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Development of the Senseiver for  
efficient field reconstruction from  
sparse observations

Javier E. Santos    1,2 , Zachary R. Fox1,4, Arvind Mohan3, Daniel O’Malley    2, 
Hari Viswanathan2 & Nicholas Lubbers3

The reconstruction of complex time-evolving fields from sensor 
observations is a grand challenge. Frequently, sensors have extremely 
sparse coverage and low-resource computing capacity for measuring highly 
nonlinear phenomena. While numerical simulations can model some of 
these phenomena using partial differential equations, the reconstruction 
problem is ill-posed. Data-driven-strategies provide crucial disambiguation, 
but these suffer in cases with small amounts of data, and struggle to 
handle large domains. Here we present the Senseiver, an attention-based 
framework that excels in reconstructing complex spatial fields from few 
observations with low overhead. The Senseiver reconstructs n-dimensional 
fields by encoding arbitrarily sized sparse sets of inputs into a latent space 
using cross-attention, producing uniform-sized outputs regardless of the 
number of observations. This allows efficient inference by decoding only 
a sparse set of output observations, while a dense set of observations is 
needed to train. This framework enables training of data with complex 
boundary conditions and extremely large fine-scale simulations. We build on 
the Perceiver IO by enabling training models with fewer parameters, which 
facilitates field deployment, and a training framework that allows a flexible 
number of sensors as input, which is critical for real-world applications. We 
show that the Senseiver advances the state-of-the-art of field reconstruction 
in many applications.

The goal of sparse data reconstruction is to take a few sensor values 
from a space that we cannot fully observe, and use them to reconstruct 
the global field. Reconstructing spatial fields from sensor data has been 
a grand challenge in a wide range of applications in industry, medi-
cine and science1–3. Some examples include laboratory experiments4, 
monitoring industrial plants5, precision agriculture6, design of limb 
orthoses and prostheses7, structural health monitoring in aircraft8 civil 
infrastructure9, subsurface sensing10, tectonic motion estimation11, 

weather and climate monitoring12, and identification of abandoned 
wells13, among others.

Common features of these applications are low-spatial-sensor 
coverage (typically less than 1%), three-dimensional (3D) domains, 
noisy data, nonlinear dynamical phenomena and a scarcity of avail-
able processing power within the sensor. These sensing assets are 
often deployed in areas with scarce or non-existent network connec-
tivity, necessitating edge computing. For this reason, low-resource, 
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gap in literature between proposed models and the practical applica-
tion to real-world data.

Attention mechanisms34 have greatly improved the baselines over 
other architecture for a variety of problems35–38, and recently, the Per-
ceiver IO framework39 overcame a crucial computational bottleneck 
using cross-attention with latent arrays, thereby constraining the bulk 
of the network activations to a fixed-sized space regardless of input 
size. While this was viewed as a way to handle a large set of inputs (for 
example, every pixel in an image), we exploit the fact that it also allows 
us to scale down the quantity of information fed into a network, result-
ing in a framework we call the Senseiver. For our applications, we need 
to make near real-time decisions on drones or other field-deployed 
instruments with limited processing power, and current machine learn-
ing architectures are too computationally expensive. By incorporating 
sparsity and refining the network architecture to drastically reduce 
the number of parameters needed, the Senseiver is able to accurately 
learn and process an entire field with a far smaller amount of resources. 
Crucially, sparse processing can treat spatial data that do not live on 
a fixed, regular, Cartesian-type mesh. Our approach also overcomes  
a limitation of earlier of graph element networks27, which produce 
bad estimates when a denser set of sensors is used at inference time.

