starting with a period of 
twenty steps where the goal is presented in one of four locations on a grid: top/
bottom, left/right (depicted in light blue). Subsequently, there is a ten-step 
delay where the goal location must be memorized. Then two choice options are 
provided for twenty steps. Using prior goal information, agents must choose the 
option closer to the goal. In this example, given left and right options, the correct 
decision is to select right.
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of growing a network9, how orthogonal population dynamics can arise 
purely through optimizing task performance10 and how predictive cod-
ing can arise through limiting a brain’s energy usage11. But we have yet 
to incorporate both the brain’s anatomy and the brain’s function into a 
single coherent model, allowing a network to dynamically trade-off its 
different structural, functional and behavioural objectives in real time.

To achieve this, we introduce spatially embedded recurrent neural 
networks (seRNNs). An seRNN is optimized to solve a task, making 
decisions to achieve functional goals. However, as it learns to achieve 
these goals and to optimize its behavioural performance, its constitu-
ent neurons face the kind of resource constraints experienced within 
biological networks. Neurons must balance their finite resources to 
grow or prune connections, while the cost of a connection is propor-
tional to its length in three-dimensional (3D) Euclidean space12–16. At 
the same time, the network attempts to optimize its intra-network 
communication to allow for efficient propagation of signals17–21. By 
allowing seRNNs to dynamically manage both their structural and func-
tional objectives simultaneously, while they learn to behave, multiple 
simple and complex hallmarks of biological brains naturally emerge.

Results
Spatially embedded recurrent neural networks
Our first goal was to create a supervised optimization process that sub-
jects recurrent neural networks (RNNs; ‘RNN modelling’ in Methods) to 
the constraints of biophysical space while they are optimized for task per-
formance. An established way of influencing a network’s weight matrix 
while it is optimized for task performance is regularization (Fig. 1a).  

In regularization, instead of merely optimizing a network’s weights 
to maximize task performance, one adds an additional regularization 
term to the optimizer to minimize the strength of a network’s weights. 
This is related to regularized regression, such as L1 (LASSO) regression, 
where the sum of the absolute beta weights is minimized to improve a 
model’s out-of-sample prediction performance. We use the same idea 
to spatially embed an RNN. We start with fully connected RNNs and 
while they are trained to maximize task performance, we nudge them 
to minimize weights that are long in 3D space. To achieve this, we assign 
every unit in the RNN’s recurrent layer a location in 3D space (Fig. 1b) 
and regularize a weight more strongly if it belongs to two units that 
are far apart in Euclidean space. In this pruning process, we also want 
the network to optimize within-network communication, meaning a 
weight should be more readily pruned if it does not contribute strongly 
to the propagation of signals within the network. A standard measure 
of signal propagation in a (binary) network is communicability, reflect-
ing the shortest routes between all pairs of nodes22 (Fig. 1c; see details 
in ‘Communicability’ in Supplementary Information). When adapted 
for a weighted network (weighted communicability19), the commu-
nicability value of a network is low when there are strong global core 
connections supporting short paths across the network while avoid-
ing redundant peripheral connections to achieve sparsity (Fig. 1d). In 
Supplementary Information (‘Minimizing redundant connectivity by 
minimizing weighted communicability’), we provide information on 
how weighted communicability differentially optimizes peripheral 
and core connection strengths. By combining the spatial distance and 
weighted communicability terms in an RNN’s regularization while it 
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Fig. 2 | Validating the training of seRNNs. a, The validation accuracy of all 
converging neural networks is shown across L1 RNNs (n = 479, blue, for all plots) 
and seRNNs (n = 390, pink, for all plots), showing that equivalent performance 
is achieved on the one-step inference task. For all plots, error bars correspond 
to two standard errors. b, At the same time, both groups of networks show a 
general trend of weakening the weights in their recurrent layer, showing that the 
overall regularization is working in both groups of networks. c, As a result of their 
unique regularization function, seRNNs have a negative correlation between 
weight and Euclidean distance over the course of epochs/training, but in L1 
networks there is no relationship between weights and Euclidean distance. d, The 
regularization function of seRNNs also successfully influences the topology of 

networks to prefer topologically central weights over topologically peripheral 
weights, as shown by lower weighted communicability values. e, Left: an example 
of a representative seRNN network in the 3D space in which it was trained. The 
size of the nodes reflects their node strength. This network was taken from 
epoch 9 at a regularization of 0.08 and is the network used for visualizations for 
the rest of this paper. Middle: we show the negative relationship between the 
connection weights of seRNN versus the Euclidean distances of the connections. 
Pearson’s correlation coefficient is provided, with the corresponding P value 
(P = 7.03 × 10−7). No adjustments were required for multiple comparisons. Right: 
we show the weight matrix of this seRNN, showing how weights are patterned 
throughout the network.
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learns to solve a task, we arrive at seRNNs (Fig. 1e). We provide a detailed 
walkthrough of the regularization function in ‘seRNN regularization 
function’ in Methods. While learning to solve a task, seRNNs are nudged 
to prefer short core weights over long peripheral weights.

To understand how this spatial embedding impacts a network’s 
structure and function, we set up 2,000 RNNs. Half of the networks 
were seRNNs trained with the new optimization process described 
above. The other half were regular RNNs regularized with a standard 
L1 regularizer minimizing the sum of the absolute weights, to arrive at 
a population of baseline networks that match seRNNs in overall con-
nectivity strength. In both cases, the regularizer was applied to the 
hidden recurrent layer of the network and the regularization strength 
was systematically varied within each subgroup of networks to cover 
a wide spectrum of regularization strength that is matched across 
subgroups (Fig. 1e and ‘Regularization strength set-up and network 
selection’ in Methods). All networks had 100 units in their hidden 
layer and were trained for 10 epochs. All networks started strongly 
connected and learned through pruning weights in accordance with 
their regularization. We trained networks on a one-choice inference 
task that required networks to develop two fundamental cognitive 
functions of recurrent networks: remembering task information (‘goal’) 
and integrating it with new incoming information (‘choices’) (Fig. 1f 
and ‘Task paradigm’ in Methods).

