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Deep learning of causal structures in high 
dimensions under data limitations

Kai Lagemann    1  , Christian Lagemann2, Bernd Taschler    1,3 & 
Sach Mukherjee    1,4 

Causal learning is a key challenge in scientific artificial intelligence as it 
allows researchers to go beyond purely correlative or predictive analyses 
towards learning underlying cause-and-effect relationships, which are 
important for scientific understanding as well as for a wide range of 
downstream tasks. Here, motivated by emerging biomedical questions, 
we propose a deep neural architecture for learning causal relationships 
between variables from a combination of high-dimensional data and 
prior causal knowledge. We combine convolutional and graph neural 
networks within a causal risk framework to provide an approach that is 
demonstrably effective under the conditions of high dimensionality, noise 
and data limitations that are characteristic of many applications, including 
in large-scale biology. In experiments, we find that the proposed learners 
can effectively identify novel causal relationships across thousands of 
variables. Results include extensive (linear and nonlinear) simulations 
(where the ground truth is known and can be directly compared against), 
as well as real biological examples where the models are applied to 
high-dimensional molecular data and their outputs compared against 
entirely unseen validation experiments. These results support the notion 
that deep learning approaches can be used to learn causal networks at 
large scale.

Causality remains an important open area in artificial intelligence (AI) 
research1,2, and the task of identifying causal relationships between 
variables is key in many scientific domains3. The rich body of work in 
learning causal structures includes methods such as PC4, LiNGAM5, 
IDA6, GIES7, RFCI8, ICP9 and MRCL10. Scaling causal structure learning to 
larger problems has been facilitated by reformulation as a continuous 
optimization problem11, and recent neural approaches, such as SDI12, 
DCDI13, DCD-FG14 and ENCO15, have demonstrated state-of-the-art per-
formance (Supplementary section 1 provides a detailed discussion). 
However, learning causal structures from data remains nontrivial and 
continues to pose challenges, particularly under the conditions (high 
dimensionality, limited data sizes and hidden variables, for example) 
seen in many real-world problems.

In biomedicine, causal networks representing the interplay 
between entities such as genes or proteins play a central conceptual 
and practical role. Such networks are increasingly understood to be 
context-dependent, and are thought to underpin aspects of disease 
heterogeneity and the variation in therapeutic response (for example, 
refs. 16–19). A key bottleneck in characterizing such heterogeneity lies 
in the challenging nature of learning causal structures at scale, because 
of general methodological issues as well as aspects relevant in the 
biological domain such as high dimensionality, complex underlying 
events, the presence of hidden/unmeasured variables, limited data 
and noise levels.

In this Article, we propose a deep architecture for causal learn-
ing that is particularly motivated by high-dimensional biomedical 
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edges encode these causal relationships. D2CL seeks to learn G* from 
two inputs: (1) empirical data X containing measurements on each of 
the variables of interest and (2) prior causal knowledge Π concerning 
a subset of causal relationships. This corresponds to a common para-
digm in real-world scientific settings, where some data are measured 
on variables of interest, but only limited knowledge about causal rela-
tionships is available at the outset (for example, from prior scientific 
knowledge or specific experiments).

We formalize the task in the following way. For each ordered pair 
of variables with indices (i, j) whose causal status is not known via Π, 
our goal is to learn an indicator of whether or not Xi has a causal influ-
ence on Xj. D2CL treats these causal indicators as ‘labels’ in a machine 
learning sense, using the available inputs to learn a suitable mapping. 
The goal of the mapping is to minimize discrepancy with respect to the 
true, unknown causal status; this learning task can be viewed through 
the lens of causal risk23. In all experiments, the learner never has access 
to data in which the parent node of an unknown edge was intervened 
on. This makes learning challenging, as we require generalization to 
interventional regimes/distributions that are entirely unseen.

Learning is carried out using a flexible, neural model Fθ with a set 
of trainable parameters θ. The model is trained in a specific fashion 
that leverages the input information Π as a supervision/training signal 
to allow the model to learn representations suitable for generalization 
to novel causal relationships (the Methods provides details and a dis-
cussion of the assumptions). The network Fθ combines a convolutional 
neural network (CNN) and a graph neural network (GNN) to resolve 
distributional and graph structural regularities (Fig. 2). In image pro-
cessing, CNNs make use of certain properties, such as spatial invari-
ance, that exploit the notion of an image as a function on the plane. 
Here we leverage the CNN toolkit to capture distributional information 
in data X, represented as images. We create these visual representations 
for two-tuples of nodes. Specifically, for a variable pair (i, j) we use the 
n × 2 submatrix X(⋅, [ij]), to form a bivariate kernel density estimate 
fij = KDE(X(⋅, [ij])) that is treated as an image input. Note that this is in 
general asymmetric in the sense that fij ≠ fji. This is important, as we 
want to learn ordered/directed relationships (symmetry here would 
imply an inability to distinguish the causal direction). The GNN is aimed 
at capturing graph structural regularities and to this end learns a state 
embedding hj that contains the information of the neighbourhood for 
each node j. The GNN requires a graph as input; we provide an initial 
input graph ̂G0 via computationally lightweight routines solely based 
on the available data, X (Methods).

Finally, following training, the model F—with parameters now fixed 
as a function of inputs X and Π—can be used to assign causal status to 
any pair via an inference step. In the experiments described in the fol-
lowing, the global model output is tested systematically at large scale 
against either the true graph G* (in simulations) or against entirely 
unseen interventional experiments (for real biological examples).

