
Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1317

nature machine intelligence

https://doi.org/10.1038/s42256-023-00746-xArticle

Development of the Senseiver for
efficient field reconstruction from
sparse observations

Javier E. Santos   1,2 , Zachary R. Fox1,4, Arvind Mohan3, Daniel O’Malley   2,
Hari Viswanathan2 & Nicholas Lubbers3

The reconstruction of complex time-evolving fields from sensor
observations is a grand challenge. Frequently, sensors have extremely
sparse coverage and low-resource computing capacity for measuring highly
nonlinear phenomena. While numerical simulations can model some of
these phenomena using partial differential equations, the reconstruction
problem is ill-posed. Data-driven-strategies provide crucial disambiguation,
but these suffer in cases with small amounts of data, and struggle to
handle large domains. Here we present the Senseiver, an attention-based
framework that excels in reconstructing complex spatial fields from few
observations with low overhead. The Senseiver reconstructs n-dimensional
fields by encoding arbitrarily sized sparse sets of inputs into a latent space
using cross-attention, producing uniform-sized outputs regardless of the
number of observations. This allows efficient inference by decoding only
a sparse set of output observations, while a dense set of observations is
needed to train. This framework enables training of data with complex
boundary conditions and extremely large fine-scale simulations. We build on
the Perceiver IO by enabling training models with fewer parameters, which
facilitates field deployment, and a training framework that allows a flexible
number of sensors as input, which is critical for real-world applications. We
show that the Senseiver advances the state-of-the-art of field reconstruction
in many applications.

The goal of sparse data reconstruction is to take a few sensor values
from a space that we cannot fully observe, and use them to reconstruct
the global field. Reconstructing spatial fields from sensor data has been
a grand challenge in a wide range of applications in industry, medi-
cine and science1–3. Some examples include laboratory experiments4,
monitoring industrial plants5, precision agriculture6, design of limb
orthoses and prostheses7, structural health monitoring in aircraft8 civil
infrastructure9, subsurface sensing10, tectonic motion estimation11,

weather and climate monitoring12, and identification of abandoned
wells13, among others.

Common features of these applications are low-spatial-sensor
coverage (typically less than 1%), three-dimensional (3D) domains,
noisy data, nonlinear dynamical phenomena and a scarcity of avail-
able processing power within the sensor. These sensing assets are
often deployed in areas with scarce or non-existent network connec-
tivity, necessitating edge computing. For this reason, low-resource,

Received: 1 November 2022

Accepted: 21 September 2023

Published online: 6 November 2023

 Check for updates

1Center for NonLinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA. 2Earth and Environmental Sciences, Los Alamos National
Laboratory, Los Alamos, NM, USA. 3Computer, Computational, and Statistical Sciences Division at Los Alamos National Laboratory, Los Alamos, NM, USA.
4Present address: Oak Ridge National Laboratory, Oak Ridge, TN, USA.  e-mail: jesantos@lanl.gov

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00746-x
http://orcid.org/0000-0002-2404-3975
http://orcid.org/0000-0003-0432-3088
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00746-x&domain=pdf
mailto:jesantos@lanl.gov

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1318

Article https://doi.org/10.1038/s42256-023-00746-x

gap in literature between proposed models and the practical applica-
tion to real-world data.

Attention mechanisms34 have greatly improved the baselines over
other architecture for a variety of problems35–38, and recently, the Per-
ceiver IO framework39 overcame a crucial computational bottleneck
using cross-attention with latent arrays, thereby constraining the bulk
of the network activations to a fixed-sized space regardless of input
size. While this was viewed as a way to handle a large set of inputs (for
example, every pixel in an image), we exploit the fact that it also allows
us to scale down the quantity of information fed into a network, result-
ing in a framework we call the Senseiver. For our applications, we need
to make near real-time decisions on drones or other field-deployed
instruments with limited processing power, and current machine learn-
ing architectures are too computationally expensive. By incorporating
sparsity and refining the network architecture to drastically reduce
the number of parameters needed, the Senseiver is able to accurately
learn and process an entire field with a far smaller amount of resources.
Crucially, sparse processing can treat spatial data that do not live on
a fixed, regular, Cartesian-type mesh. Our approach also overcomes
a limitation of earlier of graph element networks27, which produce
bad estimates when a denser set of sensors is used at inference time.

In this Article, we demonstrate examples of these advantages
on several datasets, and we compare the Senseiver to the recent suc-
cesses of ref. 32, showing remarkable improvements in accuracy,
scalability and efficiency in the limit of low sensor coverage. Beyond
these improvements, we discuss additional benefits of the sparse
processing model of the Senseiver, such as prediction of partial infor-
mation, reduced memory requirements, and faster performance

field-ready devices such as drones require machine learning
approaches that are computationally efficient and accurate. While
some applications can be fully described by physics-based partial dif-
ferential equations (PDEs), incorporating field observations (for exam-
ple, sensor measurements) back to the PDEs is challenging. A variety of
techniques have been developed using PDE-based14,15 and statistical16–18
approaches. Still, widespread success has been elusive due to a lack of
a generic framework to incorporate measured data at arbitrary times
and locations. As a result, machine learning models have become an
attractive alternative16–18 as these have the capacity to learn complex
relationships from data in a great many problems. Some notable exam-
ples include optimization of sensor placement19–21. Machine learning
models have the potential to be successful even when the governing
PDEs of the system are not available. Still, real-world sensors often have
physically limited sensor positions (for example, floating buoys in the
ocean22, Earth-based asteroid sensing23, the inlet/outlet for a laboratory
experiment24), and covering a field exhaustively can be prohibitively
expensive, if not impossible. Furthermore, low-power sensors are often
preferred when operating off the grid (for example, mobile sensing with
drones), and so computational resources are precious.