In this Article, we demonstrate examples of these advantages 
on several datasets, and we compare the Senseiver to the recent suc-
cesses of ref. 32, showing remarkable improvements in accuracy, 
scalability and efficiency in the limit of low sensor coverage. Beyond 
these improvements, we discuss additional benefits of the sparse 
processing model of the Senseiver, such as prediction of partial infor-
mation, reduced memory requirements, and faster performance 

field-ready devices such as drones require machine learning 
approaches that are computationally efficient and accurate. While 
some applications can be fully described by physics-based partial dif-
ferential equations (PDEs), incorporating field observations (for exam-
ple, sensor measurements) back to the PDEs is challenging. A variety of 
techniques have been developed using PDE-based14,15 and statistical16–18 
approaches. Still, widespread success has been elusive due to a lack of 
a generic framework to incorporate measured data at arbitrary times 
and locations. As a result, machine learning models have become an 
attractive alternative16–18 as these have the capacity to learn complex 
relationships from data in a great many problems. Some notable exam-
ples include optimization of sensor placement19–21. Machine learning 
models have the potential to be successful even when the governing 
PDEs of the system are not available. Still, real-world sensors often have 
physically limited sensor positions (for example, floating buoys in the 
ocean22, Earth-based asteroid sensing23, the inlet/outlet for a laboratory 
experiment24), and covering a field exhaustively can be prohibitively 
expensive, if not impossible. Furthermore, low-power sensors are often 
preferred when operating off the grid (for example, mobile sensing with 
drones), and so computational resources are precious.

With recent advances in machine learning algorithms, complex 
reconstruction problems have become more tractable25,26. Although 
fully connected networks could be used for this task, their rigid archi-
tecture has difficulty handling sensors that move around the field  
and/or go on and off with time. Another key challenge for reconstruct-
ing fields from sparse data is that the field itself does not always lie on a 
Cartesian grid, so methods that assume structured data, such as convo-
lutional neural networks, must impose an artificial structure to the field 
values. Conversely, methods that overcome this problem by explicitly 
including the geometry of the data, such as graph neural networks27, 
require a choice of a graph topology, which may be problem and/or 
dataset specific. This aspect of the problem adds additional decisions 
to make and hyperparameters when applying a graph network method 
to new problems. Data-driven methods generally require a dense set 
of observations and training time and a sparse set of observations 
at inference time. Techniques such as the popular physics-informed 
neural networks28,29 become prohibitively expensive for even small, 
canonical two-dimensional (2D) datasets30 and success has therefore 
been limited in leveraging them for sparse sensing9.

A few notable works stand out. Manohar et al.19 describes methods 
where the low-rank structure of the dataset can be exploited if it exists. 
They specifically target cases where the number of sensors is greater 
than the number of modes used in reconstruction, by introducing the 
idea of QR pivoting. They employ this mechanism to leverage known 
patterns in the data to optimize the sensor positioning. However, for 
chaotic, multiscale systems such as 3D turbulence, the number of 
modes for effective reconstruction are often quite high, and there could 
be fewer sensors in practice. In another recent approach, Güemes31 
proposed constructing low-resolution fields using moving averages 
from accessible sparse sensor data that then are mapped to higher 
resolutions using a learned mapping. In a similar vein, Fukami et al.32 
introduced a method based on Voronoi tessellation of observations 
onto the prediction domain, followed by a refinement using a convo-
lutional network. Their approach has the attractive upsides of allowing 
arbitrary sensor placement within a 2D mesh, and allowing inference 
using sensor locations that differ from the ones used during training. 
Nevertheless, this approach inherits the hurdles of deep convolutional 
networks, such as the assumption of a regular grid and high memory 
costs for 3D domains33, which are features prevalent in real-world 
problems. Extending convolutional neural network approaches to 
3D or large 2D datasets would be very computationally expensive, 
and may require considerable efforts in engineering implementation. 
This is a common denominator for methods currently in literature: 
they struggle to work in chaotic, high-dimensional datasets without 
demanding excessive compute resources. As a result, there is a major 
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Fig. 1 | Overview of sparse reconstruction using the Senseiver model. a, The 
workflow of the Senseiver innovations for the sparse-sensing problem. We use 
sensor values and precise query locations that are sparse in the field domain and 
allow greater computational efficiency. The sensor values are processed by an 
encoder, and the resulting latent representation is passed along with the query 
information to a decoder, which estimates the field at a new location. In this example, 
the output is decoded into a structured grid. b, Overview of applications in this work.
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during training and inference. We demonstrate this on large 3D cases, 
where even convolutional networks are not practical. The model is 
also computationally efficient by not processing invalid locations in 
irregular geometries where there are regions without data, such as in 
solid boundaries in porous media and continents; sparse processing 
allowing for training to domains of arbitrary size and structure.