Our focus is on causal learning for real-world, high-dimensional 
problems with thousands of nodes and limited data, motivated by 
large-scale biomedical problems. Within the causal risk paradigm10,23 
we use here, acyclicity (of the directed graphs to be learned) is not 
assumed, nor is availability of any standard factorization of the joint 
probability distribution. It is not required that data samples in X are 
drawn from a single distribution; instead, data can be drawn from, 
for example, a mix of observational and interventional distribu-
tions, and the causal characteristics of these regimes (for example, 
which node(s) or latents were intervened on) need not be known in 
advance. Nor is it required that we have interventional data or prior 
information concerning all nodes. On the contrary, in all experi-
ments, the learner never has access to data in which the parent node 
of an unknown edge was intervened on nor prior information con-
cerning the unknown edge. This is a common real-world set-up, in 
particular for emerging experimental designs in biology (examples 
are described in the following). We emphasize that the NNs used are 

problems. The approach we put forward operates within an emerg-
ing causal risk paradigm (Methods and Supplementary section 2) 
that allows us to leverage AI tools and scale to very high-dimensional 
problems involving thousands of variables. The learners proposed 
allow for the integration of partial knowledge concerning a subset of 
causal relationships and then seek to generalize beyond what is initially 
known to learn relationships between all variables. This corresponds to 
a common scientific use-case in which some prior knowledge is avail-
able at the outset—from previous experiments or scientific background 
knowledge—but it is desired to go beyond what is known to learn a 
model spanning all available variables.

A large part of the causal structure learning literature involves 
learning models that allow an explicit description of the relevant 
data-generating model (including both observational and interven-
tional distributions) and are in that sense ‘generative’ (see, for example, 
ref. 3 and references therein). Taking a different approach, a line of 
recent work, including refs. 10,20–22, has considered learning indi-
cators of causal relationships between variables (without necessarily 
learning full details of the underlying data-generating models), and 
this can be viewed as being related to notions of causal risk23. Such 
indicators may encode, for example, whether, for a pair of variables A 
and B, A has a causal influence on B, B on A, or neither.

The approach we propose, called ‘deep discriminative causal 
learning’ (D2CL), is in the latter vein. We consider a version of the 
causal structure learning problem in which the desired output con-
sists of binary indicators of causal relationships between observed 
variables10,23, that is, a directed graph with nodes identified with the 
variables. Available multivariate data X are transformed to provide 
inputs to a neural network (NN), whose outputs are estimates of the 
causal indicators. D2CL differs from classical causal structure learn-
ing approaches both in terms of the underlying framework (based on 
causal risk rather than generative causal models) and in leveraging 
NNs. The assumptions underlying the approach are also different in 
nature from those in classical causal structure learning and concern 
higher-level regularities in the data-generating processes (Methods). 
A number of recent papers, including refs. 12–15, also leverage neural 
approaches for learning causal structures and share a basis in the 
continuous optimization framework introduced in ref. 11 based on 
a directed acyclic graph (DAG) framework. D2CL, in contrast, uses a 
risk-based approach that is not based on DAGs. Eigenmann et al. 23 
studied causal risk for the assessment of existing learners; instead, we 
leverage the notion of causal risk to propose a new learner. In common 
with D2CL, the recently proposed CSIvA method24 seeks to directly 
map input data to a graph output. The key difference is that, while 
CSIvA uses a meta-learning scheme based on large-scale synthetic 
data, D2CL is based on supervised learning using data from a specific 
system of interest (for example, a biological system; see Supplementary 
section 1 for a more detailed overview and comparison). We show that 
context-specific training allows D2CL to successfully learn structures 
in a range of scenarios, including challenging real-world experimental 
data (as detailed in the following). Furthermore, D2CL is demonstrably 
scalable to large numbers of variables (we show examples ranging up to 
p = 50,000 nodes) and applicable in regimes where very large sample 
data or strong simulation engines are not available.

Framework overview
We propose an end-to-end neural approach to learn causal networks 
from a combination of empirical data X and prior causal knowledge Π. 
The general D2CL workflow and its application to biomolecular prob-
lems are summarized in Fig. 1. Here we provide a very brief, high-level 
summary of the main ideas. A detailed presentation of the methodology 
and associated discussion (including of causal semantics and assump-
tions) are provided in the Methods and Supplementary section 2.

Suppose X1, …, Xp is a set of variables whose mutual causal relation-
ships are of interest. Let G* denote an (unknown) graph whose directed 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | November 2023 | 1306–1316 1308

Article https://doi.org/10.1038/s42256-023-00744-z

not rotation-invariant and hence can break symmetries and allow 
inference of causal direction.

Results
We use both simulated data and real biological data to assess perfor-
mance. In all cases, the model output is tested with respect to causal 
relationships that are entirely unseen in the sense that (1) causal rela-
tionships on which the model output is tested are disjoint from those 
provided as inputs during training and (2) no data used to define causal 
relationships against which the model output is tested appear in inputs 
to the models. Additional results, as well as details of the experimental 
protocols, are provided in Supplementary sections 3 and 4.

