
Nature Machine Intelligence | Volume 5 | October 2023 | 1161–1174 1161

nature machine intelligence

https://doi.org/10.1038/s42256-023-00729-yAnalysis

A taxonomy and review of generalization 
research in NLP
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Yanai Elazar5,6, Tiago Pimentel    7, Christos Christodoulopoulos    8, 
Karim Lasri9, Naomi Saphra10, Arabella Sinclair11, Dennis Ulmer12,13, 
Florian Schottmann14,15, Khuyagbaatar Batsuren    16, Kaiser Sun17, 
Koustuv Sinha17, Leila Khalatbari18, Maria Ryskina    19, Rita Frieske    18, 
Ryan Cotterell14 & Zhijing Jin    14,20

The ability to generalize well is one of the primary desiderata for models of 
natural language processing (NLP), but what ‘good generalization’ entails 
and how it should be evaluated is not well understood. In this Analysis we 
present a taxonomy for characterizing and understanding generalization 
research in NLP. The proposed taxonomy is based on an extensive literature 
review and contains five axes along which generalization studies can 
differ: their main motivation, the type of generalization they aim to solve, 
the type of data shift they consider, the source by which this data shift 
originated, and the locus of the shift within the NLP modelling pipeline. 
We use our taxonomy to classify over 700 experiments, and we use the 
results to present an in-depth analysis that maps out the current state of 
generalization research in NLP and m ak e r ec ommendations for which areas 
deserve attention in the future.

Good generalization, roughly defined as the ability to successfully 
transfer representations, knowledge and strategies from past experi-
ence to new experiences, is one of the primary desiderata for models 
of natural language processing (NLP), as well as for models in the wider 
field of machine learning1,2. For some, generalization is crucial to ensure 
that models behave robustly, reliably and fairly when making predic-
tions about data different from the data on which they were trained, 
which is of critical importance when models are employed in the real 
world. Others see good generalization as intrinsically equivalent to 
good performance and believe that, without it, a model is not truly able 
to conduct the task we intended it to. Yet others strive for good generali-
zation because they believe models should behave in a human-like way, 
and humans are known to generalize well. Although the importance of 

generalization is almost undisputed, systematic generalization testing 
is not the status quo in the field of NLP.

At the root of this problem lies the fact that there is little under-
standing and agreement about what good generalization looks like, 
what types of generalization exist, how those should be evaluated, 
and which types should be prioritized in varying scenarios. Broadly 
speaking, generalization is evaluated by assessing how well a model 
performs on a test dataset, given the relationship of this dataset with 
the data on which the model was trained. For decades, it was common 
to exert only one simple constraint on this relationship: that the train 
and test data are different. Typically, this was achieved by randomly 
splitting the available data into training and test partitions. Generali-
zation was thus evaluated by training and testing models on different 
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robustly generalize in a wide range of non-i.i.d. scenarios8,11, over-rely 
on stereotypes12,13, or bank on memorization rather than generaliza-
tion14,15. Others, instead, display cases in which performances drop 
when the evaluation data differ from the training data in terms of genre, 
domain or topic (for example, refs. 6,16), or when they represent dif-
ferent subpopulations (for example, refs. 5,17). Yet other studies focus 
on models’ inability to generalize compositionally7,9,18, structurally19,20, 
to longer sequences21,22 or to slightly different formulations of the 
same problem13.

By showing that good performance on traditional train–test 
splits does not equal good generalization, these examples bring 
into question what kind of model capabilities recent breakthroughs 

but similarly sampled data, assumed to be independent and identically 
distributed (i.i.d.). In the past 20 years, we have seen great strides  
on such random train–test splits in a range of different applications 
(for example, refs. 3,4).

With this progress, however, came the realization that, for an NLP 
model, reaching very high or human-level scores on an i.i.d. test set 
does not imply that the model robustly generalizes to a wide range 
of different scenarios. We have witnessed a tide of different stud-
ies pointing out generalization failures in neural models that have 
state-of-the-art scores on random train–test splits (as in refs. 5–10, to 
give just a few examples). Some show that when models perform well 
on i.i.d. test splits, they might rely on simple heuristics that do not 
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Fig. 1 | Graphical representation of our proposed taxonomy of generalization 
in NLP. The generalization taxonomy we propose consists of five different 
(nominal) axes that describe (1) the high-level motivation of the work, (2) the type 

of generalization the test is addressing, (3) what kind of data shift occurs between 
training and testing and (4) what the source and (5) locus of this shift are.  
NP, noun phrase; VP, verb phrase; PP, prepositional phrase.
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actually reflect, and they suggest that research on the evaluation of 
NLP models is catching up with the fast recent advances in architec-
tures and training regimes. This body of work also reveals that there 
is no real agreement on what kind of generalization is important 
for NLP models, and how that should be studied. Different studies 
encompass a wide range of generalization-related research questions 
and use a wide range of different methodologies and experimental 
set-ups. As of yet, it is unclear how the results of different studies 
relate to each other, raising the question of how should generaliza-
tion be assessed, if not with i.i.d. splits? How do we determine what 
types of generalization are already well addressed and which are 
neglected, or which types of generalization should be prioritized? 
Ultimately, on a meta-level, how can we provide answers to these 
important questions without a systematic way to discuss generaliza-
tion in NLP? These missing answers are standing in the way of better 
model evaluation and model development—what we cannot measure, 
we cannot improve.

Here, within an initiative called GenBench, we introduce a new 
framework to systematize and understand generalization research 
in an attempt to provide answers to the above questions. We present 
a generalization taxonomy, a meta-analysis of 543 papers presenting 
research on generalization in NLP, a set of online tools that can be 
used by researchers to explore and better understand generalization 
studies through our website—https://genbench.org—and we introduce  
GenBench evaluation cards that authors can use to comprehensively 
summarize the generalization experiments conducted in their papers. 
We believe that state-of-the-art generalization testing should be  
the new status quo in NLP, and we aim to lay the groundwork for  
facilitating that.