Workflow
Overview
The first aim of the Senseiver is to learn a compact representation of 
the state of a system from a small number of sensor observations at a 
given time. This encoded representation can then be used to decode 
the state of the full system from sensor data. The input to our model  
is a set of Ns sensor observations si taken at time t, {s1, s2,… sNs }t, with 
si ∈ ℝNI, where NI corresponds to the number of channels recorded by 
the sensors (for example, 1 for temperature, 3 for a velocity vector in 
3D). The system has a domain Ω where a set of sensor locations 
{x1,x2,… ,xNs }xi ∈ ℝND  are extracted. Throughout the paper, we use 
bold lowercase letters to denote vectors, bold uppercase letters  
to denote matrices, italic uppercase letters to represent functions,  
and italic lowercase letters to denote scalars.

The Senseiver workflow, shown in Fig. 1a, has three main com-
ponents. (1) A spatial encoder PE that maps a spatial coordinate xs 
to an array of spatial encodings a, that allow us to encode a precise 
n-dimensional spatial position to a vector. (2) An attention-based 
encoder E that maps the spatial encodings of the sensor positions ai 
and their values si to a latent matrix Z, which is a compressed represen-
tation of the system at time t. 3) An attention-based decoder D, which 
outputs the reconstructed field value at arbitrary query position xq 
that are also represented using the spatial encoder. As equations, this 
process is given by:

as = PE(xs), (1)

Z = E(s,as) (2)

ŝ(xq, t) = D(Z,aq) = D(Z,PE(xq)), (3)

where the subscripts s and q stand for the sensor and query positions. 
These items are explained in detail (Methods).

The Senseiver is well suited to the demands of many real-world 
applications (some of which are shown in Figure 1b). First, it is agnostic 
to spatial dimensionality, as it can work in one, two or three dimen-
sions, with no code or hyperparameter modifications. Second, we 
can train our model without specialized feature engineering, that is, 
no problem-specific processing of input features or labels is required, 
as the direct sensor observations can be used as input to the network. 
Third, our model is resolution/grid agnostic, as it works with arbi-
trary, continuous sensor locations. This addresses a key limitation 
in real-world problems, where we can place sensors only in locations 
such as the boundaries and edges, making the reconstruction prob-
lem harder. In addition, our model can treat not only sparse input 
but also sparse output, which allows training to large 3D fields using 
less memory by stochastically subsampling the output space. These 
features show promise in scaling our approach to datasets across a 
variety of scientific domains with arbitrary size, meshing and geometry.

Brief review of attention-based models
Attention-based neural networks process information by re-weighting a 
set of inputs, the sequence, such that each sequence element is weighted 
to take larger contributions from certain elements in the sequence (to 
‘attend’), while effectively ignoring others34. It is important to note that 
the term sequence need not represent a one-dimensional array of varia-
bles; in fact, attention layers can have arbitrary connections between the 

elements composing the sequence. Because of this fact, attention layers 
can model the interactions of n sensors among themselves and addi-
tional information using a pair-wise interaction modelling approach40. 
In practice, this is not memory efficient because it corresponds to a 
complete graph of connections between all sequence elements. This 
is especially relevant for applications that involve learning from large 
inputs (for instance, images or videos), as the memory requirements 
for complete pair-wise self-attention scale quadratically with input size.