Simulation benchmarks
We tested the methods using data generated from a (linear or nonlin-
ear) structural equation model (SEM) with noise, based on a known 
underlying causal graph G*. The protocol is outlined in Fig. 3a, with 
further details provided in Supplementary section 3. In brief, data were 
generated via structural equations of the form Xi = fi(PaG∗ (Xi), UXi ), 
for i = 1, …, p, where p is the total number of variables, PaG∗ (Xi) is the 
set of parents for node i in the true graph G*, and UXi are noise variables 
(exogenous and jointly independent). The functions fi are unknown to 

the learners. Varying the noise magnitude allows us to control the 
signal-to-noise ratio (SNR), and varying p allows us to understand the 
effect of dimensionality. The output was tested against the true, 
gold-standard causal structure G* and hence assessed in causal (and 
not correlational or predictive) terms.

In-system, out-of-distribution evaluation. Here, model training 
uses (limited) prior knowledge and data from a given system, and 
assessment is carried out with respect to unknown edges within the 
same system (test and training edges are always entirely disjoint). 
This is out-of-distribution in the sense that the learner never has 
access to samples from the test interventional distributions, but 
in-system, because all data are from the same overall data-generating 
system. This corresponds to a common scientific use-case where 
the goal is to learn a model for a specific system of interest given 
available data on that system. Figure 3c shows results for a problem 
of dimension p = 1,500 using a nonlinear transition function (the 
tangent hyperbolic; other functions and configurations are shown 
in Supplementary Tables 2 (area under the curve, AUC) and 3 (area 
under the precision-recall-curve, AUPRC)) and varying SNR. (For 
these first results, we restricted the dimension of the problem to 
facilitate comparison to existing approaches that are less scalable 
than D2CL; higher-dimensional examples appear in the following.) 
Note that pairwise correlations between the variables (‘Pearson’) are 
ineffective; this is expected due to the presence of latent variables 
in all experiments and the fundamental difference between correla-
tional and causal relationships. Overall, D2CL remains effective across 
a broad range of SNRs, as well as for a range of linear and nonlinear 
problems and problem sizes (Supplementary Table 1). We also com-
pared D2CL to DCD-FG14 and ENCO15, two recently proposed, scalable 
neural-causal learners. Owing to computational considerations, we 
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between system variables. In an abstract workflow (left), empirical data from 
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containing structural information on the neighbourhood of the nodes. The CNN 
and GNN embeddings are then merged through multiple layers, which finally 
output the probability of a directed causal relationship. The input causal 
information is used to provide a training signal (see main text for details).  
During inference, the network generalizes beyond the initial inputs to provide  
an estimate of the global graph spanning all variables of interest.
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restricted this comparison to a subset of the simulations. Illustrative 
results are provided in Fig. 3b. We find that neither approach is effec-
tive in this case, possibly due to the limited data and the presence 
of latent variables.

In addition, we tested the effectiveness of D2CL for additive and 
multiplicative Gaussian noise with varying SNRs under settings with 
hard deterministic and stochastic interventions. We refer the interested 
reader to Supplementary section 3 for a definition of an intervention 

and the types used. The test results (AUC and AUPRC values) are sum-
marized in Supplementary Tables 8 and 9 and support the notion that 
D2CL is robust to different types of noise.

The graph G* in the above examples encodes direct causal rela-
tionships as there is an edge from one node to another if the former 
appears in the equation for the latter. However, in many real-world 
examples, interest focuses also on indirect effects, which may be 
mediated by other nodes. For example, if node A has a direct effect 
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the output of the learners was compared with the true, underlying graph to 
quantify the ability to recover the causal structure. Finite-sample empirical 
data were generated using a directed causal graph of specified dimension p, 
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five datasets at each specified SNR).
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on B, and B on C, intervention on A may change C, even though A 
does not itself appear in the equation for C. To test the ability to 
learn indirect edges, we proceeded as above, but with the inputs Π 
being indirect edges and the output tested against the true indirect 
graph. Results are presented in Fig. 3d. D2CL outperforms existing 
methods across a range of SNRs and also in other linear/nonlinear 
problem configurations (Supplementary Tables 4 and 5). IDA per-
forms well in the case of a linear SEM, but not for functions based 
on nonlinear multilayer perceptrons. D2CL appears to be the most 
noise-robust of the methods tested. These results show that D2CL can 
learn indirect causal edges over many variables under conditions of 
noise and nonlinearity.

Out-of-system, out-of-distribution evaluation. D2CL is trainable using 
(limited) data from a specific system (for example, a specific biological 
system, such as cells of a particular kind, or a disease state). However, 
it is interesting to see whether it is possible to generalize to different 
systems. To this end, we trained D2CL on a dataset from a certain system 
and cross-evaluated the trained model on data from another system (a 
different simulation regime). The results are provided in Supplemen-
tary Tables 10 and 11. Some generalization appears possible, suggesting 
that D2CL can find signals that are causally informative in a cross-system 
sense, although performance is always worse relative to in-system train-
ing (this is expected in our framework, and we emphasize that we do 
not claim any general ability to achieve out-of-system generalization). 
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Fig. 4 | Results for the yeast gene deletion experiments. Causal learning 
methods, including D2CL, were applied to gene expression measurements from 
yeast cells. Performance was quantified using causal ROC curves (and AUCs) 
computed with respect to a causal ground truth obtained from entirely unseen 
interventional experiments (see main text for details). a–c, The number of 
interventions m whose effects are available to the learner was varied (with the 
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(a), 500 (b) and 753 (c). d–f, The sample size n of the data matrix X was varied 
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results for a higher-dimensional setting covering all available genes (roughly 
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arrangements. Here, only D2CL variants are shown, as the other methods could 
not be run due to the computational burden in this higher-dimensional case. 
Comparison with the corresponding p = 1,000 case demonstrates the scalability 
of D2CL, with performance broadly maintained in the higher-dimensional setting. 
The D2CL variants shown include a CNN tower alone (g), GNN tower alone (h,i) 
and the entire D2CL architecture (j,k); methods compared against include IDA, 
LVIDA, Kendall correlations (as a non-causal baseline) and SCL (see main text 
and Supplementary sections 1 and 3 for details and references). For D2CL and 
its variants, two different initial graph estimates were used based respectively 
on Pearson correlation coefficients (‘Pearson’) and on a lightweight regression 
(‘Lasso’); details are provided in the main text.
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Nevertheless, these results broadly support the notion of large-scale 
meta-learning for causal structures24.