The GenBench generalization taxonomy
The generalization taxonomy we propose—visualized in Fig. 1 and 
compactly summarized in Extended Data Fig. 2—is based on a detailed 
analysis of a large number of existing studies on generalization in NLP. 
It includes the main five axes that capture different aspects along which 
generalization studies differ. Together, they form a comprehensive 
picture of the motivation and goal of the study and provide informa-
tion on important choices in the experimental set-up. The taxonomy 
can be used to understand generalization research in hindsight, but 
is also meant as an active device for characterizing ongoing studies. 
We facilitate this through GenBench evaluation cards, which research-
ers can include in their papers. They are described in more detail in  
Supplementary section B, and an example is shown in Fig. 2. In the 
following, we give a brief description of the five axes of our taxonomy. 
More details are provided in the Methods.

Motivation
The first axis of our taxonomy describes the high-level motivation for 
the study. The motivation of a study determines what type of generaliza-
tion is desirable, as well as what kind of conclusions can be drawn from a 
model’s display or lack of generalization. Furthermore, the motivation 
of a study shapes its experimental design. It is therefore important for 
researchers to be explicitly aware of it, to ensure that the experimental 
set-up aligns with the questions they seek to answer. We consider four 
different types of motivation: practical, cognitive, intrinsic, and fair-
ness and inclusivity.

Generalization type
The second axis in our taxonomy indicates the type of generalization 
the test is addressing. This axis describes on a high level what the gen-
eralization test is intended to capture, rather than considering why or 
how, making it one of the most important axes of our taxonomy. In the 
literature, we have found six main types of generalization: composi-
tional generalization, structural generalization, cross-task generaliza-
tion, cross-lingual generalization, cross-domain generalization and 

robustness generalization. Figure 1 (top right) further illustrates these 
different types of generalization.

Shift type
The third axis in our taxonomy describes what kind of data shift is con-
sidered in the generalization test. This axis derives its importance from 
the fact that data shift plays an essential formal role in defining and 
understanding generalization from a statistical perspective, as well as 
from the fact that different types of shift are best addressed with differ-
ent kinds of experimental set-up. On the data shift axis we consider three 
shifts, which are well-described in the literature: covariate, label and full 
shift. We further include assumed shift to denote studies that assume a 
data shift without properly justifying it. In our analysis, we mark papers 
that consider multiple shifts between different distributions involved 
in the training and evaluation process as having multiple shifts.

Shift source
The fourth axis of the taxonomy characterizes the source of the data 
shift used in the experiment. The source of the data shift determines 
how much control the experimenter has over the training and testing 
data and, consequently, what kind of conclusions can be drawn from 
an experiment. We distinguish four different sources of shift: natu-
rally occurring shifts, artificially partitioned natural corpora, gener-
ated shifts and fully generated data. Figure 1 further illustrates these  
different types of shift source.

Shift locus
The last axis of our taxonomy considers the locus of the data shift, 
which describes between which of the data distributions involved in 
the modelling pipeline a shift occurs. The locus of the shift, together 
with the shift type, forms the last piece of the puzzle, as it determines 
what part of the modelling pipeline is investigated and thus the kind 
of generalization question that can be asked. On this axis, we consider 
shifts between all stages in the contemporary modelling pipeline—pre-
training, training and testing—as well as studies that consider shifts 
between multiple stages simultaneously.

Motivation
Practical Cognitive Intrinsic Fairness

Generalization type
Compositional Structural Task Language Domain Robustness

Shift type
Covariate Label Full Assumed

Shift source
Naturally occurring Partitioned natural Generated shift Fully generated

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

Fig. 2 | Example of a GenBench evaluation card. This example GenBench 
evaluation card describes a hypothetical paper with three different experiments. 
As can be seen in the first two rows, all experiments are practically motivated 
and test different types of generalization: cross-task generalization (square), 
cross-lingual generalization (triangle) and cross-domain generalization 
(circle). To do so, they use different data shifts and different loci. The task 
generalization experiment (square) involves a label shift from pretrain to test, 
the domain-generalization experiment (circle) a covariate shift in the finetuning 
stage, and the cross-lingual experiment (triangle) considers multiple shifts 
(covariate and label) across different stages of the modelling pipeline (pretrain–
train and finetune train–test). All experiments use naturally occurring shifts.  
The LaTeX code for this card was generated with the generation tool at  
https://genbench.org/eval_cards.
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A review of generalization research in NLP
Using our generalization taxonomy, we analysed 752 generalization 
experiments in NLP, presented in a total of 543 papers from the anthol-
ogy of the Association for Computational Linguistics (ACL) that have 
the (sub)words ‘generali(s∣z)ation’ or ‘generali(s∣z)e’ in their title or 
abstract. Aggregate statistics on how many such papers we found 
across different years is available in Fig. 3. For details on how we 
selected and annotated the papers, see Supplementary section A. A 
full list of papers is provided in Supplementary section G, as well as 
on our website (https://genbench.org). On the same website, we also 
present interactive ways to visualize the results, a search tool to retrieve 
relevant citations, and a means to generate GenBench evaluation cards, 
which authors can add to their paper (or appendix) to comprehensively 
summarize the generalization experiments in their paper (for more 
information, see Supplementary section B). In this section, we present 
the main findings of our analysis.

Overall trends on different axes
We begin by discussing the overall frequency of occurrence of different 
categories on the five axes, without taking into account interactions 
between them. We plot the relative frequencies of all axis values in Fig. 4  
and their development over time in Fig. 5. Because the number of gen-
eralization papers before 2018 that are retrieved is very low (Fig. 3a), we 
restricted the diachronic plots to the last five years. All other reported 
statistics are computed over our entire selection of papers.

Motivations. As we can see in Fig. 4 (top left), by far the most common 
motivation to test generalization is the practical motivation. The intrin-
sic and cognitive motivations follow, and the studies in our Analysis that 
consider generalization from a fairness perspective make up only 3% of 
the total. In part, this final low number could stem from the fact that our 
keyword search in the anthology was not optimal for detecting fairness 
studies (further discussion is provided in Supplementary section C). 
We welcome researchers to suggest other generalization studies with 
a fairness motivation via our website. However, we also speculate that 
only relatively recently has attention started to grow regarding the 
potential harmfulness of models trained on large, uncontrolled corpora 
and that generalization has simply not yet been studied extensively in 
the context of fairness. Overall, we see that trends on the motivation 
axis have experienced small fluctuations over time (Fig. 5, left) but have 
been relatively stable over the past five years.