However, attention mechanisms are very flexible, and this can be 
exploited. The Perceiver IO41 presented an alternative to avoid the 
quadratic bottleneck by utilizing a latent sequence array (Qin ∈ ℝNQin×NI) 
to process arbitrarily sized inputs into a compact latent sequence 
representation of the same size as the latent array. The same principle 
is employed at the output to project the latent sequence into the 
desired output shape and dimensionality. Thus the model can use 
arbitrarily shaped inputs and outputs, while the bulk of latent computa-
tions are of fixed shape and computational cost (Fig. 2). This approach 
allows for non-local processing across input sequences and makes no 
assumptions about the structure of the data. This allowed the Perceiver 
IO to have a core network that is domain agnostic, so that different 
input/output branches can be used to process qualitatively different 
data streams, such as text, audio or image. For the Senseiver, it allows 
the treatment of partial information and frees the network from any 
assumption about the input domain geometry, unlike, for example, 
convolutional networks.

Training procedure
During training, a batch of data is used to optimize the weights of the 
model by minimizing the mean square error:

ℒ = (s(xq, tq) − D (E (PE(xs), s(xq, tq)) ,PE(xq)))
2, (4)
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Fig. 2 | Details of the encoder/decoder modules. This builds on the Perceiver 
IO architecture and adds bottlenecks in the form of dimension-reducing linear 
layers to decrease parameters and computational cost, which is critical for field-
deployable devices such as drones. X is a generic input to a generic attention block.
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where t is time, and xs and xqj are the spatial coordinates of the sensors 
and the queries, respectively. A batch of data is composed by a selection 
of xqj  in the training dataset. In our experiments, we used batches  
of randomly selected points through the training dataset—first sam-
pling a time frame and then sampling query points within that time 
frame. Shuffled data samples proved much more effective versus 
ordered points (axis or patches) for training performance. Note that 
dense observations are required to train the model, while at inference 
time only sparse observations are necessary. We trained the model 
until the minimum loss value over the training period did not change 
for 100 consecutive epochs. As this is a nascent class of problems,  
the mean L2 error norm:

ϵ = ∥s − ̂s∥2
∥s∥2

, (5)

across all the time steps of the test set is reported for comparison with 
recent work32. Here, ̂s  is the prediction of the model.

Results
Cyclic and quasi-cyclic dynamical phenomena
The first dataset considered is a simulation of a 2D unsteady flow past 
a cylindrical obstacle42. This results in a von Kármán vortex street, that 
is, an alternating shedding of left- and right-handed vortices in the flow 
field behind the cylinder. The dataset was created utilizing a numerical 
simulation that solves the incompressible Navier–Stokes equation at 
a Reynolds number of 100. The simulation is periodic in the x and y 
coordinates and its computational size is a 192 × 112 grid with 5,000 
time frames, which approximately spans four vortex shedding periods. 
The domain spans 10 cylinder diameters vertically and 15.7 cylinder 
diameters horizontally. The recorded output is the vorticity field of 
the fluid, which is impacted by having a solid obstacle.

We trained our model to reconstruct the simulation based on three 
different sensor location configurations as inputs. During training, each 
batch observes the field at only a sparse set of locations, but collectively 
the batches sample the whole training field. The first configuration uses 
eight sensor locations as proposed by ref. 32. The second configura-
tion uses only the first four sensors to show the impact of having less 
input information. The third proposed configuration sets the sensor 
locations at the inlet/outlet boundaries, motivated by sensing limita-
tions of lab-on-a-chip experiments. In this case, for the approach pro-
posed by ref. 32, the Voronoi-tessellated image would contain almost 

no information, as the values at the boundaries are very close to zero 
at every time step. Even when the variance of the values is very small, 
the attention layers are able to construct a robust representation. All 
these configurations are shown in Fig. 3. We trained our model using 
only 50 frames (1% of the dataset) and the remaining frames are used 
as the test set. The results are shown in the bar plot of Fig. 3. In com-
parison with the VoronoiCNN (the model proposed in ref. 32) trained 
on the same amount of data and with the same amount of sensors, our 
model achieves approximately ten times lower error. Even with just four 
sensors at the boundary, the Senseiver is able to reconstruct the entire 
simulation faithfully with a negligible drop in accuracy compared with 
the eight-sensor configuration. Higher errors are present where the 
vorticity magnitude changes the most, partly due to the fact that these 
locations are far away from the sensors. It is worth noting that the model 
in ref. 32 has over 682,000 trainable parameters, while ours is composed 
by less than 5% of that number. A complete hyperparameter analysis for 
this problem can be found in the Supplementary Information.