When training the networks, we found that both types of network 
manage to learn the task with high accuracy (Fig. 2a). Focusing on 
networks that successfully solve the task (>90% task accuracy; n = 390 

for seRNNs, n = 479 for L1s; see ‘Regularization strength set-up and 
network selection’ in Methods for discussion of network numbers), 
we first validated that our optimization process is working. By using 
L1 networks as a baseline, we observed that both groups decrease in 
their average connectivity strength (Fig. 2b) but that only seRNNs did 
so by pruning long-distance connections (Fig. 2c). This is commonly 
found in empirical brain networks across species and scales23. In addi-
tion, we validate that seRNNs successfully focus their pruning process 
on weights that are less important for the network’s communicative 
structure, as represented by lower weighted communicability (Fig. 2d). 
Figure 2e shows an example visualization of one seRNN.

Having shown that the new regularization function in seRNNs has 
the expected effects on the weight matrix of networks, we next tested 
which features result from the spatial embedding. Specifically, we 
tested whether seRNNs show features commonly observed in primate 
cerebral cortices, including structural motifs such as modularity24–26 
and small-worldness27,28, before testing for functional clustering of 
units in space27,28. We then go beyond structural and functional organi-
zation and test whether spatial embedding forces networks to imple-
ment an energy-efficient mixed-selective code29,30. In short, we wanted 
to test whether established organization properties of complex brain 
networks arise when we impose local biophysical constraints.

Modular small-world networks emerge from constraints
We first investigated two key topological characteristics that are 
commonly found in empirical brain networks across spatial scales 
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Fig. 3 | seRNNs show a brain-like structural topology. a, Left: a schematic 
illustration of the concept of modularity in networks. While both L1 (n = 479) and 
seRNN (n = 390) networks show increasing modularity over epochs/training, 
there is a consistently greater modularity in seRNNs compared with L1 networks. 
Error bars correspond to two standard errors. Right: we show very large (Cohen’s 
d = 1.07) statistical differences in modularity distributions for functioning 
(validation accuracy ≥90%) epoch 9 networks in L1 and seRNN networks. A two-
sample t-test was taken to provide the P value. No adjustments were required for 
multiple comparisons. b, Left: a schematic illustration of the concept of small-
worldness in networks. While both L1 (n = 479) and seRNN (n = 390) networks 
show a similar trajectory shape of small-worldness over epochs/training, there 
is a consistently greater small-worldness in seRNNs compared with L1 networks. 
Error bars correspond to two standard errors. Right: we show moderate-to-large 
(Cohen’s d = 0.59) statistical differences in small-worldness distributions for 
functioning epoch 9 networks in L1 and seRNN networks.  

A two-sample t-test was taken to provide the P value. No adjustments were 
required for multiple comparisons. c, For a range of generative network models 
(‘Generative network modelling’ in Methods), we present the model fit of the 
top performing simulations fit to seRNNs (n = 390). Note that the lower the 
model fit, the better the performance, as the model fit function is a measure of 
dissimilarity between the RNN and the generative simulation. The results show 
that homophily models achieve the best model fits. These findings are congruent 
with published data from adolescent whole-brain diffusion-MRI structural 
connectomes35 (middle right) and high-density functional neuronal networks 
at single-cell resolution15 (right). The boxplots present the minimum value 
(bottom), maximum value (top), median value (centre) and the interquartile 
range (bounded 25th and 75th percentile). A one-way ANOVA was taken to 
provide the first P value (P = 1.04 × 10−91), followed by a Tukey’s test for pairwise 
comparisons in which homophily models had a pairwise P value <10−3 for all 
comparisons.
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and proposed to facilitate brain function: modularity24–26 and 
small-worldness27,28. Modularity denotes dense intrinsic connectiv-
ity within a module but sparse weak extrinsic connections between 
modules and small-worldness indicates a short average path length 
between all node pairs, with high local clustering.

Computing modularity Q statistics and small-worldness (‘Topo-
logical analysis’ in Methods) shows that seRNNs consistently show both 
increased modularity (Fig. 3a) and small-worldness (Fig. 3b) relative to 
L1 networks over the course of training. Differences are smaller initially, 
but later in training, the effect size for differences in modularity are 
large (at epoch 9, modularity P = 2.24 × 10−82, Cohen’s d = 1.07; Fig. 3a,  
right) and for small-worldness moderate to large (P = 2.82 × 10−19, 
Cohen’s d = 0.59; Fig. 3b, right). seRNNs achieve modularity Q statistics 
within ranges commonly found in empirical human cortical networks31. 
Both L1 and seRNNs achieve the technical definition of small-worldness 
of >1 (ref. 32), but seRNNs show a higher value more consistent with 
empirical networks33. ‘Replication across architectures’ in Supple-
mentary Information shows how the subparts of the regularization 
interact with the task optimization to shape these structural effects. 
It is important to note that within the population of seRNNs, we find 
varying degrees of modularity and small-worldness (Fig. 3a, right, and 
Fig. 3b, right). We will return to this variability in a later section.