Generalization type. We find that cross-domain is the most frequent 
generalization type, making up more than 30% of all studies, followed 
by robustness, cross-task and compositional generalization (Fig. 4). 
Structural and cross-lingual generalization are the least commonly 

investigated. Similar to fairness studies, cross-lingual studies could 
be undersampled because they tend to use the word ‘generaliza-
tion’ in their title or abstract less frequently. However, we suspect 
that the low number of cross-lingual studies is also reflective of the 
English-centric disposition of the field. We encourage researchers 
to suggest cross-lingual generalization papers that we may have 
missed via our website so that we can better estimate to what extent 
cross-lingual generalization is, in fact, understudied.

Shift type. Data shift types (Fig. 4) are very unevenly distributed over 
their potential axis values: the vast majority of generalization research 
considers covariate shifts. This is, to some extent, expected, because 
covariate shifts are more easily addressed by most current modelling 
techniques and can occur between any two stages of the modelling 
pipeline, whereas label and full shifts typically only occur between 
pretraining and finetuning. More unexpected, perhaps, is the relatively 
high amount of assumed shifts, which indicate studies that claim to 
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Fig. 3 | Papers about generalization in the ACL anthology. Visualization 
of the number of papers in the ACL anthology that contain the (sub)words 
‘generalisation’, ‘generalization’, ‘generalise’ or ‘generalize’ in their title or 
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to all papers (right). We see how both the absolute number of papers and the 
percentage of papers about generalization have starkly increased over time. 
On the right, we visualize the total number of papers and generalization papers 
published each year.
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test generalization but do not explicitly consider how their test data 
relate to their training data. The percentage of such assumed shifts 
has increased over the past few years (Fig. 5, middle). We hypothesize 
that this trend, which signals a movement of the field in the wrong 
direction, is predominantly caused by the use of increasingly large, 
general-purpose training corpora. Such large corpora, which are often 
not in the public domain, make it very challenging to analyse the rela-
tionship between the training and testing data and, consequently, make 
it hard to determine what kind of conclusions can be drawn from evalu-
ation results. More promising, instead, is the fact that several studies 
consider multiple shifts, thus assessing generalization throughout the 
entire modelling pipeline.

Shift source. On the shift source axis (Fig. 4) we see that almost half 
of the reviewed generalization studies consider naturally occurring 
shifts: natural corpora that are not deliberately split along a particular 
dimension. As discussed later in this section, this type of data source is 
most prevalent in cross-task and cross-domain generalization studies, 
for which such naturally different corpora are widely available. The 
next most frequent categories are generated shifts, where one of the 
datasets involved is generated with a specific generalization property 
in mind, and artificially partitioned natural data, describing settings in 
which all data are natural, but the way it is split between train and test is 
controlled. Fully generated datasets are less common, making up only 
10% of the total number of studies.

Shift locus. Finally, for the locus axis (Fig. 4), we see that the majority 
of cases focus on finetune/train–test splits. Much fewer studies focus 
on shifts between pretraining and training or pretraining and testing. 
Similar to the previous axis, we observe that a comparatively small per-
centage of studies considers shifts in multiple stages of the modelling 
pipeline. At least in part, this might be driven by the larger amount of 
compute that is typically required for those scenarios. Over the past 
five years, however, the percentage of studies considering multiple loci 
and the pretrain–test locus—the two least frequent categories—have 
increased (Fig. 5, right).

Interactions between axes
Next we consider interactions between different axes. Are there any 
combinations of axes that occur together very often or combinations 
that are instead rare? We discuss a few relevant trends and encourage 
the reader to explore these interactions dynamically on our website.

What data shift source is used for different generalization types? 
In Fig. 6 (top left), we show the relative frequency of each shift source 
per generalization type. We can see that the shift source varies widely 
across different types of generalization. Compositional generali-
zation, for example, is predominantly tested with fully generated 
data, a data type that hardly occurs in research considering robust-
ness, cross-lingual or cross-task generalization. Those three types of 

generalization are most frequently tested with naturally occurring 
shifts or, in some cases, with artificially partitioned natural corpora. 
Structural generalization is the only generalization type that appears to 
be tested across all different data types. As far as we are aware, very few 
studies exist that directly compare results between different sources of 
shift—for example, to investigate to what extent results on generated 
shifts or fully generated data are indicative of performances on natural 
corpora (such as refs. 23,24). Such studies could provide insight into 
how choices in the experimental design impact the conclusions that 
are drawn from generalization experiments, and we believe that they 
are an important direction for future work.

For which loci of shift are different generalization types studied? 
Another interesting question to ask is for which locus different gener-
alization types are considered (Fig. 6, top right). We observe that only 
cross-task generalization is frequently investigated in the pretrain–
train and pretrain–test stages. For all other types of generalization, 
the vast majority of tests are conducted in the train–test or finetune 
train–test stage. In some cases, these differences are to be expected: as 
general-purpose pretrained models are usually trained on very large, 
relatively uncontrolled corpora, investigating how they generalize to 
a different domain without further finetuning is hardly possible, and 
neither is evaluating their robustness, which typically also requires 
more detailed knowledge of the training data. The statistics also con-
firm the absence of studies that consider compositional generalization 
from pretraining to finetuning or from pretraining to training, which is 
philosophically and theoretically challenging in such set-ups because 
of their all-encompassing training corpora and the fact that in (large) 
language models, form and meaning are conflated in one space. A final 
observation is the relative underrepresentation of studies with multiple 
loci across all generalization types, especially given the large number 
of studies that consider generalization in the finetuning stage or with 
the pretrain–train locus. Those studies have included multiple train-
ing stages but considered generalization in only one of them. We hope 
to see this trend change in the future, with more studies considering 
generalization in the entire modelling pipeline.