The second dataset that we considered is the National Oceanic and 
Atmospheric Administration sea surface temperature43. This real-world 
dataset was collected from satellite and ship-based observations over 
time. The data comprise weekly observations of the sea surface temper-
ature of Earth at a spatial resolution of 360 × 180 (longitude and latitude, 
respectively)—giving a resolution of 1° longitude and 1° latitude. For 
training, we use 1,040 snapshots spanning from the year 1981 to 2001, 
and then we tested on snapshots from 2001 to 2018. During training, we 
do not use any information about field values on the continents, because 
there is no recorded value to reconstruct, which saves computational 
time (as the continents are 32% of the computational domain). For each 
batch of data, we select 1 to 100 sensors using a uniform distribution 
with the goal of training the model to be robust under different number 
of sensors and spatial configurations. Again, each batch during training 
observes a sparse set of observations, but collectively the batches with 
random sensor configurations sample from the whole field. For testing, 
we placed sensors randomly following the same procedure as ref. 32.

In our results, we see that just 10 sensors allows for a very strong 
reconstruction performance of ϵ = 0.047. Ten sensors constitute a total 
spatial coverage of 0.0154%. By adding more sensors, the overall test 
error goes down and missing details are added to the local temperature 
field as seen in Supplementary Fig. 2. It also noticeable that as we use 
random sensors during training, the model does not take a big per-
formance hit in the scenarios with fewer sensors (Ns < 50) compared 
with ref. 32. The forecasting capabilities show that with good coverage 
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(Ns > 50), the trained model can perform estimates up to 18 years into 
the future with error substantially less than 1 °C. This shows that the 
Senseiver architecture can cope with real-world situations, including 
forecasting. All these results are shown in detail in the Supplementary 
Information.

Acyclic and nonlinear chaotic phenomena
The third dataset considered is a simulation of turbulent fluid flow 
through a channel44. The flow field data are obtained by a 3D numerical 
simulation of incompressible flow in a channel at a Reynolds number of 
180. A slice is taken at the middle of the channel, which yields a computa-
tional domain of size 128 × 48, with 128 cells in the streamwise direction 
of the flow. The domain is non-dimensionalized using the half-width of 
the channel (δ), and the length of channel is 4π times the half-width. 
The target of interest is the velocity of the fluid in the direction of flow.

To make the model robust to changes in sensor locations, at each 
training time iteration we picked a random number of sensors (Ns) from 
the training pool, which ranged from 25 (low coverage) to 300 (medium 
coverage). We train our model with all the available simulation data 
and test its ability to reconstruct it. Similar to the previous datasets, 
25–300 locations are sampled in each batch, but aggregating the loca-
tions sampled across all batches in an epoch results in the whole field 
being sampled. Of course, only sparse observations are used at infer-
ence time. In addition, we ran a case were we multiplied the value of the 
loss function (the mean squared error, or MSE) at each mini-batch times 
the number of sensors used in the forward pass, namely (ℒ = MSE × Ns). 
We found that this increases performance for cases where more than 
150 sensors are provided to the model. We show that the Senseiver is 
able to provide excellent qualitative reconstructions, as illustrated  
by the cross-sections in Fig. 4. This training scheme also allows us to 
move the sensors at inference time. The model obtains the main fea-
tures accurately, even with a small number of sensors as can be seen  
in the reconstructions of Fig. 4. A study of how temporal coverage and 
number of sensors affect the performance of the trained model is 
shown in Supplementary Fig. 3.