To further validate the structural likeness of seRNNs to empiri-
cal neural connectivity, we used generative network models9,34–36. 
These models elucidate which topological wiring rules can accurately 
approximate observed neural graphs. Corroborating empirical macro- 
and microscopic data15,35, we find that homophily wiring rules—where 
neurons preferentially form connections to other neurons that are 
self-similar in their connectivity profiles—perform best in approximat-
ing the topology of seRNNs relative to all other wiring rules (Fig. 3c  
and additional detail in ‘Generative network modelling of RNNs’ in 
Supplementary Information).

Functionally related units spatially organize in seRNNs
So far, we have explored how imposing biophysical constraints within 
seRNNs produces structures that mimic observed networks. However, 
this ignores the functional roles of neurons or their patterning within 
the network. We next examined this by exploring the configuration of 
functionally related neurons in 3D space (Fig. 4a). In brain networks, 
neurons sharing a tuning profile to a stimulus tend to spatially group37,38. 
This can be observed on fine-grained cortical surfaces with prefer-
ences for stimuli features39 (Fig. 4b) and in whole-brain functional 
connectivity forming modular network patterns40 (Fig. 4c). In addi-
tion, high-resolution recordings in rodents show how the brain keeps 
many codes localized but also distributes some across the network41. 
To test whether seRNNs recapitulate functional co-localization, we 
decoded how much variance of unit activity can be explained by the 
goal location or choice options, over the course of each trial (‘Decoding’ 

in Methods). In Fig. 4d, we show a visualization in a representative 
network and unit-specific preferences over the course of a single trial.

By taking the relative preference for goal versus choice for each 
unit, we tested whether the relative sensitivity to stimuli was con-
centrated in parts of the network. We used a spatial permutation test 
(‘Spatial permutation test’ in Methods) to test whether the Euclidean 
distance between highly ‘goal’ or ‘choice’ selective neurons was sig-
nificantly less or more than would be expected by chance. A small 
Pperm value highlights that functionally similar neurons tend to be 
significantly clustered in space whereas a large Pperm corresponds to 
functionally similar neurons being distributed in space (Fig. 4e, top).

We tested for functional co-localization across three time windows 
of the trial (the total duration of a trial was 50 steps; Fig. 1e): (1) early 
stage (goal presented, steps 15–20); (2) middle stage (choice options 
presented, steps 30–35) and (3) late stage (decision point, steps 45–50). 
At the early stage, when only goal information is presented, neurons 
code for only the goal information (widespread dark green nodes in 
Fig. 4d, left). In seRNNs, there is a slight positive skew in Pperm values, 
suggesting clustering of highly goal-coding neurons (Fig. 4e, mid-
dle left). Subsequently, in the middle stage, when choice options are 
first shown, goal information clusters within a concentrated area of 
space, leaving the choice information distributed (seen by clustering 
of green nodes and distribution of brown nodes in Fig. 4d, middle). 
This is highlighted by a large positive skew in Pperm values for the goal in 
seRNN networks (Fig. 4e, middle top) and correspondingly the oppo-
site for choice information (Fig. 4e, middle bottom). In the late stage, 
the clustering of goal information in space dissipates such that by the 
time a decision must be made, the goal information has now spread 
out more but still retains some clustering (Fig. 4e, middle right). The 
choice code remains distributed (Fig. 4e, bottom right). This suggests 
that seRNNs use their highly modular structure to keep a connected 
core with goal information, which needs to be retained across the trial. 
It uses spatially proximal units to form this core. The presented choices 
information is then represented by units outside this core and dynami-
cally integrates with the information in the core as the decision point 
approaches. These findings are unique to seRNNs, as L1 Pperm values 
remain uniform, indicative of no functional organization. The control 
analysis in Supplementary Fig. 12 shows these findings hold true when 
variables are treated independently instead of relatively.

Mixed selectivity and energy-efficient coding
So far, we have shown that adding spatial constraints to a network gives 
rise to patterns of network connectivity that are highly reminiscent of 
observed biological networks. Nodes functionally co-localize and the 
spatial embedding causes differences in how they code task-relevant 
information. This selectivity profile has been widely studied. Studies 
show that neurons in task-positive brain regions tend to show a mixed 
selectivity profile, meaning that neurons do not only code for a single 

Fig. 4 | Functional clustering and distribution of coding in space. a, An 
example of a representative seRNN network. The colour of the nodes relates  
to the decoding preference of that neuron, where a preference for goal 
information is represented by green and choices information by brown.  
b, The spatial clustering of neuronal ensembles that are preferentially tuned 
for orientation versus colour in human prefrontal cortex. The Dorsal-Ventral 
(D-V) and Anterior-Posterior (A-P) axes are shown39. c, The macroscopic spatial 
organization of functional networks40. d, We show decoding of units for goal 
(green) versus choice (brown) information at different points in the trial, 
within the representative seRNN network. e, A schematic illustration of the 
spatial permutation test for determining whether the neurons are functionally 
clustered (top left) or distributed (top right) in space. For this permutation test, 
we compute the summed Euclidean distance between units with an observed 
preference for goal or choice information, respectively, weighted by the 
magnitude of their preference (termed cluster ∑ weighted Euclidean). This gives 
a statistic, for every network, corresponding to the weighted distance between 
units (that is, goal or choice units) in space. To determine whether this statistic 