Which types of data shift occur across different loci? Another inter-
esting interaction is the one between the shift locus and the data shift 
type. Figure 6 (centre left) shows that assumed shifts mostly occur in 
the pretrain–test locus, confirming our hypothesis that they are prob-
ably caused by the use of increasingly large, general-purpose training 
corpora. When such pretrained models are further finetuned, experi-
ments often consider either a shift between pretraining and finetuning 
where new labels are introduced, or a covariate shift in the finetuning 
stage; as such, they do not require an in-depth understanding of the 
pretraining corpus. The studies that do investigate covariate or full 
shifts with a pretrain–train or pretrain–test are typically not studies 
considering large language models, but instead multi-stage processes 
for domain adaptation.
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How does motivation drive generalization research? To discuss the 
relationship between the motivation behind a study and the other axes, 
we focus on its interactions with generalization type, shift locus and 
shift source, as shown in the bottom right half of Fig. 6. Considering first 
the relationship between motivation and generalization type (Fig. 6,  
centre right), we see that cross-domain, robustness, cross-task and 
cross-lingual generalizations are predominantly motivated by practical 
considerations; robustness generalization studies are also frequently 

motivated by an interest in understanding how models work intrinsi-
cally. We find that compositional and structural generalization studies 
are both frequently driven by cognitive motivations, which is to be 
expected given the importance of these concepts in human cognition 
and intelligence (for example, ref. 25). The motivation given most fre-
quently for compositional generalization, however, is a practical one. 
Although in human learning, compositionality is indeed often associ-
ated with important practical properties—speed of learning, powerful 
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Fig. 6 | Interactions between the various axes of our taxonomy. The 
interaction between occurrences of values on various axes of our taxonomy, 
shown as heatmaps. The heatmaps are normalized by the total row value to 

facilitate comparisons between rows. Different normalizations (for example, to 
compare columns) and interactions between other axes can be analysed on our 
website, where figures based on the same underlying data can be generated.
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generalization—as far as we know, there is little empirical evidence that 
compositional models actually perform better on natural language 
tasks. A similar apparent mismatch can be observed in Fig. 6 (bottom 
right) when focusing on the practical motivation. Practical generaliza-
tion tests are typically aimed at improving models or at being directly 
informative of a model’s applicability. Nonetheless, more than 20% 
of the practically motivated studies use either artificially partitioned 
natural data or even fully generated data. To what extent could their 
conclusions then actually be informative of models applied in practical 
scenarios? These apparent mismatches between the motivation and the 
experimental set-up illustrate the importance of the motivation axis in 
our taxonomy—being aware of and explicit about a study’s motivation 
ensures that its conclusions are indeed informative with respect to the 
underlying research question.

Another interesting observation that can be made from the inter-
actions between motivation and shift locus is that the vast majority 
of cognitively motivated studies are conducted in a train–test set-up. 
Although there are many good reasons for this, conclusions about 
human generalization are drawn from a much more varied range of 
‘experimental set-ups’. For example, any experiments done with adults 
can be thought of as more similar to tests with a finetune train–test or 
pretrain–test locus than to the train–test locus, as adults have a life-long 
experience over which the experimenter has little control beyond par-
ticipant selection. On the one hand, this suggests that generalization 
with a cognitive motivation should perhaps be evaluated more often 
with those loci. On the other hand, it begs the question of whether the 
field could take inspiration from experiments on human generaliza-
tion for the challenging effort of evaluating the generalization of large 
language models, trained on uncontrolled corpora, in a pretrain–test 
setting. Although there are, of course, substantial differences between 
the assumptions that can reasonably be made about the linguistic 
experiences of a human and the pretraining of a language model, we 
still believe that input from experts that have extensively considered 
human generalization would be beneficial to improve generalization 
testing in these more challenging set-ups.

Conclusion
In this Analysis we have presented a framework to systematize and under-
stand generalization research. The core of this framework consists of a 
generalization taxonomy that can be used to characterize generalization 
studies along five dimensions. This taxonomy, which is designed based 
on an extensive review of generalization papers in NLP, can be used to 
critically analyse existing generalization research as well as to structure 
new studies. The five nominal axes of the taxonomy describe why a study 
is executed (the main motivation of the study), what the study intends to 
evaluate (the type of generalization it aims to solve) and how the evalu-
ation is conducted (the type of data shift considered, the source of this 
data shift, and the locus in which the shift is investigated).

To illustrate the use and usefulness of our taxonomy, we analysed 
543 papers from the ACL anthology about generalization. Through our 
extensive analysis, we demonstrated that the taxonomy is applicable 
to a wide range of generalization studies and were able to provide a 
comprehensive map of the field, observing overall patterns and mak-
ing suggestions for areas that should be prioritized in the future. Our 
most important conclusions and recommendations are as follows:

•	 The goal of a study is not always perfectly aligned with its experi-
mental design. We recommend that future work should be more 
explicit about motivations and should incorporate deliberate 
assessments to ensure that the experimental set-up matches the 
goal of the study (for example, with the GenBench evaluation 
cards, as discussed in Supplementary section B).

•	 Cross-lingual studies and generalization studies motivated by 
fairness and inclusivity goals are underrepresented. We suggest 
that these areas should be given more attention in future work.

•	 Papers that target similar generalization questions vary widely in 
the type of evaluation set-up they use. The field would benefit from 
more meta-studies that consider how the results of experiments 
with different experimental paradigms compare to one another.

•	 The vast majority of generalization studies focus on only one stage 
of the modelling pipeline. More work is needed that considers 
generalization in all stages of training, to prioritize models whose 
generalizing behaviour persists throughout their training pipeline.

•	 Recent popular NLP models that can be tested directly for their 
generalization from pretraining to testing are often evaluated 
without considering the relationship between the (pre)training 
and test data. We advise that this should be improved, and that 
inspiration might be taken from how generalization is evaluated 
in experiments with human participants, where control and access 
to the ‘pretraining’ data of a participant are unattainable.

Along with this Analysis we also launch a website, with (1) a set of 
visualization tools to further explore our results; (2) a search tool that 
allows researchers to find studies with specific features; (3) a contribu-
tions page, allowing researchers to register new generalization studies; 
and (4) a tool to generate GenBench evaluation cards, which authors can 
use in their articles to comprehensively summarize their generalization 
experiments. Although the review and conclusions presented in this 
Analysis are necessarily static, we commit to keeping the entries on the 
website up to date when new papers on generalization are published, and 
we encourage researchers to engage with our online dynamic review by 
submitting both new studies and existing studies we might have missed. By 
providing a systematic framework and a toolset that allow for a structured 
understanding of generalization, we have taken the necessary first steps 
towards making state-of-the-art generalization testing the new status quo 
in NLP. In Supplementary section E, we further outline our vision for this, 
and in Supplementary section D, we discuss the limitations of our work.