Large-scale evaluation. Finally, to test the scalability of D2CL to 
high-dimensional problems, we considered a problem with p = 50,000 
variables (that is, p = 50,000 nodes in the ground-truth graph; note that 
none of the compared methods can practically scale to this setting). 
We considered learning of direct causal relationships; the results are 
shown in Supplementary Table 6 and support the notion that D2CL can 
scale to problems spanning many thousands of variables.

Large-scale biological data
To study performance in the context of real biological data, we leveraged 
a large set of gene deletion experiments in yeast25, which have previously 
been used for causal learning9,10,26. The experiments involve measuring 

gene expression in yeast cells under each of a large number of interven-
tions (gene deletions; Supplementary section 3 provides further details).

In biological experiments, causal effects may be indirect, and 
we sought to learn a directed graph with nodes corresponding to p 
observed genes and edges representing (possibly indirect) causal 
influences. Such edges are scientifically interesting and amenable 
to experimental verification, as noted in refs. 22,27. Cycles can arise 
in systems biology (see, for example, ref. 28) and we do not enforce 
acyclicity (see ref. 29 and references therein for a discussion of cyclic 
causality). A fuller discussion of the causal interpretation of labora-
tory experiments is beyond the scope of this Article, but relevant work 
includes refs. 29–31, and we direct the interested reader to these refer-
ences for further discussion.

Because causal background knowledge is an input for our 
approach, it is relevant to consider performance as a function of the 
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Fig. 5 | Sensitivity to incorrect causal inputs and additional results on causal 
direction. a, Robustness to incorrect causal inputs. The sensitivity of D2CL to 
errors in prior/input causal knowledge Π was studied by artificially introducing 
errors into Π, with 10% of inputs corrupted (experiments used the yeast gene 
deletion data; see main text for details). Results quantified via causal AUC 
(as in the main results, computed with respect to an experimentally defined 
ground truth), shown for several D2CL variants. b, An ablation-like study in 
which failures of either the CNN (orange) or the GNN (blue) tower within D2CL 
were artificially introduced. The relevant embedding was either set to zero or 
to zero-mean Gaussian noise (with scale as shown). The unaffected case is given 
as a dashed black line. c, Causal direction analysis (see main text for details). 
Low-dimensional representations of latent feature maps of the converged CNN 

tower at two different layer depths. Edges A → B are shown as filled circles and 
reverse edges B → A as x-shaped markers. An edge and its corresponding reverse 
are shown in the same colour. For improved readability, only ten random pairs 
are highlighted in colours and bigger markers. We see that the embedding is not 
invariant with respect to causal direction and is able to effectively identify the 
correct direction (as shown also in an additional experiment, see main text). The 
different D2CL variants include a CNN tower alone, a GNN tower for two different 
initial graph estimates, and the complete network for the same two initial graph 
estimates. Initial graph estimates for the GNN and combined models were either 
based on Pearson correlation coefficients (‘Pearson’) or a lightweight regression 
(‘Lasso’; see main text for details).
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amount of such input. To this end, we fixed the problem size to p = 1,000 
and varied the number of interventions m whose effects were available 
to the learner (Supplementary section 3 provides details). As each 
experiment involves only a subset of the entire yeast genome, latent 
variables are present by design. The input prior knowledge Π is derived 
from the causal status, but, as in all experiments, is strictly disjoint with 
respect to any test edges.

Results are presented in Fig. 4a–c, including the area under the 
receiver operating characteristic (ROC) curve (AUC; computed with 
respect to an experimentally determined gold standard; Supplemen-
tary section 3). Overall, the proposed methods perform well, achieving 
good results in this high-dimensional, limited-data regime. Next, to 
shed light on data efficiency, we varied the sample size n of the data 
matrix X (Fig. 4d–f).

Finally, we tested the performance in a higher-dimensional exam-
ple spanning all p = 5,535 available genes (Fig. 4g–k) and found that 
D2CL remains effective at the genome scale. Interestingly, although 
the CNN tower performs particularly well, the GNN tower degrades 
more. This may be because larger p leads to a larger number of variable 
pairs (which is helpful for the CNN), but also to a (rapid) increase in the 
number of nodes and edges in the GNN subgraphs and hence a harder 
GNN learning task in practice.