With recent advances in machine learning algorithms, complex
reconstruction problems have become more tractable25,26. Although
fully connected networks could be used for this task, their rigid archi-
tecture has difficulty handling sensors that move around the field
and/or go on and off with time. Another key challenge for reconstruct-
ing fields from sparse data is that the field itself does not always lie on a
Cartesian grid, so methods that assume structured data, such as convo-
lutional neural networks, must impose an artificial structure to the field
values. Conversely, methods that overcome this problem by explicitly
including the geometry of the data, such as graph neural networks27,
require a choice of a graph topology, which may be problem and/or
dataset specific. This aspect of the problem adds additional decisions
to make and hyperparameters when applying a graph network method
to new problems. Data-driven methods generally require a dense set
of observations and training time and a sparse set of observations
at inference time. Techniques such as the popular physics-informed
neural networks28,29 become prohibitively expensive for even small,
canonical two-dimensional (2D) datasets30 and success has therefore
been limited in leveraging them for sparse sensing9.

A few notable works stand out. Manohar et al.19 describes methods
where the low-rank structure of the dataset can be exploited if it exists.
They specifically target cases where the number of sensors is greater
than the number of modes used in reconstruction, by introducing the
idea of QR pivoting. They employ this mechanism to leverage known
patterns in the data to optimize the sensor positioning. However, for
chaotic, multiscale systems such as 3D turbulence, the number of
modes for effective reconstruction are often quite high, and there could
be fewer sensors in practice. In another recent approach, Güemes31
proposed constructing low-resolution fields using moving averages
from accessible sparse sensor data that then are mapped to higher
resolutions using a learned mapping. In a similar vein, Fukami et al.32
introduced a method based on Voronoi tessellation of observations
onto the prediction domain, followed by a refinement using a convo-
lutional network. Their approach has the attractive upsides of allowing
arbitrary sensor placement within a 2D mesh, and allowing inference
using sensor locations that differ from the ones used during training.
Nevertheless, this approach inherits the hurdles of deep convolutional
networks, such as the assumption of a regular grid and high memory
costs for 3D domains33, which are features prevalent in real-world
problems. Extending convolutional neural network approaches to
3D or large 2D datasets would be very computationally expensive,
and may require considerable efforts in engineering implementation.
This is a common denominator for methods currently in literature:
they struggle to work in chaotic, high-dimensional datasets without
demanding excessive compute resources. As a result, there is a major

Sensor values

Encoder

a

b
Query location

Flow past a cylinder Sea temperature

Channel turbulence

Contaminant tracing

Multiphase flow

Decoder
ΩΩ

Fig. 1 | Overview of sparse reconstruction using the Senseiver model. a, The
workflow of the Senseiver innovations for the sparse-sensing problem. We use
sensor values and precise query locations that are sparse in the field domain and
allow greater computational efficiency. The sensor values are processed by an
encoder, and the resulting latent representation is passed along with the query
information to a decoder, which estimates the field at a new location. In this example,
the output is decoded into a structured grid. b, Overview of applications in this work.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1319

Article https://doi.org/10.1038/s42256-023-00746-x

during training and inference. We demonstrate this on large 3D cases,
where even convolutional networks are not practical. The model is
also computationally efficient by not processing invalid locations in
irregular geometries where there are regions without data, such as in
solid boundaries in porous media and continents; sparse processing
allowing for training to domains of arbitrary size and structure.

Workflow
Overview
The first aim of the Senseiver is to learn a compact representation of
the state of a system from a small number of sensor observations at a
given time. This encoded representation can then be used to decode
the state of the full system from sensor data. The input to our model
is a set of Ns sensor observations si taken at time t, {s1, s2,… sNs }t, with
si ∈ ℝNI, where NI corresponds to the number of channels recorded by
the sensors (for example, 1 for temperature, 3 for a velocity vector in
3D). The system has a domain Ω where a set of sensor locations
{x1,x2,… ,xNs }xi ∈ ℝND are extracted. Throughout the paper, we use
bold lowercase letters to denote vectors, bold uppercase letters
to denote matrices, italic uppercase letters to represent functions,
and italic lowercase letters to denote scalars.

The Senseiver workflow, shown in Fig. 1a, has three main com-
ponents. (1) A spatial encoder PE that maps a spatial coordinate xs
to an array of spatial encodings a, that allow us to encode a precise
n-dimensional spatial position to a vector. (2) An attention-based
encoder E that maps the spatial encodings of the sensor positions ai
and their values si to a latent matrix Z, which is a compressed represen-
tation of the system at time t. 3) An attention-based decoder D, which
outputs the reconstructed field value at arbitrary query position xq
that are also represented using the spatial encoder. As equations, this
process is given by:

as = PE(xs), (1)

Z = E(s,as) (2)

ŝ(xq, t) = D(Z,aq) = D(Z,PE(xq)), (3)

where the subscripts s and q stand for the sensor and query positions.
These items are explained in detail (Methods).

The Senseiver is well suited to the demands of many real-world
applications (some of which are shown in Figure 1b). First, it is agnostic
to spatial dimensionality, as it can work in one, two or three dimen-
sions, with no code or hyperparameter modifications. Second, we
can train our model without specialized feature engineering, that is,
no problem-specific processing of input features or labels is required,
as the direct sensor observations can be used as input to the network.
Third, our model is resolution/grid agnostic, as it works with arbi-
trary, continuous sensor locations. This addresses a key limitation
in real-world problems, where we can place sensors only in locations
such as the boundaries and edges, making the reconstruction prob-
lem harder. In addition, our model can treat not only sparse input
but also sparse output, which allows training to large 3D fields using
less memory by stochastically subsampling the output space. These
features show promise in scaling our approach to datasets across a
variety of scientific domains with arbitrary size, meshing and geometry.

Brief review of attention-based models
Attention-based neural networks process information by re-weighting a
set of inputs, the sequence, such that each sequence element is weighted
to take larger contributions from certain elements in the sequence (to
‘attend’), while effectively ignoring others34. It is important to note that
the term sequence need not represent a one-dimensional array of varia-
bles; in fact, attention layers can have arbitrary connections between the

elements composing the sequence. Because of this fact, attention layers
can model the interactions of n sensors among themselves and addi-
tional information using a pair-wise interaction modelling approach40.
In practice, this is not memory efficient because it corresponds to a
complete graph of connections between all sequence elements. This
is especially relevant for applications that involve learning from large
inputs (for instance, images or videos), as the memory requirements
for complete pair-wise self-attention scale quadratically with input size.