The fourth dataset considered is a simulation of two fluids  
flowing through a complex 3D medium comprised of spherical 

obstacles with periodic boundary conditions. A simulation was run 
using the lattice-Boltzmann method library MPLBM45 for 4 days using 
120 central-processing-unit cores. A non-wetting fluid was placed  
at the inlet and driven through the domain where its density was 
recorded during the simulation. The goal of this test case is to assess 
the capabilities of our model to train with very large arrays with 
extremely sparse inputs (0.0006% of spatial coverage). The compu-
tational domain is 128 × 128 × 512 (with a resolution of 3.5 μm) and we 
collected 100 frames (one every millisecond) totalling over 1.6 billion 
points. Three 3D snapshots throughout the simulation are illustrated 
in Supplementary Fig. 4.

Similar to the sea-temperature dataset, in this domain around  
70% of the grid cells have no property value to reconstruct (that is, the 
cells inside the solid), hence the training is sped-up by a substantial  
factor compared with convolutional neural network approaches, which 
are forced to scan the whole domain. It is also worth noting that the 3D 
version of the approach in ref. 32 allocated the entire memory of a 24 Gb 
graphics processing unit for a mini-batch of only one sample, slowing 
down the training and being unable to train with bigger images. In con-
trast, our model uses only 4 Gb. The results of the abstraction perfor-
mance of the model with different amounts of training data are shown in 
Fig. 5. Fifty per cent temporal coverage is enough to train a model that is 
able to provide accurate reconstructions (ϵ < 0.3) throughout the data-
set. One important highlight is that the model is not predictive in highly 
non-stationary acyclic flows with transient dynamics46, for instance, 
frames far away from the training data (>100 in Fig. 5). The model has peri-
odic boundary conditions so the fluid reaching the outlet is re-injected 
at the inlet, a situation not contemplated by the training data.

The fifth and last dataset is a contaminant being advected by a tur-
bulent field. This set-up reflects the case were a pollutant is being trans-
ported and sparse velocity measurements are available. This example 
demonstrates the flexibility of the framework to model the relationship 
between a vector and a scalar. By withholding the concentration of the 
pollutants from the inputs, this example also illustrates the ability for 
the model to predict quantities that are unobserved. In this example, 
the velocity vector (vx, vy, vz, which yields in NI = 3) is measured in 1% of 
the 1283 domain and the task of the model is to predict the concentra-
tion of the pollutant. In contrast to previous datasets, where the whole 
field is sampled across many batches in training, with this dataset we 
sample only 75% or 50% of spatial locations across all batches during 
training, to test scenarios where not all the ground truth is available. In 
Fig. 6, we observe that the model reconstructs larger-scale variations 
in the passive scalar fairly well, but does not reproduce the fine-scale 
structure. The overall R2 for reconstruction is approximately 0.75, 
which is remarkable given that there is virtually no correlation between 
velocity, which is observed, and the tracer concentration, which is 
predicted (Supplementary Fig. 5).

Discussion
The flexibility of the Senseiver architecture allows the exploration of 
many uses cases, and although we aimed to cover as much ground as pos-
sible, there are many things still to explore. For instance, non-Cartesian 
or unstructured grids can be used during training and/or inference. In 
the same vein, the resolution of the field prediction can be increased by 
computing the desired property at intermediate intervals, thus repur-
posing the architecture for super-resolution. Multiple decoding heads 
can be trained to predict outputs with different boundary conditions or 
different downstream tasks (for example, segmentation or classifica-
tion). Additional research could be carried out so that positional encod-
ings can be used to train a model to have forecasting capabilities. During 
the development of this project, an attempt was made to encode time 
using sine–cosine encodings without success. However, we tried utiliz-
ing a trainable array where each time increment (dt) corresponded to 
one vector; this was successful but we found it impractical as it requires 
the model to visit every time increment (dt) during training.
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Conclusion
With the advent of widespread access to satellite data and cheap sen-
sors, we have an opportunity to address several problems in Earth 
sciences and engineering in a manner not possible before. However, 
these powerful data sources are typically sparse, and leveraging them 
requires specialized approaches that can map the measured local data 
to the physics of the global field under observation. The limitations of 
current approaches introduce large uncertainties in myriad applica-
tions such as aviation safety, forecasting accuracy in adverse weather 
predictions, migration patterns of wildfire, contaminant tracing  
and tracking sequestered CO2 plumes. Having a general class of algo-
rithms that is able to estimate and reconstruct the global field from 
sparse, local measurements will be a major advancement in this field.  
In this work, we present an efficient and effective deep learning 
approach to reconstruct fields from such sparse measurements.