was equivalent to chance, for each statistic we computed a null distribution 
of expected distances between goal and choice units, respectively, under the 
assumption that they are randomly located in space. This was calculated by 
taking 1,000 random samples of the same size as the number of empirical 
neurons with a preference for goal or choice information. The Pperm relates to 
where the statistic sits within this null distribution, where each network gets a 
Pperm for goal and choice information. The skew of the Pperm towards zero shows 
that the code of networks is more clustered than the null distribution whereas 
a skew towards one highlights a more distributed code. The Pperm values across 
RNNs are given for goal information (middle) and choice information (bottom) 
for seRNNs (pink) and L1 networks (blue). Goal information is shown to be 
clustered, as given by the positively skewed Pperm distributions. In contrast,  
choice information is shown to be distributed. No adjustments were required  
for multiple comparisons. Panel b reproduced with permission from ref. 39, 
under a Creative Commons licence CC BY 4.0. Panel c adapted with permission 
from ref. 40, Elsevier.
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task variable but instead a mixture of them30,42–44. A mixed-selective 
code is assumed to allow networks to solve complex tasks by increas-
ing the decodability of information from the network’s neurons29,45. 
There are many ways to quantify selectivity profiles46. One simple 
method is to calculate the correlation of explained variances of task 
variables across the population of neurons. These are expected to be 
uncorrelated, implying a neutrally mixed code where a neuron’s cod-
ing preference for one variable does not predict its code for another 
variable. In single-unit recordings, correlations can be close to zero or 
sometimes slightly positive47.

We looked at the correlation of selectivities of trained networks 
(epoch 9) for the goal and choices variables. At the time in the trial when 
networks make a choice, the median correlation is r = −0.057 for seRNN 
but r = −0.303 for L1, showing that L1 networks produce an anticor-
related code while seRNNs have a more mixed-selective code (Fig. 5a). 
It is possible that this effect is driven by the differential connectome 
structure of the two groups of networks. While a modular and separated 
network would not automatically mix codes across variables evenly, we 
find a well-mixed code in seRNNs. The additional highly communicative 
connections between modules of the small-worldness characteristic 
might help seRNNs to organize units in space while retaining a mixed 
code across the population. ‘Mixed selectivity’ in Supplementary Infor-
mation shows how networks specifically show a mixed-selective code 
at the time when the decision is made. Like our structural results, we 
saw that there is variation across the population of networks (Fig. 5a), 
where some networks fall neatly on r = 0 and others might show corre-
lated codes. The following section provides an analysis of this variance.

The choice of a neuronal code in populations of neurons is strongly 
linked to the question of energy demand. As the firing of action poten-
tials uses a substantial amount of energy48, a population of neurons 
should choose a code with a good trade-off of metabolic cost and infor-
mation capacity29. To test our networks’ energy consumption, we cal-
culated the mean activation of each unit in a network’s recurrent layer 
(epoch 9) during the period of information integration (after onset 
of choices). Then we tested for the difference between seRNNs and 
L1 networks, controlling for the effect of the average weight strength 
in the recurrent layer (Fig. 5b). Across most weight strengths, seRNNs 
showed significantly lower unit activations compared with L1 networks 
(P < 0.001, t(86,497) = 21.4, 95% confidence interval = [−0.271, −0.226]). 
Sustaining a mixed-selective code at the time of choice might help 
downstream integration units to decode information more easily, with 
fewer unit activations needed to communicate the correct choice. This 
effect disappears for networks with higher average weights, with weak 
regularization and hence weaker spatial embedding.

Constraints cause linked brain-like structure and function
So far, we have seen that seRNNs show a collection of features that are 
commonly observed in brains but have not previously been related. 
The caveat not addressed so far is that for any feature we observed in 
seRNNs, we also see strong variation across the population of networks 
(for example, Fig. 3b for modularity or Fig. 5a for mixed selectivity). 
This opens the possibility that these features do not arise in parallel in 
seRNNs but instead each feature could emerge in its unique subgroup 
of networks. This would be unlike biological brains, which exist in a 
critical sweet-spot area49 where all the features described in this paper 
are observed. In this section, we tested whether all seRNN features 
co-appear in a similar subset of trained networks, defined by a unique 
combination of training parameters.

To study the co-occurrence of brain features in seRNNs, we 
looked at the distribution of feature magnitude across the space of 
training parameters (regularization strength, number of training 
epochs passed). Figure 6a shows matrix plots for accuracy (left), 
total sum of weights (middle left), modularity (middle right) and 
small-worldness (right) across the entire spectrum of training epochs 
(x axis) and regularization strengths (y axis). As before, there is varia-
tion in the magnitude of features across the population of networks, 
but now we also see that this variation is structured. Brain-like topol-
ogy emerges in a sweet-spot of low to medium strength regulariza-
tion and during the later training epochs (pink box). The schematic 
in Fig. 6b highlights this space of sparse, highly accurate, modular 
small-world networks with an example network showing all proper-
ties (Fig. 6b, middle right). Above this space (that is, networks with 
less regularization, highlighted in orange) networks can solve the 
task and show small-worldness, but remain very dense and lack the 
modular organization found in empirical brain networks. Below 
this space (that is, networks with more regularization, highlighted 
in light blue) networks show extreme sparsity and modularity, but 
fail to functionally converge on the task and they lose their small- 
world topology.

Next, we wanted to look at the same ‘sweet spot’ in terms of the 
network’s functional properties. As the decoding required us to focus 
this analysis on networks with high task performance (‘Decoding’ 
in Methods), we use networks with an accuracy >90% at epoch 9.  
Figure 6c shows the functional results across regularization strengths, 
highlighting the sweet spot of regularization from Fig. 6a with the 
pink box. In the first two plots from the top, we show two structural 
metrics (sparsity and short connection preference). We observed the 
same distribution when looking at the homophily generative wiring 
rule (Supplementary Fig. 11b). Looking at mixed selectivity (Fig. 6c,  
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third from top), our analyses revealed that networks show a 
mixed-selective code at the decision point in the sweet-spot window 
identified before. Units here show a balanced code with information for 
both goal and choices (Fig. 6c, bottom), whereas very dense or sparse 
networks show a preference for either goal or choices information. 
As such, the density and related modular small-world structure influ-
ences the time horizon of information flowing through the network. 
Dense networks show greater focus on past information, which reso-
nates with how functional networks reconfigure to support memory50. 
Supplementary Fig. 14 shows a correlation matrix showing pairwise 
relationships between features studied here.