However, attention mechanisms are very flexible, and this can be
exploited. The Perceiver IO41 presented an alternative to avoid the
quadratic bottleneck by utilizing a latent sequence array (Qin ∈ ℝNQin×NI)
to process arbitrarily sized inputs into a compact latent sequence
representation of the same size as the latent array. The same principle
is employed at the output to project the latent sequence into the
desired output shape and dimensionality. Thus the model can use
arbitrarily shaped inputs and outputs, while the bulk of latent computa-
tions are of fixed shape and computational cost (Fig. 2). This approach
allows for non-local processing across input sequences and makes no
assumptions about the structure of the data. This allowed the Perceiver
IO to have a core network that is domain agnostic, so that different
input/output branches can be used to process qualitatively different
data streams, such as text, audio or image. For the Senseiver, it allows
the treatment of partial information and frees the network from any
assumption about the input domain geometry, unlike, for example,
convolutional networks.

Training procedure
During training, a batch of data is used to optimize the weights of the
model by minimizing the mean square error:

ℒ = (s(xq, tq) − D (E (PE(xs), s(xq, tq)) ,PE(xq)))
2, (4)

En
co

de
r E

 (s
, a

s)

D
ec

od
er

 D
 (Z

, a
q)

Linear layer

Sine embedding Cosine embedding

linear layer

Output ŝ (xq)

aq

xq

x1

Sine–cosine
positional encoding

Multi-head
cross-attention

Linear layer

Re
cu

rr
en

t

Attention block 2

Attention block

Attention block 1

Multi-head
cross-attention

Latent
query

Multi-head
self-attention

MLP

MLP

Sensor values Sensor locations

Query location

Latent sensor
embedding

Keys Values

Keys Values

Query

Linear layer

s1, s2, ...sNs

ss as

x1, x2, ...xNs

D(2)

D(1)
E(0)

E(1)

E(2)

X(3)

X(2)

X(1)

X(0) X(0)

Qin

E(3
)

Z

D(0)

Qout

a1, a2, a3, a4, ..., aNf
, aNf + 1, ..., a2Nf

Fig. 2 | Details of the encoder/decoder modules. This builds on the Perceiver
IO architecture and adds bottlenecks in the form of dimension-reducing linear
layers to decrease parameters and computational cost, which is critical for field-
deployable devices such as drones. X is a generic input to a generic attention block.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1320

Article https://doi.org/10.1038/s42256-023-00746-x

where t is time, and xs and xqj are the spatial coordinates of the sensors
and the queries, respectively. A batch of data is composed by a selection
of xqj in the training dataset. In our experiments, we used batches
of randomly selected points through the training dataset—first sam-
pling a time frame and then sampling query points within that time
frame. Shuffled data samples proved much more effective versus
ordered points (axis or patches) for training performance. Note that
dense observations are required to train the model, while at inference
time only sparse observations are necessary. We trained the model
until the minimum loss value over the training period did not change
for 100 consecutive epochs. As this is a nascent class of problems,
the mean L2 error norm:

ϵ = ∥s − ̂s∥2
∥s∥2

, (5)

across all the time steps of the test set is reported for comparison with
recent work32. Here, ̂s is the prediction of the model.

Results
Cyclic and quasi-cyclic dynamical phenomena
The first dataset considered is a simulation of a 2D unsteady flow past
a cylindrical obstacle42. This results in a von Kármán vortex street, that
is, an alternating shedding of left- and right-handed vortices in the flow
field behind the cylinder. The dataset was created utilizing a numerical
simulation that solves the incompressible Navier–Stokes equation at
a Reynolds number of 100. The simulation is periodic in the x and y
coordinates and its computational size is a 192 × 112 grid with 5,000
time frames, which approximately spans four vortex shedding periods.
The domain spans 10 cylinder diameters vertically and 15.7 cylinder
diameters horizontally. The recorded output is the vorticity field of
the fluid, which is impacted by having a solid obstacle.

We trained our model to reconstruct the simulation based on three
different sensor location configurations as inputs. During training, each
batch observes the field at only a sparse set of locations, but collectively
the batches sample the whole training field. The first configuration uses
eight sensor locations as proposed by ref. 32. The second configura-
tion uses only the first four sensors to show the impact of having less
input information. The third proposed configuration sets the sensor
locations at the inlet/outlet boundaries, motivated by sensing limita-
tions of lab-on-a-chip experiments. In this case, for the approach pro-
posed by ref. 32, the Voronoi-tessellated image would contain almost

no information, as the values at the boundaries are very close to zero
at every time step. Even when the variance of the values is very small,
the attention layers are able to construct a robust representation. All
these configurations are shown in Fig. 3. We trained our model using
only 50 frames (1% of the dataset) and the remaining frames are used
as the test set. The results are shown in the bar plot of Fig. 3. In com-
parison with the VoronoiCNN (the model proposed in ref. 32) trained
on the same amount of data and with the same amount of sensors, our
model achieves approximately ten times lower error. Even with just four
sensors at the boundary, the Senseiver is able to reconstruct the entire
simulation faithfully with a negligible drop in accuracy compared with
the eight-sensor configuration. Higher errors are present where the
vorticity magnitude changes the most, partly due to the fact that these
locations are far away from the sensors. It is worth noting that the model
in ref. 32 has over 682,000 trainable parameters, while ours is composed
by less than 5% of that number. A complete hyperparameter analysis for
this problem can be found in the Supplementary Information.

The second dataset that we considered is the National Oceanic and
Atmospheric Administration sea surface temperature43. This real-world
dataset was collected from satellite and ship-based observations over
time. The data comprise weekly observations of the sea surface temper-
ature of Earth at a spatial resolution of 360 × 180 (longitude and latitude,
respectively)—giving a resolution of 1° longitude and 1° latitude. For
training, we use 1,040 snapshots spanning from the year 1981 to 2001,
and then we tested on snapshots from 2001 to 2018. During training, we
do not use any information about field values on the continents, because
there is no recorded value to reconstruct, which saves computational
time (as the continents are 32% of the computational domain). For each
batch of data, we select 1 to 100 sensors using a uniform distribution
with the goal of training the model to be robust under different number
of sensors and spatial configurations. Again, each batch during training
observes a sparse set of observations, but collectively the batches with
random sensor configurations sample from the whole field. For testing,
we placed sensors randomly following the same procedure as ref. 32.