D2CL leverages prior causal knowledge. However, in practice, 
the available causal inputs Π may be incorrect, for example, due to 
flawed initial experiments or errors in the known science. To study 
sensitivity to flawed causal inputs, we introduced errors into Π. This 
was done by perturbing 10% of the inputs (that is, labelling causal pairs 
as non-causal and vice versa) at the outset. The results are shown in 
Fig. 5a and demonstrate a level of robustness to such perturbation. 
We also see a benefit of the dual network variants; this is investigated 
further in Fig. 5b. For the latter, in general, the embedding of either 
tower is modified immediately before the fusion layer. We considered 
several different modifications: setting the embedding of one tower to 
zero and hence effectively removing all information from this tower, 
or applying Gaussian noise with magnitude σ = 1.0, σ = 2.0 and σ = 5.0.

Causal relations are in general directed and asymmetric, so it is 
interesting to explore model behaviour with respect to causal direction. 
Given an image representation, the CNN tower is designed to extract 
feature maps that are unique for ordered node pairs, that is, such that 
in general features differ depending on edge direction. To empirically 
study learning of causal direction, we constructed additional test data 
as follows: for each truly causal edge k → l in the test set, we also included 
the reverse direction l → k. This means that any learner estimating 

undirected links would have an AUC score of 0.5 (because the output 
k → l entails also l → k, one of which is a false positive). Supplementary 
Table 4 shows that D2CL is indeed capable of accurately identifying 
causal direction. In addition, Fig. 5c shows a low-dimensional rep-
resentation of the feature maps of the converged CNN tower. These 
feature maps differ by causal direction (k → l versus l → k) throughout 
the forward pass, supporting the foregoing arguments.

High-dimensional CRISPR-based perturbations
Finally, we used recent, single-cell clustered regularly interspaced short 
palindromic repeats (CRISPR)-based interventional experiments32 to 
illustrate the use of the proposed approaches in very high-dimensional 
data from human cells. The experimental protocol (see ref. 32 for full 
details) includes a large number of interventions in a leukaemia cell 
line (K562) and in retinal pigment epithelial (RPE) cells. The K562 and 
RPE experiments include gene-expression levels for a total of, respec-
tively, p = 8,552 and p = 8,833 genes (Supplementary section 3 provides 
details). This is a challenging setting due to the known complexity 
of regulatory events in human cells and high levels of variability and 
noise in single-cell protocols. The results are presented in Fig. 6 and 
demonstrate good performance for RPE, and slightly worse perfor-
mance, but still nontrivial consistency with the experimental gold 
standard, for K562. Additional plots in Fig. 6 and Supplementary Fig. 3  
show the performance and runtime for a set of baseline algorithms. 
These results demonstrate two key points. First, the runtime for many 
available algorithms grows so rapidly with increasing number of vari-
ables as to render them unsuitable for problems at this scale. Second, 
for existing methods that are at all able to scale to larger problems, 
performance is considerably less effective than D2CL in this setting.

Conclusions
Emerging experimental protocols, involving combinations of pertur-
bations and high-dimensional readouts, are allowing for new, scal-
able ways to query molecular networks in a context-specific fashion. 
Combined with scalable causal learning tools, these approaches have 
the potential to strongly impact disease biology by allowing global 
networks, spanning thousands or tens of thousands of variables, to 
be investigated across many different contexts.

Networks learned in this way could, in the future, be leveraged to 
allow for the prediction of disease phenotypes or drug response under 
novel perturbations (this is a different task from standard supervised 
learning, because the test case involves an unseen perturbation to the 
system). Furthermore, in the area of personalized medicine, such an 
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Fig. 6 | Results for high-dimensional human data. Single-cell CRISPR-based 
experiments (due to ref. 32) were used to illustrate the use of the proposed 
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quantified using causal ROC curves (and AUC) computed with respect to a 
causal ground truth obtained from entirely unseen interventional experiments 
(see main text for details). a, Results from D2CL applied to data obtained from 

RPE cells and a cancer cell line (K562) in problems spanning more than 8,000 
variables (other methods could not be practically run in this case due to the 
computational burden). b, Performance of existing causal learning approaches 
(on K562 data) as a function of problem dimension. The dashed line indicates 
D2CL performance on the full problem (p = 8,552 variables).
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approach could even allow for rational optimization over potential 
therapeutic strategies, because the latter are often interventions tar-
geted at molecular nodes.

Our model leverages deep learning tools to learn causal relation-
ships between variables at large scale. However, and in contrast to 
well-established approaches based on causal graphical models, it 
provides only a structural output rather than a probability model 
of the underlying system. It is also interesting to contrast D2CL with 
the recently proposed CSIvA24. Both approaches pursue, in a sense, a 
‘direct’ mapping of data inputs to graph outputs, with a key difference 
being that CSIvA uses meta-learning and seeks to generalize across 
systems, whereas D2CL uses supervised learning to generalize to new 
interventions on a given system (for example, a biological system of 
interest). An interesting direction for future work may be to combine 
both approaches, for example by using CSIvA to provide the initial 
input to D2CL; this would combine general, simulation-based learning 
and data-efficient, system-specific training.

At present, rigorous theory and an understanding of the theoreti-
cal properties of the kind of approach studied here remain lacking. A 
key direction for future theoretical work will be to understand the 
precise conditions for the underlying system that are needed to ensure 
that direct mapping approaches can guarantee the recovery of specific 
causal structures. An interesting observation is that the proposed 
approach may benefit from a ‘blessing of dimensionality’, because the 
learning problem will typically enjoy a larger number of examples as 
dimension p grows. Conversely, and in contrast to established statisti-
cal causal models, our approach (at the current stage) cannot be used 
in the small-p regime, because the number of examples will be too 
small for deep learning.