From an information theoretic perspective, sparse sensing is an 
inverse modelling problem that maps sparse, low-dimensional meas-
urements to a dense high-dimensional state. The goal of sparse-sensing 
algorithms is to obtain the best possible estimates useful enough to 
inform practical applications, as there are few other viable alterna-
tives. We propose an attention-based neural network architecture, the 
Senseiver, to encode a compact representation of large systems. We 
validated the effectiveness of our method with extensive demonstra-
tions on different datasets of interest to the sparse-sensing community, 
and also on a complex, realistic 3D fluids dataset. Our approach offers 

improved capabilities for large, practical applications compared with 
the state-of-the-art convolutional neural network architectures by 
demonstrating higher accuracy with a lower memory footprint. Five 
examples of global field reconstruction from local sensor measure-
ments demonstrated the accuracy and robustness of our method. 
Sparse sensing of fluid flow data, especially turbulence, is extremely 
challenging due to nonlinearity and chaos. In addition, a low sensor 
coverage makes the task harder as the sensors can have non-unique 
reconstructions. Compared with previous efforts, our model scales 
effectively in large domains of high dimensionality.

Besides the greatly reduced memory footprint, compared with 
previous efforts, a key advantage of the Senseiver is using a query-based 
decoder, which allows us to predict domains of arbitrary sizes in a 
sequential manner. This decoupling of the query process from the 
dimensionality of the dataset makes it extremely memory efficient and 
allows our model to scale effectively to large domains. In summary, this 
work only scratches the surface of what is possible with attention-based 
architectures for sparse sensing.

Methods
Encoder–decoder architecture
Our encoder–decoder architecture is built upon Perceiver IO. The 
encoder module takes the locations and values of the sensors and maps 
them to a latent space (of size Nf ) through scaled dot-product attention 
layers. First, the sensor data si from a number of sensors observations 
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Ns and their corresponding positional encodings ai are concatenated 
to form the input E(0) ∈ ℝNs×NI+2NDNf , where the superscript indicates 
each box/layer in Fig. 2. E(0) is then processed using a fully connected 
linear layer to create E(1) ∈ ℝNs×Nc  where Nc is a hidden dimension  
used throughout the architecture. Next, E(1) is processed with an atten-
tion block. Within each block is a multi-headed cross-attention layer 
(Fig. 2) that uses a trainable query array Qin ∈ ℝNQin×Nc. The attention 
block preserves the dimension such that the output Z of the encoder 
is of a fixed dimension NQin × Nc, regardless of the number of sensor 
observations. In summary, the steps of the encoder are given by

E(0) = si ⊕ ai (6)

E(1) = Linear(E(0)) (7)

E(2) = AttentionBlock1(E(1);Q(1)
in ,θ1,ϕ1) (8)

E(3) = AttentionBlock2(E(2);Q(2)
in ,θ2,ϕ2) (9)

Z = AttentionBlock2(E(3);Q(2)
in ,θ2,ϕ2). (10)