Our findings show that there is a critical parameter window in 
which both structural and functional brain features jointly emerge in 
seRNNs. Brains are often said to live in a unique but critical niche where 
all characteristics needed to support their function can exist in paral-
lel51. seRNNs show the same preference for a critical parameter window 
but also give us the ability to study networks on their way to converging 
on brain-like characteristics in this critical window.

Discussion
Functioning brains have key organizational features endowing them with 
computational capacities to perform a broad range of cognitive opera-
tions efficiently and flexibly. These include sparse connectivity with a 
modular small-world structure25,27,52, generatable via homophilic wiring 
rules34–36, with spatially configured functional units that implement a 
mixed-selective code30,45 and minimize energy expenditure29,48. We argue 
that these complex hallmarks can be, at least in part, attributed to three 
forces impacting virtually any brain network: optimization of functional 
performance in a (task) environment, metabolic/structural costs of the 
network and signal communication within the network. In this work 
we have shown that seRNNs allow us to manipulate these optimization 
goals, demonstrating that seemingly unrelated neuroscientific find-
ings can emerge in unison and appear to have a strong co-dependence.  
We believe that these findings also have an impact on how we think about 
the interlinked structural and functional optimization processes in the 
brain under economic constrains (‘Network economics in structural 
and functional neuroscience models’ in Supplementary Discussion). 

Training time/epoch

Re
gu

la
riz

at
io

n

Total weight, ΣW Modularity, QAccuracy (%)a

b c

Small-worldness, σ

Maximum

0%

1

Training time/epoch

Re
gu

la
riz

at
io

n

No
training

Training
complete

Highly
constrained

No
constraints

Relative m
agnitude

Choices

Goal 

Mixed
selectivity

Short
connection
preference

Sparsity

Optimal
trade-o�s

80

%↑

Q↑

σ↑

∑W↓

2

3

Convergent brain-like properties within
a narrow critical window

Low

High
None Complete

Regularization (%)x

y
z

Accurate,
dense,

non-modular,
small-world

Optimal
trade-o�s

'sweet spot'

Inaccurate,
sparse,

modular,
non-small-

world

0

800

600

400

200

0

–0.1

–0.2

–0.3

–0.4

–0.5

1.0

0.5

–0.5

0

1.0

0.5

0

∑W
C

or
r(
W

,D
)

C
or

re
la

tio
n 

of
se

le
ct

iv
iti

es
Ex

pl
ai

ne
d

va
ria

nc
e

Fig. 6 | The seRNN parameter space converges on brain-like topology and 
function. a, The white borders within the regularization-training parameter 
space delineate the conditions where seRNNs achieve robust accuracy (left), 
sparse connectivity (middle left), modular networks (middle right) and small-
worldness (right). The pink box shows where all these findings can be found 
simultaneously. The colour of the matrix corresponds to the relative magnitude 
of the statistic compared with the maximum. b, This is further highlighted by a 
schematic representation, which shows the space of possible seRNNs. The pink 
box shows the overlap of all findings, where accurate, sparse, modular,  

small-world networks are generated, which we term as being at the optimal 
trade-off. Networks 1, 2 and 3 each represent example networks across the space. 
The nodes of the representative graph reflect the node’s strength, defined 
as the total sum of the node’s in- and out-connection weights. c, In this pink 
window, networks are sparse (top), prefer short connections (middle top), have a 
correlations of variable selectivities centring around zero, consistent with mixed 
selectivity (middle bottom) and have equivalent explained variance for both the 
goal and the choice (bottom).

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | December 2023 | 1369–1381 1377

Article https://doi.org/10.1038/s42256-023-00748-9

Our model provides an important tool to continue the work on jointly 
studying structure and function in neuroscience models53–57. In addi-
tion, our results are relevant for developments on the intersection of 
neuroscience and artificial intelligence (NeuroAI58) (‘Implications of 
seRNN findings on artificial intelligence’) in Supplementary Discussion.

There are many areas that we wish to improve on with future 
research. Principally, our models did not include a substantial amount 
of biological detail that, while inevitably critical for neuronal function-
ing, does not speak to the observations we aimed to recapitulate in 
the present study. Implementing such details including molecular 
mechanisms guiding circuit development59 or heterogeneous spiking 
of neurons60 will probably provide insights into the trade-offs specific 
to biological brains. The addition of such details will help us expand the 
applicability of our models to explore the effect of developmental time 
courses61,62, functional brain specialization63 and how network vari-
ability may underpin individual differences64. Beyond these biological 
details, it will be important to see how different functional goals would 
have differential effects on structural optimization processes. The sim-
ple working memory task used here provides a first realistic cognitive 
challenge, but it will be interesting to consider seRNNs in continuous 
choice multi-task environments. Finally, it is unknown to what extent 
the inclusion of biophysical constraints has on the randomness of net-
work structure, although we speculate it would generate less-random 
network structures, compared with regular task-optimized networks.

The development of seRNNs allowed us to observe the impact of 
optimizing task control, structural cost and network communication 
in a model system that can dynamically trade off its structural and 
functional objectives. This suggests that providing artificial neural 
networks with a topophysical structure65,66 can enhance our ability to 
directly link computational models of neural structure and function. 
We believe that the modelling approach shown to work in seRNNs will 
speed up innovations in neuroscience by allowing us to systematically 
study the relationships between features that all have been individually 
discussed to be of high importance to the brain.