Methods
In this section, we provide information on the causal interpretation 
of our learning scheme, as well as a more detailed presentation of the 
architecture and associated implementation.

Notation
Observed variables with index set V = {1, …, p} are denoted X1, …, Xp. 
The variables will be identified with vertices in a directed graph G whose 
vertex and edge sets are denoted V(G) and E(G), respectively. We occa-
sionally overload G to refer also to the corresponding binary adjacency 
matrix, using Gij to refer to the entry (i, j) of the adjacency matrix, as 
will be clear from context. We use linear indexing of variable pairs to 
aid formulation as a machine learning problem. Specifically, an ordered 
pair (i, j) ∈ V × V has an associated linear index k ∈ 𝒦𝒦 = 𝒦1, … , K }, where 
K is the total number of variable pairs of interest. Where useful, we make 
the mapping explicit, denoting the linear index corresponding to a pair 
(i, j) as k(i, j) and the variable pair corresponding to a linear index k as 
(i(k), j(k)). The linear indices of pairs whose causal relationships are 
unknown and of interest are 𝒰𝒰 ⊂ 𝒦𝒦, and those pairs known in advance 
via input knowledge Π are 𝒯𝒯(Π) ⊂ 𝒦𝒦. In all experiments, 𝒯𝒯(Π) and 𝒰𝒰 are 
disjoint; that is, no prior causal information is available on the pairs 𝒰𝒰 
of interest.

Problem statement
We focus on the setting in which the available inputs are

•	 (I1) Empirical data: an n × p data matrix X whose columns corre-
spond to variables X1, …, Xp.

•	 (I2) Causal background knowledge Π providing information on a 
subset 𝒯𝒯(Π) ⊂ 𝒦𝒦  of causal relationships.

For (I2), we assume that information is available concerning the 
causal status of a subset of variable pairs. That is, for some variable 
pairs (Xi, Xj) the correct binary indicator G∗

ij, representing the presence/
absence of an edge in the target graphical object, is provided as an 

input. In terms of linear indexing, these can be viewed as available 
‘labels’ of causal status for the pairs 𝒯𝒯(Π) ⊂ 𝒦𝒦. No specific assumption 
is made on the data X, but, in line with our focus on generalizing to 
unseen causal relationships, it is assumed that it does not contain 
interventional data corresponding to the pairs in 𝒰𝒰. Furthermore, in 
all experiments, not only are the sets 𝒯𝒯  and 𝒰𝒰 disjoint, but we enforce 
the stronger requirement that u ∈ 𝒰𝒰 𝒰 𝒰j ∶ k(i(u), j) ∈ 𝒯𝒯 . This means 
that all interventions on which models are tested are entirely novel, 
that is, unrepresented in the inputs to the learner, either as data or prior 
input. This also means that the learner has no access whatsoever to 
samples from the test interventional distributions, and all experiments 
are out-of-distribution in this sense.

The learning task can thus be formulated as follows: given inputs 
(I1) and (I2), the goal is to estimate, for each ordered pair of variables 
(Xi, Xj) with unknown causal relationship, whether or not Xi has a causal 
influence on Xj.

Summary of the learning scheme
With the notation above, our goal is to learn a graph whose nodes cor-
respond to the variables X1, …, Xp and whose edges represent causal 
relationships. To this end, we train a parameterized network Fθ, that is, 
a nonlinear function F with a set of unknown, trainable parameters θ. 
This is possible, because we know for each pair k ∈ 𝒯𝒯  the causal status 
G∗
ij  based on input information Π. The architecture we use as Fθ is 

detailed below, but for now assume this has been specified. Then, given 
the data X and the training labels Yk = G∗

i(k), j(k) for all pairs k ∈ 𝒯𝒯(Π), we 
train the set of parameters θ̂(X, Π) under a loss that is supervised by 
the (causal) labels Yk.

At this stage, the trained network Fθ̂(X,Π)  allows assignment of 
causal status to any pair, because it gives an estimate of the entire graph 
including those pairs whose causal status was unknown. The output is 
given by

̂Gij(X, Π) = {
Fθ̂(X,Π)(i, j; X ) if k(i, j) ∉ 𝒯𝒯𝒯Π)

Yk(i, j)(Π) otherwise
(1)

where (i, j) are ordered variable pairs. Note that the overall estimate 
depends solely on the data X and causal information Π. By default, no 
change is made for pairs 𝒯𝒯  whose status was known at the outset. 
Reference 23 studied causal notions of risk based on loss functions of 
the form that compare a graph estimate ̂G  with ground truth G*.  
In our setting, we consider a classification-type loss on the variable 
pairs k, where the causal status of known pairs 𝒯𝒯(Π) provides the 
training ‘labels’. We therefore use the corresponding binary 
cross-entropy loss, augmented by additional terms that, for example, 
prevent exploding weights.

Causal interpretation of the learning scheme
D2CL outputs a directed graph. The discriminative nature of D2CL 
means that the notion of causal influence encoded by the edges is 
rooted in the application setting and input information Π, because 
causal semantics are inherited via the problem setting rather than 
specified by a generative model (see ref. 10 for related discussions). 
Indeed, in the experiments we showed that D2CL could be used to suc-
cessfully learn either direct or indirect/ancestral causal relationships.