In our results, we see that just 10 sensors allows for a very strong
reconstruction performance of ϵ = 0.047. Ten sensors constitute a total
spatial coverage of 0.0154%. By adding more sensors, the overall test
error goes down and missing details are added to the local temperature
field as seen in Supplementary Fig. 2. It also noticeable that as we use
random sensors during training, the model does not take a big per-
formance hit in the scenarios with fewer sensors (Ns < 50) compared
with ref. 32. The forecasting capabilities show that with good coverage

0

0.05

0.10

0.15

0.20

0.25

Te
st

 e
rr

or
 (�

)

50 training
frames
1% data

1,000 training
frames

20% data

50 training
frames
1% data

VoronoiCNN Senseiver

16 sensors
8 sensors
4 sensors
4 boundary sensors

First frame

−0.2

0

0.2

8 sensors 4 sensors 4 boundary sensors

Representative mean error

−0.02

0

0.02

Mean L1 error throughout the test set

0.0025
0.0050
0.0075

Fig. 3 | Test error results for different sensor configurations. Left: test error
(equation (5)) with different sensor configurations and number of training
frames and comparison with VoronoiCNN32. The bars with diagonal lines
indicate the error of our model. Note that the colour in the inset plot on the left is

artificially limited to highlight the von Karman vortices. Right: sensor locations, a
frame with an error closest to the mean error and the mean error throughout the
test set. The values of the field at each frame go from −1 to 1; colorbars in the error
plots represent the reconstruction error on this field.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1321

Article https://doi.org/10.1038/s42256-023-00746-x

(Ns > 50), the trained model can perform estimates up to 18 years into
the future with error substantially less than 1 °C. This shows that the
Senseiver architecture can cope with real-world situations, including
forecasting. All these results are shown in detail in the Supplementary
Information.

Acyclic and nonlinear chaotic phenomena
The third dataset considered is a simulation of turbulent fluid flow
through a channel44. The flow field data are obtained by a 3D numerical
simulation of incompressible flow in a channel at a Reynolds number of
180. A slice is taken at the middle of the channel, which yields a computa-
tional domain of size 128 × 48, with 128 cells in the streamwise direction
of the flow. The domain is non-dimensionalized using the half-width of
the channel (δ), and the length of channel is 4π times the half-width.
The target of interest is the velocity of the fluid in the direction of flow.

To make the model robust to changes in sensor locations, at each
training time iteration we picked a random number of sensors (Ns) from
the training pool, which ranged from 25 (low coverage) to 300 (medium
coverage). We train our model with all the available simulation data
and test its ability to reconstruct it. Similar to the previous datasets,
25–300 locations are sampled in each batch, but aggregating the loca-
tions sampled across all batches in an epoch results in the whole field
being sampled. Of course, only sparse observations are used at infer-
ence time. In addition, we ran a case were we multiplied the value of the
loss function (the mean squared error, or MSE) at each mini-batch times
the number of sensors used in the forward pass, namely (ℒ = MSE × Ns).
We found that this increases performance for cases where more than
150 sensors are provided to the model. We show that the Senseiver is
able to provide excellent qualitative reconstructions, as illustrated
by the cross-sections in Fig. 4. This training scheme also allows us to
move the sensors at inference time. The model obtains the main fea-
tures accurately, even with a small number of sensors as can be seen
in the reconstructions of Fig. 4. A study of how temporal coverage and
number of sensors affect the performance of the trained model is
shown in Supplementary Fig. 3.

The fourth dataset considered is a simulation of two fluids
flowing through a complex 3D medium comprised of spherical

obstacles with periodic boundary conditions. A simulation was run
using the lattice-Boltzmann method library MPLBM45 for 4 days using
120 central-processing-unit cores. A non-wetting fluid was placed
at the inlet and driven through the domain where its density was
recorded during the simulation. The goal of this test case is to assess
the capabilities of our model to train with very large arrays with
extremely sparse inputs (0.0006% of spatial coverage). The compu-
tational domain is 128 × 128 × 512 (with a resolution of 3.5 μm) and we
collected 100 frames (one every millisecond) totalling over 1.6 billion
points. Three 3D snapshots throughout the simulation are illustrated
in Supplementary Fig. 4.

Similar to the sea-temperature dataset, in this domain around
70% of the grid cells have no property value to reconstruct (that is, the
cells inside the solid), hence the training is sped-up by a substantial
factor compared with convolutional neural network approaches, which
are forced to scan the whole domain. It is also worth noting that the 3D
version of the approach in ref. 32 allocated the entire memory of a 24 Gb
graphics processing unit for a mini-batch of only one sample, slowing
down the training and being unable to train with bigger images. In con-
trast, our model uses only 4 Gb. The results of the abstraction perfor-
mance of the model with different amounts of training data are shown in
Fig. 5. Fifty per cent temporal coverage is enough to train a model that is
able to provide accurate reconstructions (ϵ < 0.3) throughout the data-
set. One important highlight is that the model is not predictive in highly
non-stationary acyclic flows with transient dynamics46, for instance,
frames far away from the training data (>100 in Fig. 5). The model has peri-
odic boundary conditions so the fluid reaching the outlet is re-injected
at the inlet, a situation not contemplated by the training data.

The fifth and last dataset is a contaminant being advected by a tur-
bulent field. This set-up reflects the case were a pollutant is being trans-
ported and sparse velocity measurements are available. This example
demonstrates the flexibility of the framework to model the relationship
between a vector and a scalar. By withholding the concentration of the
pollutants from the inputs, this example also illustrates the ability for
the model to predict quantities that are unobserved. In this example,
the velocity vector (vx, vy, vz, which yields in NI = 3) is measured in 1% of
the 1283 domain and the task of the model is to predict the concentra-
tion of the pollutant. In contrast to previous datasets, where the whole
field is sampled across many batches in training, with this dataset we
sample only 75% or 50% of spatial locations across all batches during
training, to test scenarios where not all the ground truth is available. In
Fig. 6, we observe that the model reconstructs larger-scale variations
in the passive scalar fairly well, but does not reproduce the fine-scale
structure. The overall R2 for reconstruction is approximately 0.75,
which is remarkable given that there is virtually no correlation between
velocity, which is observed, and the tracer concentration, which is
predicted (Supplementary Fig. 5).