Methods
In this Analysis we propose a novel taxonomy to characterize research 
that aims to evaluate how (well) NLP models generalize, and we use 
this taxonomy to analyse over 500 papers in the ACL anthology. In this 
section, we describe the five axes that make up the taxonomy: motiva-
tion, generalization type, shift type, shift source and shift locus. A list 
of examples for every axis value is provided in Supplementary section 
C. More details about the procedure we used to annotate papers is 
available in Supplementary section A.

Motivation—what is the high-level motivation for a 
generalization test?
The first axis we consider is the high-level motivation or goal of a 
generalization study. We identified four closely intertwined goals 
of generalization research in NLP, which we refer to as the practical 
motivation, the cognitive motivation, the intrinsic motivation and 
the fairness motivation. The motivation of a study determines what 
type of generalization is desirable, shapes the experimental design, 
and affects which conclusions can be drawn from a model’s display 
or lack of generalization. It is therefore crucial for researchers to be 
explicit about the motivation underlying their studies, to ensure that 
the experimental set-up aligns with the questions they seek to answer. 
We now describe the four motivations we identified as the main drivers 
of generalization research in NLP.

Practical. One frequent motivation to study generalization is of a 
markedly practical nature. Studies that consider generalization from 
a practical perspective seek to assess in what kind of scenarios a model 
can be deployed, or which modelling changes can improve perfor-
mance in various evaluation scenarios (for example, ref. 26). We pro-
vide further examples of research questions with a practical nature in 
Supplementary section C.

http://www.nature.com/natmachintell
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Cognitive. A second high-level motivation that drives generalization 
research is a cognitive one, which can be separated into two underlying 
categories. The first category is related to model behaviour and focuses 
on assessing whether models generalize in human-like ways. Human 
generalization is a useful reference point for the evaluation of models 
in NLP because it is considered to be a hallmark of human intelligence 
(for example, ref. 25) and, perhaps more importantly, because it is pre-
cisely the type of generalization that is required to successfully model  
natural language. The second, more deeply cognitively inspired  
category embraces work that evaluates generalization in models to 
learn more about language and cognition (for example, ref. 27). Studies 
in this category investigate what underlies generalization in computa-
tional models, not to improve the models’ generalization capabilities, 
but to derive new hypotheses about the workings of human generaliza-
tion. In some cases, it might be difficult to distinguish cognitive from 
practical motivations: a model that generalizes like a human should 
also score well on practically motivated tests, which is why the same 
experiments can be motivated in multiple ways. In our axes-based 
taxonomy, rather than assuming certain experiments come with a fixed 
motivation, we rely on motivations provided by the authors.

Intrinsic. A third motivation to evaluate generalization in NLP models, 
which cuts through the two previous motivations, pertains to the ques-
tion of whether models learned the task we intended them to learn, in 
the way we intended the task to be learned. We call this motivation the 
intrinsic motivation. The shared presupposition underpinning this type 
of research is that if a model has truly learned the task it is trained to 
do, it should also be able to execute this task in settings that differ from 
the exact training scenarios. What changes, across studies, is the set of 
conditions under which a model is considered to have appropriately 
learned a task. Some examples are provided in Supplementary sec-
tion C. In studies that consider generalization from this perspective, 
generalization failures are taken as proof that the model did not—in 
fact—learn the task as we intended it to learn it (for example, ref. 28).

Fairness and inclusivity. A last yet important motivation for generali-
zation research is the desire to have models that are fair, responsible 
and unbiased, which we denote together as the fairness and inclusivity 
motivation. One category of studies driven by these concepts, often 
ethical in nature, asks questions about how well models generalize to 
diverse demographics, typically considering minority or marginalized 
groups (for example, ref. 5), or investigates to what extent models 
perpetuate (undesirable) biases learned from their training data (for 
example, ref. 17). Another line of research related to both fairness and 
inclusivity focuses on efficiency, both in terms of the amount of data 
that is required for a model to converge to a solution as well as the 
necessary amount of compute. In such studies, efficiency is seen as a 
correlate of generalization: models that generalize well should learn 
more quickly and require less data (for example, ref. 29). As such, they 
are more inclusively applicable—for instance to low-resource languages 
or demographic groups for which little data are available—they are 
more accessible for groups with smaller computational resources, and 
they have a lower environmental impact (for example ref. 30).

Generalization type—what type of generalization is a test 
addressing?
The second axis in our taxonomy describes, on a high level, what type 
of generalization a test is intended to capture, making it an important 
axis of our taxonomy. We identify and describe six types of generaliza-
tion that are frequently considered in the literature.

Compositional generalization. The first prominent type of generaliza-
tion addressed in the literature is compositional generalization, which 
is often argued to underpin humans’ ability to quickly generalize to 
new data, tasks and domains (for example, ref. 31). Although it has a 

strong intuitive appeal and clear mathematical definition32, compo-
sitional generalization is not easy to pin down empirically. Here, we 
follow Schmidhuber33 in defining compositionality as the ability to 
systematically recombine previously learned elements to map new 
inputs made up from these elements to their correct output. For an 
elaborate account of the different arguments that come into play when 
defining and evaluating compositionality for a neural network, we refer 
to Hupkes and others34.

Structural generalization. A second category of generalization stud-
ies focuses on structural generalization—the extent to which models 
can process or generate structurally (grammatically) correct output—
rather than on whether they can assign them correct interpretations. 
Some structural generalization studies focus specifically on syntactic 
generalization; they consider whether models can generalize to novel 
syntactic structures or novel elements in known syntactic structures 
(for example, ref. 35). A second category of structural generalization 
studies focuses on morphological inflection, a popular testing ground 
for questions about human structural generalization abilities. Most 
of this work considers i.i.d. train–test splits, but recent studies have 
focused on how morphological transducer models generalize across 
languages (for example, ref. 36) as well as within each language37.