Here we provide some intuition as to why discriminative learning 
can be effective in this setting. However, we note that the following 
arguments are not intended to constitute a rigorous theory at this stage, 
but rather to help gain an understanding of the conditions under which 
discriminative causal structure learning may be expected to be effective.

We start with a general causal framework and then introduce 
assumptions for D2CL (the meta-generator assumption (MGA) and 
the dominant cause under single intervention (DCSI), described in the 
following sections). Following refs. 1,33, we assume decomposition of 
the underlying system into modular and independent mechanisms:
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Independent causal mechanisms (ICMs). The causal generative 
process of a system’s variables is composed of autonomous modules 
that do not inform or influence each other.

For variables Xi assume a structural causal model with equations 
Xi = fi(PaG∗ (Xi), UXi ), i = 1, … , p, where PaG∗ (Xi) denotes the set of parents 
in the ground-truth graph G* for node i, and fi is a node-specific func-
tion. Exogeneous noise terms UXi are assumed jointly independent and 
distributed as UXi ∼ pi, where pi is a node-specific density.

Our approach treats the fi and pi as unknown, but assumes they are 
related at a higher level. This can be formalized as a meta-generator 
assumption as follows.

Meta-generator assumption (MGA). For a specific system W, the func-
tions fi and noise distributions pi are (independently) generated as fi ∼ ℱW 
and pi ∼ 𝒫𝒫W , where ℱW  denotes a function generator and 𝒫𝒫W  a stochastic 
generator, that are specific to the applied problem setting W.

MGA is motivated by the notion that in any particular real-world 
system, underlying (biological, physical, social and so on) processes 
tend to share some functional and stochastic aspects, which impart 
some higher-level regularity. That is, MGA states that, in a given applied 
context, functions fi and (independent causal mechanism-consistent) 
noise terms UXi, while unknown, varied and potentially complex,  
are nonetheless related at a ‘meta’-level. The generators ℱW, 𝒫𝒫W  are 
random processes, representing, respectively, a ‘distribution over 
functions’ and a ‘distribution over distributions’, whose role here is to 
capture the notion of relatedness among fi functions (respectively pi) 
in a given setting W. Note that ℱW, 𝒫𝒫W  are treated as unknown and never 
directly estimated.

As mentioned in the problem statement, we focus on the causal sta-
tus of variable pairs (Xi, Xj) (rather than general tuples), which denotes 
the simplest possible case under MGA. Furthermore, in both our work 
and the majority of interventional studies in applications such as biol-
ogy, single interventions (rather than joint interventions on multiple 
nodes) are the norm. This requires the additional assumption, DCSI.

Dominant cause under single interventions (DCSI). A sufficiently 
large change in one of potentially multiple causes leads to a change 
with respect to the effect. Therefore, single interventions are sufficient 
to drive variation in the child distribution.

From MGA and DCSI to discriminative causal structure learning. 
Consider an applied problem W with underlying causal graph G∗

W , 
treated as fixed but unknown. The associated functions and noise terms 
are also unknown but assumed to follow MGA. Then, under DCSI, we 
have that all pairs of the form (Xi, Xj) have underlying relationships of 
the form Xj = fj(Xi, UXj ) with components following the MGA (that is, 
drawn from generators ℱW, 𝒫𝒫W ). This in turn suggests that within the 
setting W, identification of causal pairs can be treated as a classification 
problem, as all pairs share the same generators. In other words, MGA 
restricts the distribution over relations of variables and noise terms to 
system-specific generators.

Note that no particular assumption is made on the individual 
functions fj, only that they are mutually related on a higher level. Fur-
thermore, the generators themselves need not be known nor directly 
estimated; rather, it is only important that they are shared across the 
applied setting W. Note that a model learned for setting W will not in 
general be able to classify pairs in an entirely different applied setting 
W′ (because the generators may then differ strongly); that is, we do not 
seek to learn ‘universal’ patterns that apply to all causal relations in any 
system whatsoever. The classification task of D2CL aims to tell apart 
causal relationships (assumed drawn from the system-specific genera-
tors) from non-causal ones. We note that, in real systems, fi functions 
may be coupled via constraints on global functionality, and are thus 
non-independent; however, the good performance seen in the results 
empirically justifies the approach. Despite the initial theoretical ideas 

described above, rigorous theory and the theoretical properties of the 
kind of approach studied here remain to be understood, in particular 
the precise conditions for the underlying system needed to ensure that 
the classification-type approach can guarantee recovery of specific 
causal structures. We emphasize also that in contrast to classical causal 
learning schemes, for example, based on causal DAGs, we cannot at this 
stage make theoretical statements concerning underlying multivari-
ate distributions and their link to edges estimated by our models. Our 
goal is good performance in an edge-wise sense (as detailed above), 
and the core assumptions (formalized above) concern a limited notion 
of classifiability. We note also that our models at present learn edges 
separately and do not impose any particular wider/global constraints 
(such as acyclicity or path constraints), although this could in principle 
be done within the causal risk framework.