Methods
seRNN regularization function
In a canonical supervised RNN, all the network’s trainable parameters 
are optimized to minimize the difference between the predicted value 
and correct value. To achieve this, we define a task loss function (L), 
which defines the prediction error to be minimized to optimize task 
performance. To produce a network that generalizes well to unseen 
data, we can add a regularization term. Regularization incentivizes 
networks to converge on sparse solutions and is commonly applied to 
neural networks in general67 and neuroscientific network models68,69. 
For a regularized network, the loss function becomes a combination 
of both the task loss and the regularization loss. One example of a com-
monly applied regularization is the L1 regularization, which is also used 
in LASSO regression70 and incentivizes the network to maximize task 
performance while concurrently minimizing the sum of all absolute 
weights in the neural network. If we want to regularize the recurrent 
weight matrix (W) with the dimensions m × m, where m is number of 
units in the recurrent layer, the loss function would be:

L = LTask + L1 = LTask + γ ||W || (1)

||W || =
m
∑
i=1

m
∑
j=1

|wi, j| (2)

An RNN with this loss function would learn to solve the task with a 
sparse weight matrix (𝑤𝑖,𝑗), where γ would determine the extent to which 
the network is forced to converge on a sparse solution. This parameter 
is called the regularization strength.

Unlike regular RNNs, real brain networks are embedded in a physi-
cal space12–14. To simulate the pressures caused by existing in a 

biophysical space, we manipulated the regularization term. We hypoth-
esized that by incorporating constraints that appear common to any 
biological neural system, we could test whether these local constraints 
are sufficient to drive a network architecture that more closely resem-
bles observed brain networks. Specifically, we included spatial con-
straints in two forms—Euclidean and network communication—that 
we argue are integral to any realistic neural network. To implement 
this, we first embed units within a 3D space, such that each unit has a 
corresponding x, y and z coordinate. Using these coordinates, we can 
generate a Euclidean distance matrix that describes the physical dis-
tance between each pair of nodes (Fig. 1b). This allows to minimize 
weights multiplied by their Euclidean distance (di,j), thereby incentiv-
izing the network to minimize (costly) long-distance connections. The 
element-wise matrix multiplication is denoted with the Hadamard 
product ⊙. Adding this to our optimization term gives us:

L = LTask + γ ||W⊙ D|| (3)

||W⊙ D|| =
m
∑
i=1

m
∑
j=1

||wi, j|| × ||di, j|| (4)

The above formalization provides a spatial context for RNN train-
ing. In a next step, we want to follow the same approach to incentivize 
networks to preferably prune weights that are not strongly contributing 
to the within-network communication structure. We can impose this 
influence of communication via a weighted communicability term19,22, 
which computes the extent to which, under a particular network topol-
ogy, any two nodes are likely to communicate both directly and indi-
rectly over time (Fig. 1c). Now taking this topological communication 
into account, we get the following loss function:

L = LTask + γ ||W⊙ D⊙ C|| (5)

C = eS−
1
2 |W |S−

1
2 (6)

Supplementary Figs. 1–5 provide a walkthrough explanation of 
how this term works and expand on the logic of how constraining the 
network’s topology can serve as a prior for intra-network communica-
tion in sparse networks. Supplementary Fig. 6 specifically highlights 
the role that communicability has within the network optimization 
process. Note that in equation (6), S is a diagonal matrix with the degree 
of unit i (degi) on the diagonal (that is, the node strength), which simply 
acts as a normalization term preventing any one single edge having 
undue influence19. This is explained in Supplementary Figs. 4 and 5.

Importantly, as all terms (W, D, C) are element-wise multiplied 
within the regularization term, they are all minimized as part of the 
training process. Note, it is possible, in principle, to parameterize 
each part of the above equation to vary the extent to which each term 
influences network outcomes. However, in this work, we focus on estab-
lishing the role of all in tandem. Future work could look to establish 
models with greater parameterization to establish optimal relative 
magnitudes.

Task paradigm
The task that networks are presented with is a one-choice inference task 
requiring networks to remember and integrate information (Fig. 1f). On 
an abstract level, networks needed to first store a stimulus, integrate 
it with a second stimulus and make a predefined correct choice. More 
specifically, networks first observe stimulus A for 20 time steps, fol-
lowed by a delay for 10 time steps, followed by stimulus B for 20 steps. 
Agents must then make one choice. This set-up can be interpreted as a 
one-step navigation task, where agents are presented with the goal loca-
tion (stimulus A) followed by possible choice directions (stimulus B).  
The choice to be made is the one moving closer to the goal. Extended 
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Data Table 1 outlines all possible trials and defines whether the given 
trial is included in the regular version of the task used in the main text.

All stimuli are one-hot encoded with a vector of eight binary digits. 
The first four define the goal locations and only one of the four digits 
would be set to one during the goal presentation. The second four binary 
digits each stand in for one allowed choice direction and two choice 
directions would be set to one during the choice options presentation. 
Gaussian noise with a standard deviation of 0.05 is added to all inputs.

This task design is a simplified version of a multi-step maze naviga-
tion task we have recorded in macaques. A harder version of the task 
with an extended set of trials is equivalent to the first choice monkeys 
face in their version of the task. We use the full set of trials for a control 
calculation in Supplementary Fig. 8. After this first choice, the monkeys 
then continue the task with a further step to reach the goal and collect 
the reward. As the goal of this study was to establish the emerging 
features of seRNNs, here we focus just on the first choice and leave 
questions relating to the multi-step task to future investigations.