The dimensions inside the attention blocks are provided in  
Supplementary Information, along with definitions of multi-head 
attention mechanisms. Qin is the latent query array in each block, and 
θ and ϕ are the weights of the multi-layer perceptrons (MLPs) within  
each attention block. We also note that the second and third attention- 
block modules share weights, and therefore this is a recurrent step in the 
architecture. This has the benefit of reducing the parameters. Further-
more, our preliminary experiments re-using the weights recurrently 
resulted in a small increase in accuracy (~10%) without any additional 
parameters. Linear refers to a simple linear layer with bias, although  
it is important to note that this projection decreases the dimension  
before the attention mechanism, that is, we have Nc < < NI + 2NDNf.  
This dimension reduction improves computational efficiency while 
preserving key information—similar to low-rank methods or the  
Johnson–Lindenstrauss lemma, but further empowered by the use of  
attention. The number of channels output by the linear layer is a  
key hyper parameter that, while small, is somewhat application depen-
dent. While increasing Nf is used to capture higher spatial resolution 
(Supplementary Table 1), increasing the number of channels can be 
used to capture more complex temporal dynamics (Supplementary 
Table 2).

Next, in the decoder block, the encoded position of the query aq 
is concatenated with a trainable query vector qout ∈ ℝNc. However, more 
frequently we consider multiple query points, denoted Nq. In this  
case, the query vector is repeated row-wise (once for each query  
point aq) to make a matrix, Qout. We denote the concatenated positions 
and Qout as D(0) ∈ ℝNq×2NfNd+Nc. This query matrix is process by a linear 
layer to output D(1) ∈ ℝNq×Nc . D(1) serves as the queries in a multi- 
head cross-attention. The keys and values for this cross-attention  
are provided by the latent input representation Z, which yields  
the output D(2) ∈ ℝNQout×Nc . D(2) is processed by a linear layer, which  
yields an output ŝ ∈ ℝNo . In summary, the steps of the decoder are  
given by:

D(0) = Qout ⊕ aq (11)

D(1) = Linear(D(0)) (12)

D(2) = MultiHead(D(0),Z,Z) (13)

ŝ = Linear(D(2)). (14)

For details of the attention layers, the network implementation 
and the design decisions in the Senseiver, see Supplementary Informa-
tion. The end-to-end forward pass is illustrated in Fig. 2.

Spatial encodings
The attention mechanism does not explicitly account for the spatial 
location of the sensors or queries. To include this information, we 
encode the spatial position of these (equation (1)) using sine–cosine 
positional encodings34. These are visualized graphically in Fig. 2.  
For each d of the ND spatial dimensions, we specify a set of spatial  
frequencies { fk}d  of size k over which to build the sine–cosine posi-
tional encodings. A position x ∈ ℝND  is decomposed into a vector 
a ∈ ℝ2×ND×Nf , where each entry in a is the value of a corresponding  
sine or cosine (hence the factor 2) at the specified frequency f and  
Nf is the number of frequencies in the encoding. For each dimension d, 
there are 2Nf entries in a; the first are sin(πfkxd)  and the second are 
cos(πfkxd).

This design choice does not require any additional training para-
meters, and the computational work required to produce them is negli-
gible. In many applications, having a large Nf is required to accurately 
encode the position of the sensors and query points—especially in three 
dimensions. The number of parameters increases rapidly for Perceiver 
IO as Nf increases. Senseiver avoids this problem, making it more suit-
able in applications where precise locations are important—see Sup-
plementary Table 2 for a comparison. In the examples used in this work, 
the data are located in Cartesian grids, so an array with components 
denoting the centre of each grid point in each coordinate direction 
is created, and then indexed during training and inference. Having a  
Cartesian grid is not a prerequisite to use our model; the sine–cosine 
spatial encodings can be evaluated on any mesh, or on arbitrary continu-
ously variable points in space. A strong advantage of this flexibility is that 
it makes it possible to construct field predictions at arbitrary subsets of 
the full domain, which allows predictions to be made with very few com-
putational resources, as a domain prediction can be constructed piece 
by piece. We take advantage of this fact during training, as described in 
‘Training procedure’. In addition, recent work in explainable artificial 
intelligence has shown that neural networks appear to learn Fourier 
representation of fluid flows internally47, supporting our assumption 
that these encodings are appropriate for many problems of interest.

Data availability
The data are available at https://zenodo.org/records/8290040 (ref. 53).

Code availability
The code is available on Zenodo at https://doi.org/10.5281/zenodo. 
8364148 (ref. 54).
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