Discussion
The flexibility of the Senseiver architecture allows the exploration of
many uses cases, and although we aimed to cover as much ground as pos-
sible, there are many things still to explore. For instance, non-Cartesian
or unstructured grids can be used during training and/or inference. In
the same vein, the resolution of the field prediction can be increased by
computing the desired property at intermediate intervals, thus repur-
posing the architecture for super-resolution. Multiple decoding heads
can be trained to predict outputs with different boundary conditions or
different downstream tasks (for example, segmentation or classifica-
tion). Additional research could be carried out so that positional encod-
ings can be used to train a model to have forecasting capabilities. During
the development of this project, an attempt was made to encode time
using sine–cosine encodings without success. However, we tried utiliz-
ing a trainable array where each time increment (dt) corresponded to
one vector; this was successful but we found it impractical as it requires
the model to visit every time increment (dt) during training.

0.7

0.8

50 100 150 200 250 300

1.6 2.4

Spatial coverage (%)

Number of sensors at inference time (Ns)

3.3 4.1

Ns = 25
ε = 0.646

Ns = 50
ε = 0.374

Ns = 300
ε = 0.162

Ground
truth

4.9

0.6

0.5

0.4

0.3

0.2 = MSE
= MSE × Ns

VoronoiCNN

ε

δ

πδ 2πδ

Fig. 4 | Performance of the model varying the number of sensors and their
locations at inference time. The x axis depicts number of sensors used to
reconstruct the field. We tested our trained model with ten different random
sensor locations (using fixed seeds) for each x coordinate. The plot shows the
10th and 90th percentiles as bounds of the error (equation (5)) and the average of
the 10 with a line. Insets: predictions for the same time frame are shown to depict
how the prediction accuracy increases qualitatively with more sensor coverage.
All the colorbars are normalized from −1 to 1. δ, half-width of the channel.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1322

Article https://doi.org/10.1038/s42256-023-00746-x

Conclusion
With the advent of widespread access to satellite data and cheap sen-
sors, we have an opportunity to address several problems in Earth
sciences and engineering in a manner not possible before. However,
these powerful data sources are typically sparse, and leveraging them
requires specialized approaches that can map the measured local data
to the physics of the global field under observation. The limitations of
current approaches introduce large uncertainties in myriad applica-
tions such as aviation safety, forecasting accuracy in adverse weather
predictions, migration patterns of wildfire, contaminant tracing
and tracking sequestered CO2 plumes. Having a general class of algo-
rithms that is able to estimate and reconstruct the global field from
sparse, local measurements will be a major advancement in this field.
In this work, we present an efficient and effective deep learning
approach to reconstruct fields from such sparse measurements.

From an information theoretic perspective, sparse sensing is an
inverse modelling problem that maps sparse, low-dimensional meas-
urements to a dense high-dimensional state. The goal of sparse-sensing
algorithms is to obtain the best possible estimates useful enough to
inform practical applications, as there are few other viable alterna-
tives. We propose an attention-based neural network architecture, the
Senseiver, to encode a compact representation of large systems. We
validated the effectiveness of our method with extensive demonstra-
tions on different datasets of interest to the sparse-sensing community,
and also on a complex, realistic 3D fluids dataset. Our approach offers

improved capabilities for large, practical applications compared with
the state-of-the-art convolutional neural network architectures by
demonstrating higher accuracy with a lower memory footprint. Five
examples of global field reconstruction from local sensor measure-
ments demonstrated the accuracy and robustness of our method.
Sparse sensing of fluid flow data, especially turbulence, is extremely
challenging due to nonlinearity and chaos. In addition, a low sensor
coverage makes the task harder as the sensors can have non-unique
reconstructions. Compared with previous efforts, our model scales
effectively in large domains of high dimensionality.

Besides the greatly reduced memory footprint, compared with
previous efforts, a key advantage of the Senseiver is using a query-based
decoder, which allows us to predict domains of arbitrary sizes in a
sequential manner. This decoupling of the query process from the
dimensionality of the dataset makes it extremely memory efficient and
allows our model to scale effectively to large domains. In summary, this
work only scratches the surface of what is possible with attention-based
architectures for sparse sensing.

Methods
Encoder–decoder architecture
Our encoder–decoder architecture is built upon Perceiver IO. The
encoder module takes the locations and values of the sensors and maps
them to a latent space (of size Nf) through scaled dot-product attention
layers. First, the sensor data si from a number of sensors observations

0 20 40 60 80 100

Time step (ms)

0

0.2

0.4

0.6

0.8

1.0

�
(r

ec
on

st
ru

ct
io

n
er

ro
r)

50 sensor locations

0.0006% spatial coverage

100%
50%
25%
12%
6%

Ground truth (time step 55 ms)

100% coverage

50% coverage

25% coverage

Temporal coverage

Fig. 5 | Performance of the model with different amounts of training data.
Left: error (equation (5)) of the model versus temporal coverage. The 3D sensor
locations are depicted in the top left corner. In the plot, each line represents
a trained model and the points represent the training data used for each

line. The dashed line represents the training data coverage boundary. Right:
reconstructions for time step 55 using models trained with a different number of
time frames. The colorbars are fixed in the range between −1 and 1.