Cross-task generalization. A third direction of generalization research 
considers the ability of individual models to adapt to multiple NLP 
problems—cross-task generalization. Cross-task generalization in 
NLP has traditionally been strongly connected to transfer and multi-
task learning38, in which the goal was to train a network from scratch 
on multiple tasks at the same time, or to transfer knowledge from 
one task to another. In that formulation, it was deemed an extremely 
challenging topic. This has changed with the relatively recent trend of 
models that are first pretrained with a general-purpose, self-supervised 
objective and then further finetuned, potentially with the addition of 
task-specific parameters that learn to execute different tasks using the 
representations that emerged in the pretraining phase. Rather than 
evaluating how learning one task can benefit another, this pretrain–
finetune paradigm instead gives a central role to the question of how 
well a model that has acquired some general knowledge about language 
can successfully be adapted to different kinds of tasks (for example, 
refs. 4,39), with or without the addition of task-specific parameters.

Cross-lingual generalization. The fourth type of generalization we 
include is generalization across languages, or cross-lingual gener-
alization. Research in NLP has been very biased towards models and 
technologies for English40, and most of the recent breakthroughs rely 
on amounts of data that are simply not available for the vast majority 
of the world’s languages. Work on cross-lingual generalization is thus 
important for the promotion of inclusivity and democratization of 
language technologies, as well as from a practical perspective. Most 
existing cross-lingual studies focus on scenarios where labelled data 
is available in a single language (typically English) and the model is 
evaluated in multiple languages (for example, ref. 41). Another way 
in which cross-lingual generalization can be evaluated is by testing 
whether multilingual models perform better than monolingual mod-
els on language-specific tasks as a result of being trained on multiple 
languages at the same time (for example, ref. 42).

Generalization across domains. The next category we include is 
generalization across domains, a type of generalization that is often 
required in naturally occurring scenarios—more so than the types 
discussed so far—and thus carries high practical relevance. Although 
there is no precise definition of what constitutes a domain, the term 
broadly refers to collections of texts exhibiting different topical and/
or stylistic properties, such as different genres or texts with varying 
formality levels. We include also temporal generalization, where the 
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training data are produced in a specific time period and the model is 
tested on data from a different time period, either in the future or in the 
past (for example, ref. 43), in the category of domain generalization. 
In the literature, cross-domain generalization has often been studied 
in connection with domain adaptation—the problem of adapting an 
existing general model to a new domain (for example, ref. 44).

Robustness generalization. The last category of generalization 
research we consider on the generalization type axis is robustness 
generalization, which concerns models’ ability to learn task solutions 
that abstract away from spurious correlations that may occur in the 
training data and that are aligned with the underlying generalizing solu-
tion that humans associate with the task (for example, ref. 28). Research 
on robustness generalization usually focuses on data shifts that stem 
from varying data collection processes, which are generally unintended 
and can be hard to spot. Current work therefore focuses on character-
izing such scenarios and understanding their impact. Many of these 
studies show that models do not generalize in the way we would expect 
them to, because the training data was in some subtle manner not rep-
resentative of the true task distribution. For example, they may focus 
on how models generalize in the face of annotation artefacts (for exam-
ple, ref. 45), across static and non-static splits (for example, ref. 46)  
and when certain demographics are under- or over-represented in the 
training data (for example, ref. 17).

Shift type—what kind of data shift is considered?
We have seen that generalization tests differ in terms of their motiva-
tion and the type of generalization that they target. What they share, 
instead, is that they all focus on cases in which there is a form of shift 
between the data distributions involved in the modelling pipeline. 
In the third axis of our taxonomy, we describe the ways in which two 
datasets used in a generalization experiment can differ. This axis adds a 
statistical dimension to our taxonomy and derives its importance from 
the fact that data shift plays an essential role in formally defining and 
understanding generalization from a statistical perspective.

We formalize the differences between the test, training and poten-
tially pretraining data involved in generalization tests as shifts between 
the respective data distributions:

p (xtst, ytst) test (1)

p (xtr, ytr) training/finetuning/adaptation (2)

p (xptr, yptr) pretraining (3)

These data distributions can be expressed as the product of the prob-
ability of the input data p(x) and the conditional probability of the 
output labels given the input data p(y∣x):

p(x, y) = p(x)p(y|x) (4)

This allows us to define four main types of relation between two data 
distributions, depending on whether the distributions differ in terms 
of p(x), p(y∣x), both or none. Note that, for clarity, we focus on train–
test shifts, as this is the most intuitive setting, but the shift types we 
describe in this section can be used to characterize the relationship 
between any two data distributions involved in a modelling pipeline. 
One of the four shift types constitutes the case in which there is no 
shift in data distributions—both p(xtr) = p(xtst) and p(ytr|xtr) = p(ytst|xtst). 
This matches the i.i.d. evaluation set-up traditionally used in machine 
learning. As discussed earlier, this type of evaluation, also referred 
to as within-distribution generalization, has often been reported not 
to be indicative of good performance for the more complex forms of 
generalization that we often desire from our models. We will not discuss 

this further here, but instead focus on the other three cases, commonly 
referred to as out-of-distribution (o.o.d.) shifts. In the following, we 
discuss the shift types we include in our taxonomy.

Covariate shift. The most commonly considered data distribution 
shift in o.o.d. generalization research is the one where p(xtst) ≠ p(xtr) but 
p(ytst|xtst) = p(ytr|xtr). In this scenario, often referred to as the covariate 
shift47,48, the distribution of the input data p(x) changes, but the con-
ditional probability of the labels given the input—which describes the 
task—remains the same. Under this type of shift, one can evaluate if a 
model has learned the underlying task distribution while only being 
exposed to p(xtr, ytr).

Label shift. The second type of shift corresponds to the case in which the 
focus is on the conditional output distributions: p(ytst|xtst) ≠ p(ytr|xtr). 
We refer to this case as the label shift. Label shift can happen within the 
same task when there are inter-annotator disagreements, when there 
is a temporal shift in the data, or a change of domain (for example, the 
phrase ‘it doesn’t run’ can lead to different sentiment labels depend-
ing on whether it appears in a review for software or one for mascara).  
Label shift also occurs when there is a change in task, where it may even 
happen that not only the meaning of the labels, but the labels them-
selves change, for example, when shifting from language modelling 
(where the set of labels is the language vocabulary) to part-of-speech 
(POS) tagging.