RNN modelling
All recurrent neural networks in this project have 100 units in the hid-
den layer and are defined by the same basic set of equations:

ht = ReLU (Wxxt +Whht−1 + bh) (7)

ŷt = σ (Wyht + by) (8)

Here xt is the input vector at time t (1 × 8), Wx is the input layer 
weight matrix (8 × 100) (Xavier initialization), ht−1 is the activation of 
hidden layer at time t − 1 (1 × 100) (zeros initialization), Wh is the hidden 
layer weight matrix (100 × 100) (orthogonal initialization), bh is the 
bias of hidden layer (1 × 100) (zeros initialization), ht is the activation 
of hidden layer at time t (1 × 100) (zeros initialization), Wy is the output 
layer weight matrix (100 × 8) (Xavier initialization), by is the bias of 
network output (1 × 8) (zeros initialization), σ is the softmax activation 
function and ŷt  is the network output/prediction.

Networks differ in terms of which regularization was applied to 
its hidden layer and with which regularization strength. Networks 
are optimized to minimize a cross entropy loss on task performance 
combined with the regularization penalty using the Adam optimizer 
(hyperparameters: learning rate 0.001, beta_1 0.9, beta_2 0.999, epsilon 
1 × 10−7) for 10 epochs. Note that the network’s choice is only read out 
once, at the very end of the trial. Each epoch consists of 5,120 problems, 
batched in blocks of 128 problems.

Regularization strength set-up and network selection
The most critical parameter choice in our analyses is the regularization 
strength. As shown across analyses (for example, Fig. 6), the strength 
of the regularization has a major influence on all metrics analysed here. 
While the L1 regularization and the purely Euclidean regularization 
could be matched by average strength of regularization of the hidden 
layer, the communicability term of seRNNs makes this challenging due 
to it being dependent on the current state of the hidden layer and hence 
changing throughout training. To match the spectrum of regulariza-
tion strengths in L1 and seRNNs, we used a functional approach. As 
performance in the task starts to break down as networks become too 
sparse to effectively remember past stimuli, we matched regularization 
strength using task performance before looking at any of the other 
structural or functional metrics. Specifically, we set the regulariza-
tion spectrum on a linear scale and chose the boundary values so that 
task performance started to deteriorate half-way through the set of 
networks (so around the 500th network for the sets of 1,000 networks).

To make both groups comparable, we focus our analyses on net-
works that achieve >90% task accuracy. For the L1 networks, these 
were 47.9% of all trained networks and for seRNN networks 39%. Note 
that this difference in percentages is not meaningful per se and could 

be eliminated by matching the regularization spectra of both groups 
more closely. As we focus our analyses on highly functional networks 
with high task accuracy, matching the regularization spectra of both 
groups would have not influenced the results. The code repository 
has an overview file with regularization strengths chosen for different 
network types. We hope that future implementations of the seRNNs 
can provide a method for more precise numerical matching between 
regularization strengths.

Topological analysis
Graph theory network statistics were calculated using the Brain Con-
nectivity Toolbox71, and the mathematical formalisms are provided. All 
network statistics were calculated on the hidden RNN weight matrix and 
all edges were enforced to be the absolute value of the element. When 
the measure in question was binary (for example, small-worldness) 
a proportional threshold was applied, taking the top 10% of these 
absolute connections.

Modularity. The modularity statistic, Q, quantifies the extent to which 
the network can be subdivided into clearly delineated groups:

Q = 1
l
∑
i, j∈N

(ai, j −
kikj
l
)δmimj , (9)

where 𝑙 is number of connections, 𝑁 is the total number of nodes, 𝑎𝑖𝑗 is 
the connection status between nodes 𝑖 and 𝑗 (𝑎𝑖,𝑗 =1 when 𝑖 and 𝑗 are 
connected) and 𝑎𝑖,𝑗 = 0 otherwise, where 𝑘𝑖 and 𝑘j are the total number 
of connections (degrees) of nodes 𝑖 and 𝑗. mi is the module containing 
node i, and δmimj = 1 if mi = mj, and 0 otherwise. In this work, we tested 
the modularity using the default resolution parameter of 1.

Small-worldness. Small-worldness refers to a graph property where 
most nodes are not neighbours of one another, but the neighbours 
of nodes are likely to be neighbours of each other. This means that 
most nodes can be reached from every other node in a small number 
of steps. It is given by:

σ = c/crand
l/lrand

, (10)

where c and crand are the clustering coefficients, and l and lrand are the 
characteristic path lengths of the respective tested network and a ran-
dom network with the same size and density of the empirical network. 
Networks are generally considered as small-world networks at σ > 1. 
In our work, we computed the random network as the mean statistic 
across a distribution of n = 1,000 random networks. The characteristic 
path length is given by:

Li =
1
n ∑
i∈N

∑j∈N, j≠idi, j
n − 1 (11)

Generative network modelling
We use a technique called generative network modelling to investigate 
whether the connectome of networks can be recreated by unsuper-
vised wiring rules. The idea is to start from an empty network and 
probabilistically add connections-based simple wiring equations. The 
wiring equations are based on the topological structure of the existing 
network. We follow the approach outlined in refs. 15,35. We provide an 
overview of this approach in ‘Generative network modelling of RNNs’ 
in Supplementary Information.