Velocity

0 0.8 1.6 2.4 3.2
Velocity magnitude

4.0 4.8 5.6 6.4 –0.4 –0.3 –0.2 –0.1 0

Normalized concentration
0.1 0.2 0.3 0.4 0.5

Passive scalar: ground truth 75% training data coverage 50% training data coverage
1% sensor coverage

Fig. 6 | Example from the advected contaminant by a turbulent field test case. Left: input velocity field and its magnitude, from which sensor readings are taken
(recording 1% of the field). Right: tracer quantity; from left to right, the ground truth, and a model trained to 75% and 50% of the data, respectively. These frames are
representative of the global R2 error.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1323

Article https://doi.org/10.1038/s42256-023-00746-x

Ns and their corresponding positional encodings ai are concatenated
to form the input E(0) ∈ ℝNs×NI+2NDNf , where the superscript indicates
each box/layer in Fig. 2. E(0) is then processed using a fully connected
linear layer to create E(1) ∈ ℝNs×Nc where Nc is a hidden dimension
used throughout the architecture. Next, E(1) is processed with an atten-
tion block. Within each block is a multi-headed cross-attention layer
(Fig. 2) that uses a trainable query array Qin ∈ ℝNQin×Nc. The attention
block preserves the dimension such that the output Z of the encoder
is of a fixed dimension NQin × Nc, regardless of the number of sensor
observations. In summary, the steps of the encoder are given by

E(0) = si ⊕ ai (6)

E(1) = Linear(E(0)) (7)

E(2) = AttentionBlock1(E(1);Q(1)
in ,θ1,ϕ1) (8)

E(3) = AttentionBlock2(E(2);Q(2)
in ,θ2,ϕ2) (9)

Z = AttentionBlock2(E(3);Q(2)
in ,θ2,ϕ2). (10)

The dimensions inside the attention blocks are provided in
Supplementary Information, along with definitions of multi-head
attention mechanisms. Qin is the latent query array in each block, and
θ and ϕ are the weights of the multi-layer perceptrons (MLPs) within
each attention block. We also note that the second and third attention-
block modules share weights, and therefore this is a recurrent step in the
architecture. This has the benefit of reducing the parameters. Further-
more, our preliminary experiments re-using the weights recurrently
resulted in a small increase in accuracy (~10%) without any additional
parameters. Linear refers to a simple linear layer with bias, although
it is important to note that this projection decreases the dimension
before the attention mechanism, that is, we have Nc < < NI + 2NDNf.
This dimension reduction improves computational efficiency while
preserving key information—similar to low-rank methods or the
Johnson–Lindenstrauss lemma, but further empowered by the use of
attention. The number of channels output by the linear layer is a
key hyper parameter that, while small, is somewhat application depen-
dent. While increasing Nf is used to capture higher spatial resolution
(Supplementary Table 1), increasing the number of channels can be
used to capture more complex temporal dynamics (Supplementary
Table 2).

Next, in the decoder block, the encoded position of the query aq
is concatenated with a trainable query vector qout ∈ ℝNc. However, more
frequently we consider multiple query points, denoted Nq. In this
case, the query vector is repeated row-wise (once for each query
point aq) to make a matrix, Qout. We denote the concatenated positions
and Qout as D(0) ∈ ℝNq×2NfNd+Nc. This query matrix is process by a linear
layer to output D(1) ∈ ℝNq×Nc . D(1) serves as the queries in a multi-
head cross-attention. The keys and values for this cross-attention
are provided by the latent input representation Z, which yields
the output D(2) ∈ ℝNQout×Nc . D(2) is processed by a linear layer, which
yields an output ŝ ∈ ℝNo . In summary, the steps of the decoder are
given by:

D(0) = Qout ⊕ aq (11)

D(1) = Linear(D(0)) (12)

D(2) = MultiHead(D(0),Z,Z) (13)

ŝ = Linear(D(2)). (14)

For details of the attention layers, the network implementation
and the design decisions in the Senseiver, see Supplementary Informa-
tion. The end-to-end forward pass is illustrated in Fig. 2.

Spatial encodings
The attention mechanism does not explicitly account for the spatial
location of the sensors or queries. To include this information, we
encode the spatial position of these (equation (1)) using sine–cosine
positional encodings34. These are visualized graphically in Fig. 2.
For each d of the ND spatial dimensions, we specify a set of spatial
frequencies { fk}d of size k over which to build the sine–cosine posi-
tional encodings. A position x ∈ ℝND is decomposed into a vector
a ∈ ℝ2×ND×Nf , where each entry in a is the value of a corresponding
sine or cosine (hence the factor 2) at the specified frequency f and
Nf is the number of frequencies in the encoding. For each dimension d,
there are 2Nf entries in a; the first are sin(πfkxd) and the second are
cos(πfkxd).

This design choice does not require any additional training para-
meters, and the computational work required to produce them is negli-
gible. In many applications, having a large Nf is required to accurately
encode the position of the sensors and query points—especially in three
dimensions. The number of parameters increases rapidly for Perceiver
IO as Nf increases. Senseiver avoids this problem, making it more suit-
able in applications where precise locations are important—see Sup-
plementary Table 2 for a comparison. In the examples used in this work,
the data are located in Cartesian grids, so an array with components
denoting the centre of each grid point in each coordinate direction
is created, and then indexed during training and inference. Having a
Cartesian grid is not a prerequisite to use our model; the sine–cosine
spatial encodings can be evaluated on any mesh, or on arbitrary continu-
ously variable points in space. A strong advantage of this flexibility is that
it makes it possible to construct field predictions at arbitrary subsets of
the full domain, which allows predictions to be made with very few com-
putational resources, as a domain prediction can be constructed piece
by piece. We take advantage of this fact during training, as described in
‘Training procedure’. In addition, recent work in explainable artificial
intelligence has shown that neural networks appear to learn Fourier
representation of fluid flows internally47, supporting our assumption
that these encodings are appropriate for many problems of interest.

Data availability
The data are available at https://zenodo.org/records/8290040 (ref. 53).

Code availability
The code is available on Zenodo at https://doi.org/10.5281/zenodo.
8364148 (ref. 54).

References
1. Shen, H. et al. Missing information reconstruction of remote

sensing data: a technical review. IEEE Geosci. Remote Sens. Mag.
3, 61–85 (2015).

2. Klingensmith, M., Dryanovski, I., Srinivasa, S. S. & Xiao, J. CHISEL:
Real time large scale 3D reconstruction onboard a mobile device
using spatially-hashed signed distance fields. In Robotics: Science
and Systems Vol. 11 (MIT Press Journals, 2015).