Full shift. The most extreme type of shift corresponds to the case 
in which p(x) and p(y∣x) change simultaneously: p(xtst) ≠ p(xtr) and 
p(ytst|xtst) ≠ p(ytr|xtr). We refer to this case as full shift. Full shifts may 
occur in language modelling tasks, where changes in the p(x) directly 
translate into changes in p(y∣x), when adapting to new language pairs 
in multilingual experiments (for example, ref. 49) or when entirely 
different types of data are used either for pretraining (for example, 
ref. 50) or for evaluation (for example, ref. 51).

Assumed shift. When classifying shifts in our Analysis, we mainly focus 
on cases where authors explicitly consider the relationship between 
the data distributions they use in their experiments, and the assump-
tions they make about this relationship are either well-grounded in 
the literature (for example, it is commonly assumed that switching 
between domains constitutes a covariate shift) or empirically verified. 
Nevertheless, we identify numerous studies that claim to be about 
generalization where such considerations are absent: it is assumed 
that there is a shift between train and test data, but this is not verified 
or grounded in previous research. We include this body of work in our 
Analysis and denote this type of shift with the label ‘assumed shift’.

Multiple shifts. Note that some studies consider shifts between  
multiple distributions at the same time, for instance to investigate 
how different types of pretraining architecture generalize to o.o.d. 
splits in a finetuning stage52 or which pretraining method performs 
better cross-domain generalization in a second training stage53. In the 
GenBench evaluation cards, both these shifts can be marked (Supple-
mentary section B), but for our analysis in this section, we aggregate 
those cases and mark any study that considers shifts in multiple differ-
ent distributions as multiple shift.

Shift source—how are the train and test data produced?
We have discussed what types of shift may occur in generalization tests. 
We now focus on how those shifts originated. Our fourth axis, graphi-
cally shown in Fig. 1, concerns the source of the differences occurring 
between the pretraining, training and test data distributions. The 
source of the data shift determines how much control an experimenter 
has over the training and testing data and, consequently, what kind of 
conclusions can be drawn from a generalization experiment.
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To formalize the description of these different sources of shift, we 
consider the unobserved base distribution, which describes all data 
considered in an experiment:

p(xbase, ybase, τ) base (5)

In this equation, the variable τ represents a data property of interest, 
with respect to which a specific generalization ability is tested. This 
can be an observable property of the data (for example, the length of 
an input sentence), an unobservable property (for example, the times-
tamp that defines when a data point was produced) or even a property 
relative to the model (architecture) under investigation (for example, 
τ could represent how quickly a data point was learned in relation to 
the overall model convergence). The base distribution over x, y and τ 
can be used to define different partition schemes to be adopted in 
generalization experiments. Formally, such a partitioning scheme is a 
rule f ∶ 𝒯𝒯 𝒯 𝒯true, false} that discriminates data points according to 
a property τ ∈ 𝒯𝒯 . To investigate how a partitioning scheme impacts 
model behaviour, the pretraining, training and test distributions can 
be defined as

p (xptr, yptr) = p (xbase, ybase| fpretrain (τ) = true) (6)

p (xtr, ytr) = p (xbase, ybase| ftrain (τ) = true) (7)

p (xtst, ytst) = p (xbase, ybase| ftest (τ) = true) (8)

Using these data descriptions, we can now discuss four different 
sources of shifts.

Naturally occurring shifts. The first type of shift we include com-
prises the naturally occurring shifts, which naturally occur between 
two corpora. In this case, both data partitions of interest are naturally 
occurring corpora, to which no systematic operations are applied. For 
the purposes of a generalization test, experimenters have no direct 
control over the partitioning scheme f(τ). In other words, the variable 
τ refers to properties that naturally differ between collected datasets.

Artificially partitioned natural data. A slightly less natural set-up is 
one in which a naturally occurring corpus is considered, but it is arti-
ficially split along specific dimensions. In our taxonomy, we refer to 
these with the term ‘partitioned natural data’. The primary difference 
with the previous category is that the variable τ refers to data proper-
ties along which data would not naturally be split, such as the length or 
complexity of a sample. Experimenters thus have no control over the 
data itself, but they control the partitioning scheme f(τ).

Generated shifts. The third category concerns cases in which one data 
partition is a fully natural corpus and the other partition is designed 
with specific properties in mind, to address a generalization aspect 
of interest. We call these generated shifts. Data in the constructed 
partition may avoid or contain specific patterns (for example, ref. 18), 
violate certain heuristics (for example, ref. 8) or include unusually long 
or complex sequences (for example, ref. 54), or it may be constructed 
adversarially, generated either by humans55 or automatically using a 
specific model (for example, ref. 56).

Fully generated. The last possibility is to use fully generated data. 
Generating data is often the most precise way of measuring specific 
aspects of generalization, as experimenters have direct control over 
both the base distribution and the partitioning scheme f(τ). Sometimes 
the data involved are entirely synthetic (for example, ref. 34); other 
times they are templated natural language or a very narrow selection 
of an actual natural language corpus (for example, ref. 9).

Locus of shift—between which data distributions does the 
shift occur?
The four axes that we have discussed so far demonstrate the depth and 
breadth of generalization evaluation research, and they also clearly 
illustrate that generalization is evaluated in a wide range of different 
experimental set-ups. They describe high-level motivations, types of 
generalization, data distribution shifts used for generalization tests, 
and the possible sources of those shifts. What we have not yet explicitly 
discussed is between which data distributions those shifts can occur—
the locus of the shift. In our taxonomy, the shift locus forms the last 
piece of the puzzle, as it determines what part of the modelling pipeline 
is investigated and, with that, what kind of generalization questions can 
be answered. We consider shifts between all stages in the contemporary 
modelling pipeline—pretraining, training/finetuning and testing—as 
well as studies that consider shifts between multiple stages at the same 
time, as expressed by the data distributions that we have considered 
(for a graphical representation, see Extended Data Fig. 1).