Architecture details
CNN tower. To capture distributional information from empirical data 
X, a preprocessing step is required. In principle, this could be done via 
a variety of multidimensional transformations of X. We consider the 
simplest possible case, namely for a pair (i, j) to consider only the cor-
responding columns i and j in the data matrix X. Specifically, we use 
the n × 2 submatrix X(⋅, [ij]) to form a bivariate kernel density estimate 
fij = KDE(X(⋅, [ij])). Note that this is, in general, asymmetric in the sense 
that fij ≠ fji, which is important as we want to learn ordered/directed 
relationships. In other words, this ensures that, in general, the CNN 
tower can output different probabilities for edges A → B and B → A 
(for any two nodes A and B). Evaluations of the KDE at equally spaced 
grid points on the plane (that is, numerical values from the induced 
density function) are treated as the input to the CNN. The KDE itself is 
a standard bivariate approach using automated bandwidth selection 
following refs. 34,35. This provides an ‘image’ of the data and allows us 
to leverage existing image analysis ideas. Furthermore, we concatenate 
channelwise the numerical KDE values on the regularly spaced grid with 
a positional encoding of the grid points.

The concrete network architecture of our CNN tower is inspired 
by a ResNet-54 architecture36. From a high-level perspective, it consists 
of a stem, five stages with [3, 4, 6, 3, 3] ResNet blocks and multiple fully 
connected layers that transform the high-level feature maps into a 
latent space that is merged with the output of the GNN tower. The first 
ResNet block at each stage downsamples the spatial dimensions of the 
output of the previous stage by a factor of two. To enhance the compu-
tational efficiency of the bottleneck layers in each ResBlock, channel 
down- and upsampling exploiting 1 × 1 convolutions is performed 
before and after each feature-extraction CNN layer37. We replaced 
ReLU activations by the parametric counterpart PReLU38, allowing us 
to learn the slope of the negative part at negligible additional compu-
tational costs, which addresses the problem of dying neurons. Follow-
ing ref. 39, we chose a full pre-activation of the convolutional layers, 
normalization–activation–convolution.

GNN tower. Our GNN tower builds on the SEAL architecture of ref. 40 
and the resulting graph convolutional neural network (GCNN) for link 
prediction. The underlying notion is that a heuristic function predicts 
scores for the existence of a link. However, instead of employing pre-
defined heuristics (such as the Katz coefficient or PageRank), an adap-
tive function is learned in an end-to-end fashion, which is formulated 
as a graph classification problem on enclosing subgraphs. Reference 40  
showed that a γ-decaying heuristic can be approximated by an h-hop 
neighbourhood while the approximation error is at least decreasing 
exponentially. These findings suggest that it is possible to learn 
high-order graph structure features from local enclosing subgraphs 
instead of the entire graph, which can be exploited for link prediction. 
Consider the pair of nodes of interest (i, j); the GNN tower is intended 
to infer causally interesting node features and state embeddings based 
on a local 1-hop enclosing subgraph extracted from the approximated 
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input graph ̂G0. For node pair (i, j), we first extract a set of nodes 𝒩𝒩  
with all nodes that are connected to either node i or node j based on 
the adjacency matrix of the approximated input graph ̂G0. The edge 
structure within the subgraph Gi, j is then reconstructed by pulling out 
all edges from ̂G0 for which the parent and child node are in 𝒩𝒩 . The 
order of the nodes is shuffled for each subgraph. The node features in 
every input subgraph consist of structural node labels that are 
assigned by a double-radius node labelling (DRNL) heuristic40 and the 
individual data features. In a first step, the distances between node i 
and all other nodes of the local subgraph except node j are computed. 
The same is repeated for node j. A hashing function then transforms 
the two distance labels into a DRNL label that assigns the same label 
to nodes that are on the same ‘orbit’ around the centre nodes i and j. 
During the training process, the DRNL label is transformed into a 
one-hot encoded vector and passed to the first graph convolutional 
layer. In contrast to traditional CNNs, GCNNs do not benefit strongly 
from very deep architecture design41,42. Therefore, our GNN tower 
consists only of four sequentially stacked graph convolutional layers. 
The activation function is defined as the hyperbolic tangent. Because 
the number of nodes in the enclosing subgraph for each pair of  
variables (i, j) is different, a SortPooling layer43 is applied to select the 
top k nodes according to their structural role within the graph. After-
wards, one-dimensional convolutions extract features from the 
selected state embeddings.

Embedding fusion. Each tower outputs a high-dimensional embedding 
of the individual features found. These embeddings are concatenated 
and further processed by multiple fully connected layers. Finally, the 
last layers output the log-likelihood of a directed edge from node i  
to node j.

Implementation details. All network architectures are implemented 
in the open-source framework PyTorch44. The GNN is coded based on 
the Deep Graph Library45. All modules are initialized from scratch using 
random weights. During training, we apply an Adam-Optimizer46 start-
ing at an initial learning rate of ϵ0 = 0.0001. The learning rate is reduced 
by a factor of five once the evaluation metrics stop improving for 15 
consecutive epochs. The minimum learning rate is set to ϵmin = 10−8. 
The training predictions are supervised on the binary cross-entropy 
loss between estimated and ground-truth edge labels. The evaluation 
metric is the (held-out) area under the ROC curve. Every network archi-
tecture is trained for 100 epochs. All computations are run on multiple 
graphics processing unit (GPU) nodes simultaneously, each equipped 
with eight Nvidia Tesla V100 GPUs.

Data availability
Data files are publicly available as follows. Yeast gene deletion data are 
from ref. 25. CRISPR perturbation data are from ref. 32. The pseudocode 
for data simulation is provided in Supplementary section 5.

Code availability
A Code Ocean compute capsule, which contains a pre-built compute 
environment and the source code of D2CL, is available at https://code-
ocean.com/capsule/4465854/tree/v1 ref. 47.
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