3. Zhang, P., Nevat, I., Peters, G. W., Septier, F. & Osborne, M. A.
Spatial field reconstruction and sensor selection in hetero-
geneous sensor networks with stochastic energy harvesting.
IEEE Trans. Signal Process. 66, 2245–2257 (2018).

4. Ramskill, N. P. et al. Fast imaging of laboratory core floods using 3D
compressed sensing RARE MRI. J. Magn. Reson. 270, 187–197 (2016).

5. Fortuna, L., Graziani, S., Rizzo, A. & Xibilia, M. G. Soft Sensors for
Monitoring and Control of Industrial Processes Advances in
Industrial Control (Springer, 2007); http://link.springer.com/
10.1007/978-1-84628-480-9

http://www.nature.com/natmachintell
https://zenodo.org/records/8290040
https://doi.org/10.5281/zenodo.8364148
https://doi.org/10.5281/zenodo.8364148
http://link.springer.com/10.1007/978-1-84628-480-9
http://link.springer.com/10.1007/978-1-84628-480-9

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1324

Article https://doi.org/10.1038/s42256-023-00746-x

6. Wang, N., Zhang, N. & Wang, M. Wireless sensors in agriculture
and food industry—recent development and future perspective.
Comput. Electron. Agric. 50, 1–14 (2006).

7. Paoli, A., Neri, P., Razionale, A. V., Tamburrino, F. & Barone, S.
Sensor architectures and technologies for upper limb 3D surface
reconstruction: a review. Sensors 20, 6584 (2020).

8. Brunton, S. L. et al. Data-driven aerospace engineering: reframing
the industry with machine learning. AIAA J. 59, 1–26 (2021).

9. Yuan, F.-G., Ashraf Zargar, S., Chen, Q., Wang Fuh-Gwo Yuan, S. &
Wang, S. Machine learning for structural health monitoring:
challenges and opportunities. Proc. SPIE 11379, 1137903 (2020).

10. Tian, G. Y., Sophian, A., Taylor, D. & Rudlin, J. Multiple sensors
on pulsed eddy-current detection for 3-D subsurface crack
assessment. IEEE Sens. J. 5, 90–96 (2005).

11. Rouet-Leduc, B., Hulbert, C. & Johnson, P. A. Continuous chatter
of the Cascadia subduction zone revealed by machine learning.
Nat. Geosci. 12, 75–79 (2018).

12. Su, H., Jiang, J., Wang, A., Zhuang, W. & Yan, X. H. Subsurface
temperature reconstruction for the global ocean from 1993 to
2020 using satellite observations and deep learning. Remote
Sens. 14, 3198 (2022).

13. Saint-Vincent, P. M. B., Sams, J. I., Hammack, R. W., Veloski, G. A. &
Pekney, N. J. Identifying abandoned well sites using database
records and aeromagnetic surveys. Environ. Sci. Technol. 54,
8300–8309 (2020).

14. Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M. & Tessler, A.
Shape sensing of 3D frame structures using an inverse finite
element method. Int. J. Solids Struct. 49, 3100–3112 (2012).

15. Gu, Y., Wang, L., Chen, W., Zhang, C. & He, X. Application of the
meshless generalized finite difference method to inverse heat
source problems. Int. Jo. Heat Mass Transf. 108, 721–729 (2017).

16. Das, R. A simulated annealing-based inverse computational fluid
dynamics model for unknown parameter estimation in fluid flow
problem. Int. J. Comput. Fluid Dyn. 26, 499–513 (2012).

17. Zhou, H., Soh, Y. C., Jiang, C. & Wu, X. Compressed representation
learning for fluid field reconstruction from sparse sensor
observations. In Proc. International Joint Conference on Neural
Networks 1–6 (2015).

18. Loiseau, J. C., Noack, B. R. & Brunton, S. L. Sparse reduced-order
modelling: sensor-based dynamics to full-state estimation.
J. Fluid Mech. 844, 459–490 (2018).

19. Manohar, K., Brunton, B. W., Kutz, J. N. & Brunton, S. L. Data-driven
sparse sensor placement for reconstruction: demonstrating
the benefits of exploiting known patterns. IEEE Control Syst. 38,
63–86 (2018).

20. Tiwari, N. et al. Simultaneous measurement of pressure and
temperature on the same surface by sensitive paints using the
sensor selection method. Exp. Fluids 63, 1–13 (2022).

21. Callaham, J. L., Maeda, K. & Brunton, S. L. Robust flow
reconstruction from limited measurements via sparse
representation. Phys. Rev. Fluids 4, 103907 (2019).

22. Albaladejo, C., Soto, F., Torres, R., Sánchez, P. & López, J. A.
A low-cost sensor buoy system for monitoring shallow marine
environments. Sensors 12, 9613–9634 (2012).

23. Hudson, S. Three dimensional reconstruction of asteroids from
radar observations. Remote Sens. Rev. 8, 195–203 (2009).

24. Jahanbakhsh, A. et al. Review of microfluidic devices and imaging
techniques for fluid flow study in porous geomaterials. Sensors
20, 4030 (2020).

25. Bertalmio, M., Sapiro, G., Caselles, V. & Ballester, C. Image
inpainting. In Proc. ACM SIGGRAPH Conference on Computer
Graphics 417–424 (2000).

26. Dong, C., Loy, C. C., He, K. & Tang, X. Image Super-Resolution
Using Deep Convolutional Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 38, 295–307 (2016).

27. Alet, F. et al. Graph element networks: adaptive, structured
computation and memory. In Proc. 36th Conference on Machine
Learning Research Vol. 97, 212–222 (2019).

28. Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks
for solving ordinary and partial differential equations. IEEE Trans.
Neural Netw. 9, 987–1000 (1998).

29. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019).

30. Chuang, P.-Y. & Barba, L. A. Experience report of physics-
informed neural networks in fluid simulations: pitfalls and
frustration. In Proc. 21st Python in Science Conference 28–36
(2022).

31. Güemes, A., Sanmiguel Vila, C. & Discetti, S. Super-resolution
generative adversarial networks of randomly-seeded fields.
Nat. Mach. Intell. 4, 1165–1173 (2022).

32. Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K. & Taira, K.
Global field reconstruction from sparse sensors with Voronoi
tessellation-assisted deep learning. Nat. Mach. Intell. 3, 945–951
(2021).