Decoding
To analyse the internal function of our trained recurrent neural net-
works, we record the hidden state activity of every unit while the 
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network solves a set of 640 trials. Each trial is constituted of 50 steps  
(as shown in Fig. 1e). For decoding, the activity is averaged in step win-
dows of 5, so that there is a total of 10 time windows. In animal electro-
physiology, researchers often look at the explained variance per task 
variable per unit. To allow for comparison of our networks with find-
ings in the literature, we wanted to extract the same metric. Given the 
nature of our task, the variables used to predict unit activity (goal, choice 
options, correct choice) are highly correlated, so that the standard 
decoding with analysis of variance (ANOVA) would give biased results. 
Instead, we used a decoding algorithm based on L1 regression, as follows.

 (1) Apply cross-validated L1 regression with k-fold cross valida-
tion (5 folds) to set alpha term with best cross-validation 
performance.

 (2) Split the dataset via repeated k-fold (3 folds, 2 repeats).
 (3) On each (train, test) dataset:

 (a) Train L1 regression with the pre-set alpha term.
 (b) Calculate explained variance in test dataset including all predic-

tor variables.
 (c) Iteratively set all values of a given set of predictors (for exam-

ple, all goal predictors) to 0 and recalculate the explained vari-
ance and calculate the drop of explained variance per predictor 
group.

 (d) Take mean of drop of explained variance for each group across 
splits of dataset.

This algorithm results in every unit in every network being 
assigned an explained variance number for every task variable. Note 
that the decoding cannot reliably work in networks that make too 
many errors, so that we functionally analyse only networks with a task 
performance of 90% or above.

Spatial permutation test
To examine the spatial clustering of decoded task information of neu-
ronal ensembles within the RNNs, we constructed a simple spatial 
permutation test as follows.

 (1) Considering a single RNN hidden layer at a particular task time 
window (note, explained variances change over the course of 
the task), for each unit, compute the relative preference for goal 
versus choice explained variance for each unit. This is calcu-
lated as the goal explained variance minus the choice explained 
variance.

 (2) Between all n ‘goal’ units (that is, positive difference from step 
1), compute the Euclidean distance weighted by the decoding 
for goal information. This, therefore, captures the spatial prox-
imity between goal units weighted by the magnitude of their 
‘goal’ information. Average this matrix to compute a summary 
statistic. This is the observed statistic.

 (3) Then repeat this procedure for 1,000 times, but for a random 
set of n units taken from the 3D grid space. These 1,000 sum-
mary statistics constitutes the null distribution.

 (4) Compute a permuted P value (Pperm), which is simply the loca-
tion in which the observed statistic (step 2) sits within the null 
distribution (step 3) normalized to the range [0 1]. This value 
subsequently corresponds to how clustered or distributed the 
observed goal decoding information is clustered in space rela-
tive to random chance. A small Pperm means that information is 
clustered more than chance and vice versa.

 (5) Do steps 1–4, but between all ‘choices’ units (that is, negative 
difference from step 1).

 (6) Redo steps 1–5 for all desired time windows that have been de-
coded. In the current work, we calculated Pperm values for time 
window 3, time window 6 and time window 9 to reflect different 
aspects of the task over the sequence of the task.

The above steps were done for all functional RNNs (>90% accuracy) 
for L1 and seRNNs. We presented distributions of these Pperm values 
for goals and choices to highlight how goal and choices information 
is clustered, distributed or random at key points in the sequence of 
the task. To ensure that we did not bias our findings, we further com-
puted a slight variation of the above statistical test, which allows us 
to assess the clustering of coding information independently (that 
is, without computing relative goal versus choice coding, as in step 
1 above). As cluster size was now not determined by the direction of 
coding (as it was previously), we instead used the 50 units with the 
highest variance-explained values for a given variable. This was selected 
because this approximately mirrors the cluster sizes achieved in the pri-
mary functional clustering analysis. Mirroring the permutation testing 
approach, we calculated Pperm by ranking the mean Euclidean distance 
between these units (top 50% coding neurons) in a null distribution 
of Euclidean distance between 1,000 permuted samples of 50 units.  
This was done for goal and choice options (to assess replication). This 
test is advantageous in that it allows for testing variables indepen-
dently, but disadvantageous in that it does not directly incorporate 
the coding magnitude into the test statistics. These findings are given 
in Supplementary Fig. 12.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
No unique data were used in the production of this paper. Reference 
values were extracted from the respective cited reference. All data 
shown in the figures are based on simulations, which are described in 
the ‘Code availability’ section. The data files generated with simula-
tions that underlie the figures are available in the CodeOcean capsule 
belonging to this paper (https://doi.org/10.24433/CO.3539394.v2)72.

Code availability
We provide detailed walkthroughs for the training of our recurrent 
neural networks alongside all the code used to create the plots in this 
paper on CodeOcean (https://doi.org/10.24433/CO.3539394.v2)72. We 
provide additional example implementations of seRNNs on GitHub. As 
new implementations of seRNNs become available, we will add them 
to this paper’s GitHub repository alongside the implementation used 
for this project. The GitHub repository is https://github.com/8erberg/
spatially-embedded-RNN.
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Extended Data Table 1 | List of all problems that make up the task that networks are trained on

Problem Stimulus A Stimulus B Correct Choice Regular Task

1 (Right, up) Left, right Right No

2 (Right, up) Right, down Right Yes

3 (Right, up) Up, down Up No

4 (Right, up) Up, left Up Yes

5 (Right, down) Left, right Right Yes

6 (Right, down) Up, right Right No

7 (Right, down) Up, down Down No

8 (Right, down) Left, down Down Yes

9 (Left, up) Left, right Left Yes

10 (Left, up) Left, down Left No

11 (Left, up) Up, down Up No

12 (Left, up) Up, right Up Yes

13 (Left, down) Left, right Left No

14 (Left, down) Up, left Left Yes

15 (Left, down) Up, down Down No

16 (Left, down) Right, down Down Yes
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