We describe the loci of shift and how they interact with different 
components of the modelling pipeline with the aid of three modelling 
distributions. These modelling distributions correspond to the previously 
described stages—testing a model, training it, and potentially pretraining it:

p (𝒴𝒴tst|𝒳𝒳tst, θ∗) model (9)

p (θ∗|𝒳𝒳tr, 𝒴𝒴tr, ϕtr, θ̂) training/finetuning/adaptation (10)

p (θ̂|𝒳𝒳ptr, 𝒴𝒴ptr, ϕpr, θ0) pretraining (11)

In these equations, ϕ broadly denotes the training and pretraining 
hyperparameters, θ refers to the model parameters, and 𝒳𝒳, 𝒴𝒴 indicate 
sets of inputs (x) and their corresponding output (y). Equation (9) 
defines a model instance, which specifies the probability distribution 
over the target test labels 𝒴𝒴tst, given the model’s parameters θ* and a 
set of test inputs 𝒳𝒳tst. Equation (10) defines a training procedure, by 
specifying a probability distribution over model parameters θ∗ ∈ ℝd  
given a training dataset 𝒳𝒳tr, 𝒴𝒴tr, a set of training hyperparameters ϕtr 
and a (potentially pretrained) model initialization θ̂. Finally, equation 
(11) defines a pretraining procedure, specifying a conditional probabil-
ity over the set of parameters θ̂, given a pretraining dataset, a set of 
pretraining hyperparameters ϕpr and a model initialization. Between 
which of these stages a shift occurs impacts which modelling distribu-
tions can be evaluated. We now discuss the different potential loci  
of shifts.

The train–test locus. Probably the most commonly occurring locus of 
shift in generalization experiments is the train–test locus, correspond-
ing to the classic set-up where a model is trained on some data and then 
directly evaluated on a shifted (o.o.d.) test partition. In some cases, 
researchers investigate the generalization abilities of a single model 
instance (that is, a set of parameters θ*, as described in equation (9)). 
Studies of this type therefore report the evaluation of a model instance—
typically made available by others—without considering how exactly it 
was trained, or how that impacted the model’s generalization behaviour 
(for example, ref. 57). Alternatively, researchers might evaluate one or 
more training procedures, investigating if the training distribution 
results in model instances that generalize well (for example, ref. 58). 
Although these cases also require evaluating model instances, the focus 
of the evaluation is not on one particular model instance, but rather on 
the procedure that generated the evaluated model instances.

The finetune train–test locus. The second potential locus of shift—the 
finetune train–test locus—instead considers data shifts between the 
train and test data used during finetuning and thus concerns models 
that have gone through an earlier stage of training. This locus occurs 
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when a model is evaluated on a finetuning test set that contains a shift 
with respect to the finetuning training data. Most frequently, research 
with this locus focuses on the finetuning procedure and on whether it 
results in finetuned model instances that generalize well on the test 
set. Experiments evaluating o.o.d. splits during finetuning often also 
include a comparison between different pretraining procedures; for 
instance, they compare how BERT models and RoBERTa models behave 
during finetuning, thus investigating both a pretrain–train shift and a 
finetune train–test shift at the same time.

The pretrain–train locus. A third possible locus of shift is the pretrain–
train locus, between pretraining and training data. Experiments with 
this locus evaluate whether a particular pretraining procedure (equa-
tion (11)) results in models (parameter sets θ̂) that are useful when 
further trained on different tasks or domains (for example, ref. 59).

The pretrain–test locus. Finally, experiments can have a pretrain–test 
locus, where the shift occurs between pretraining and test data. This locus 
occurs when a pretrained model is evaluated directly on o.o.d. data, 
without further training (that is, 𝒳𝒳tr, 𝒴𝒴tr = ∅, ∅)—as frequently happens 
in in-context learning set-ups (for example, ref. 60)—or when a pretrained 
model is finetuned on examples that are i.i.d. with respect to the pretrain-
ing data and then tested on out-of-distribution instances. The former 
case (θ∗ = θ̂) is similar to studies with only one training stage in the train–
test locus, but distinguishes itself by the nature of the (pre)training pro-
cedure, which typically has a general-purpose objective, rather than being 
task-specific (for example, a language modelling objective).

Multiple loci. In some cases, one single study may investigate multiple 
shifts between different parts of the modelling pipeline. Multiple-loci 
experiments evaluate all stages of the modelling pipeline at once: they 
assess the generalizability of models produced by the pretraining proce-
dure as well as whether generalization happens in the finetuning stage (for 
example, ref. 61). Although those can be separately annotated in GenBench 
evaluation cards, in the analysis section of this Analysis we take them all 
together in a single category and denote those studies to have multiple loci.

Data availability
The full annotated list of articles included in our survey is available 
through the GenBench website (https://genbench.org/references), 
where articles can be filtered through a dedicated search tool. This 
is an evolving survey: we encourage authors to submit new work 
and to request annotation corrections through our contributions 
page (https://genbench.org/contribute). The exact list used at the 
time of writing can be retrieved from https://github.com/GenBench/
GenBench.github.io/blob/cea0bd6bd8af6f2d0f096c8f81185b1d-
fc9303b5/taxonomy_clean.tsv. We also release interactive tools to 
visualize the results of our survey at https://genbench.org/visualisa-
tion. Source data are provided with this paper.
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Extended Data Fig. 1 | Different loci of splits, and the parts of the modelling 
pipeline for which they may investigate generalisation. The shifts that 
characterise generalisation experiments in NLP can occur in different places 
in the modelling pipeline. In this figure, we visualise the three stages of 
the contemporary modelling pipeline: the pretraining stage, consisting of 

pretraining data as well as a pretraining procedure; the training stage, which 
involves training data, a pretrained model, and a training procedure; and finally, 
the test stage, in which an already trained model is tested on a test dataset. As 
visualised in this figure, shifts can occur between all or multiple of those stages, 
which allows to investigate different parts of the modelling pipeline.
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Extended Data Fig. 2 | A compact graphical representation of our proposed 
taxonomy of generalisation in NLP. The generalisation taxonomy we propose 
consists of five different (nominal) axes, that describe the high-level motivation 

of the work (top, left), the type of generalisation the test is addressing (bottom, 
left); what kind of data shift occurs between training and testing (top, middle), 
and what the source (top, right) and locus of this shift (bottom, right) are.
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