33. Santos, J. E. et al. PoreFlow-Net: a 3D convolutional neural
network to predict fluid flow through porous media. Adv. Water
Resour. 138, 103539 (2020).

34. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Proces.
Syst. Vol 30 (eds Guyon, I. et al.) 5999–6009 (Curran Associates,
Inc., 2017).

35. Yu, J. et al. CoCa: contrastive captioners are image-text
foundation models. Preprint at http://arxiv.org/abs/2205.01917
(2022).

36. Chowdhery, A. et al. PaLM: scaling language modeling with
pathways. Preprint at http://arxiv.org/abs/2204.02311 (2022).

37. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

38. Liu, L., Santos, J. E., Prodanović, M. & Pyrcz, M. J. Mitigation of
spatial nonstationarity with vision transformers. Comput. Geosci.
178, 105412 (2023).

39. Jaegle, A. et al. Perceiver: general perception with iterative
attention. Preprint at http://arxiv.org/abs/2103.03206 (2021).

40. Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J. & Kumar, S. Are
transformers universal approximators of sequence-to-sequence
functions? Preprint at https://arxiv.org/abs/1912.10077v2 (2019).

41. Jaegle, A. et al. Perceiver IO: a general architecture for structured
inputs & outputs. Preprint at https://arxiv.org/abs/2107.14795v3
(2021).

42. Colonius, T. & Taira, K. A fast immersed boundary method using
a nullspace approach and multi-domain far-field boundary
conditions. Comput. Methods Appl. Mech. Eng. 197, 2131–2146
(2008).

43. NOAA Physical Sciences Laboratory (NOAA, 2023);
https://psl.noaa.gov/

44. Fukagata, K., Kasagi, N. & Koumoutsakos, P. A theoretical
prediction of friction drag reduction in turbulent flow by
superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006).

45. Santos, J. E. et al. MPLBM-UT: multiphase LBM library for
permeable media analysis. SoftwareX 18, 101097 (2022).

46. Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F.
A hierarchy of low-dimensional models for the transient and
post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003).

47. Subel, A., Guan, Y., Chattopadhyay, A. & Hassanzadeh, P.
Explaining the physics of transfer learning in data-driven
turbulence modeling. PNAS Nexus 2, pgad015 (2023).

48. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. Preprint at http://arxiv.org/abs/1912.01703
(2019).

http://www.nature.com/natmachintell
http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2103.03206
https://arxiv.org/abs/1912.10077v2
https://arxiv.org/abs/2107.14795v3
https://psl.noaa.gov/
http://arxiv.org/abs/1912.01703

Nature Machine Intelligence | Volume 5 | November 2023 | 1317–1325 1325

Article https://doi.org/10.1038/s42256-023-00746-x

49. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

50. Musy, M. et al. Vedo. Zenodo https://doi.org/10.5281/
zenodo.4609336 (2021).

51. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

52. Falcon, W. et al. PyTorch Lightning. GitHub https://github.com/
PyTorchLightning/pytorch-lightning (2019).

53. Santos, J. E. The Senseiver dataset. https://zenodo.org/records/
8290040 (2023).

54. Santos, J. E. The Senseiver codebase. https://github.com/
OrchardLANL/Senseiver (2023).

Acknowledgements
J.E.S. and Z.R.F. gratefully acknowledge the support of the
US Department of Energy through the LANL/LDRD Program and the
Center for Non-Linear Studies (CNLS) for this work. H.V. gratefully
acknowledges primary support from the Department of Energy, Office
of Science, Office of Basic Energy Sciences, Geoscience Research
programme under award number (LANLE3W1). Secondary support is
from the Consortium Advancing Technology for Assessment of Lost
Oil & Gas, funded by US Department of Energy, Office of Fossil Energy
and Carbon Management, Office of Resource Sustainability, Methane
Mitigation Technologies Division’s, Undocumented Orphan Wells
Program. This paper has been co-authored by UT-Battelle, LLC under
contract no. DE-AC05-00OR22725 with the US Department of Energy.
J.E.S. thanks A. Jaegle and J. Carreira for their useful suggestions.
Finally, we are grateful to the developers of the many software
packages used throughout this project including, but not limited, to
PyTorch48, Numpy49, Vedo50, Matplotlib51 and PyTorch Lightning52.

Author contributions
J.E.S.: conceptualization, methodology, investigation, software,
writing—original draft. Z.R.F.: visualization, review and editing.
A.M.: investigation, funding acquisition, resources. D,O’M.:
writing—review and editing, supervision. H.V.: funding acquisition,
supervision, review and editing. N.L.: methodology, software,
supervision, writing—original draft, writing—review and editing.
All authors reviewed the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-023-00746-x.

Correspondence and requests for materials should be addressed to
Javier E. Santos.

Peer review information Nature Machine Intelligence thanks the
anonymous reviewers for their contribution to the peer review of this
work. Primary Handling Editor: Mirko Pieropan, in collaboration with
the Nature Machine Intelligence team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in
the US; foreign copyright protection may apply 2023

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.4609336
https://doi.org/10.5281/zenodo.4609336
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://zenodo.org/records/8290040
https://zenodo.org/records/8290040
https://github.com/OrchardLANL/Senseiver
https://github.com/OrchardLANL/Senseiver
https://doi.org/10.1038/s42256-023-00746-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Development of the Senseiver for efficient field reconstruction from sparse observations
	Workflow
	Overview
	Brief review of attention-based models
	Training procedure

	Results
	Cyclic and quasi-cyclic dynamical phenomena
	Acyclic and nonlinear chaotic phenomena

	Discussion
	Conclusion
	Methods
	Encoder–decoder architecture
	Spatial encodings

	Acknowledgements
	Fig. 1 Overview of sparse reconstruction using the Senseiver model.
	Fig. 2 Details of the encoder/decoder modules.
	Fig. 3 Test error results for different sensor configurations.
	Fig. 4 Performance of the model varying the number of sensors and their locations at inference time.
	Fig. 5 Performance of the model with different amounts of training data.
	Fig. 6 Example from the advected contaminant by a turbulent field test case.

